
Lecture 16. Curvature

In this lecture we introduce the curvature tensor of a Riemannian manifold,
and investigate its algebraic structure.

16.1 The curvature tensor

We first introduce the curvature tensor, as a purely algebraic object: If X, Y ,
and Z are three smooth vector fields, we define another vector field R(X,Y )Z
by

R(X,Y )Z = ∇Y (∇XZ) −∇Y (∇Y Z) −∇[Y,X]Z.

Proposition 16.1.1 R(X,Y )Z is a tensor of type (3, 1).

Proof. R is tensorial in the first two arguments, because we can write

R(X,Y )Z = (∇∇Z) (Y,X) − (∇∇Z) (X,Y ),

and each of the terms of the right is a tensor in X and Y . This leaves one
further calculation:

R(X,Y )(fZ) = ∇Y (f∇XZ +X(f)Z) −∇X (f∇Y Z + Y (f)Z)
− [X,Y ](f)Z − f∇[X,Y ]Z

= f∇Y ∇XZ + Y (f)∇XZ + Y X(f)Z +X(f)∇Y Z

− f∇X∇Y Z −X(f)∇Y Z −XY (f)Z − Y (f)∇XZ

− [X,Y ](f)Z − f∇[X,Y ]Z

= f
(
∇Y ∇XZ −∇X∇Y Z −∇[X,Y ]Z

)

+ (Y X(f) −XY (f) − [X,Y ](f))Z
= fR(X,Y )Z.

�

Remark. Note that this calculation does not use the compatibility of the
connection with the metric, only the symmetry of the connection. Thus any
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(symmetric) connection gives rise to a curvature tensor. However, we will
only be interested in the case of the Levi-Civita connection from now on.

As usual we can write the curvature tensor in terms of its components in
any coordinate tangent basis:

R = Rikj
ldxi ⊗ dxk ⊗ dxj ⊗ ∂l.

Then an application of the metric index-lowering operator gives a tensor of
type (4, 0) defined by

R(u, v, w, z) = g(∇v∇uw −∇u∇vw −∇[v,u]w, z).

The components of this are Rijkl = Rijk
pgpl.

Proposition 16.1.2 (Symmetries of the curvature tensor)

(1). Rikjl +Rkijl = 0;
(2). Rikjl +Rkjil +Rjikl = 0;
(3). Rikjl +Riklj = 0;
(4). Rikjl = Rjlik.

The second identity here is called the first Bianchi identity .

Proof. The first symmetry is immediate from the definition of curvature. For
the second, work in a coordinate tangent basis:

Rikjl +Rkjil +Rjikl = g (∇k∇i∂j −∇i∇k∂j , ∂l)
+ g (∇j∇k∂i −∇k∇j∂i, ∂l)
+ g (∇i∇j∂k −∇j∇i∂k, ∂l)

= g (∇k (∇i∂j −∇j∂i) , ∂l)
+ g (∇j (∇k∂i −∇i∂k) , ∂l)
+ g((∇i (∇j∂k −∇k∂j) , ∂l)

= 0

by the symmetry of the connection.
The third symmetry is a consequence of the compatibility of the connec-

tion with the metric:

0 = ∂i∂jgkl − ∂j∂igkl

= ∂i (g(∇j∂k, ∂l) + g(∂k,∇j∂l))
− ∂j (g(∇i∂k, ∂l) + g(∂k,∇i∂l))

= g(∇i∇j∂k, ∂l) + g(∇i∂k,∇j∂l) + g(∇j∂k,∇i∂l) + g(∂k,∇i∇j∂l)
− g(∇j∇i∂k, ∂l) − g(∇j∂k,∇i∂l) − g(∇i∂k,∇j∂l) − g(∂k,∇j∇i∂l)

= Rjikl +Rjilk.
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Finally, the last symmetry follows from the previous ones:

Rikjl =(2) −Rkjil −Rjikl

=(3) Rkjli +Rjilk

=(2) −Rjlki −Rlkji −Riljk −Rljik

=(3),(1) 2Rjlik +Rlkij +Rilkj

=(2) 2Rjlik −Rkilj

=(1),(3) 2Rjlik −Rikjl.

�

Note that if M is a one-dimensional Riemannian manifold, then the cur-
vature is zero (since it is antisymmetric). This reflects the fact that any
one-dimensional manifold can be locally parametrised by arc length, and so
is locally isometric to any other one-dimensional manifold. The curvature
tensor is invariant under isometries.

Next consider the two-dimensional case: Any component of R in which the
first two or the last two indices are the same must vanish, by symmetries (1)
and (3). There is therefore only one independent component of the curvature:
If we take {e1, e2} to be an orthonormal basis for TxM , then we define the
Gauss curvature of M at x to be K = R1212. This is independent of the
choice of basis: Any other one is given by e′1 = cos θe1 + sin θe2 and e′2 =
− sin θe1 + cos θe2, so we have

R1′2′1′2′ = R(cos θe1 + sin θe2,− sin θe1 + cos θe2, e′1, e
′
2)

= cos2 θR(e1, e2, e′1, e
′
2) − sin2 θR(e2, e1, e′1, e

′
2)

= R(e1, e2, e′1, e
′
2)

= R(e′1, e
′
2, e1, e2)

= R(e1, e2, e1, e2)
= R1212.

More generally, we see that (in any dimension), if {ei} are orthonormal,
then Rijkl depends only the (oriented) two-dimensional plane generated by
ei and ej , and the one generated by ek and el.

16.2 Sectional curvatures

The last observation motivates the following definition:
If Σ is a two-dimensional subspace of TxM , then the sectional curvature

of Σ is K(σ) = R(e1, e2, e1, e2), where e1 and e2 are any orthonormal basis
for Σ. This is indepedent of basis, by the calculation above.
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Proposition 16.2.1 The curvature tensor is determined by the sectional
curvatures.

Proof. We will give an explicit expression for a component Rijkl of the curva-
ture tensor, in terms of sectional curvatures. We work with an orthonormal
basis {e1, . . . , en} at a point of M .

For convenience we will refer to the oriented plane generated by e1 and
ej by the notation ei ∧ ej . We compute the sectional curvature of the plane
1
2 (ei + ek) ∧ (ej + el):

K

(
(ei + ek) ∧ (ej + el)

2

)
=

1
4
R(ei + ek, ej + el, ei + ek, ej + el)

=
1
4
K(ei ∧ ej) +

1
4
K(ei ∧ el) +

1
4
K(ej ∧ ek) +

1
4
K(ek ∧ el)

+
1
2
Rijil +

1
2
Rijkj +

1
2
Rilkl +

1
2
Rklkj

+
1
2
Rijkl +

1
2
Rkjil.

Now add the same expression with ek and el replaced by −ek and −el:

Rijkl +Rkjil = K

(
(ei + ek) ∧ (ej + el)

2

)
+K

(
(ei − ek) ∧ (ej − el)

2

)

− 1
2
K(ei ∧ ej) −

1
2
K(ei ∧ el) −

1
2
K(ej ∧ ek) − 1

2
K(ek ∧ el).

Finally, subtract the same expression with ei and ej interchanged: On the
left-hand side we get

Rijkl +Rkjil −Rjikl −Rkijl = 2Rijkl −Rjkil −Rkijl = 3Rijkl

by virtue of the Bianchi identity. Thus we have

Rijkl =
1
3
K

(
(ei + ek) ∧ (ej + el)

2

)
+

1
3
K

(
(ei − ek) ∧ (ej − el)

2

)

− 1
3
K

(
(ej + ek) ∧ (ei + el)

2

)
− 1

3
K

(
(ej − ek) ∧ (ei − el)

2

)

− 1
6
K(ej ∧ el) −

1
6
K(ei ∧ ek) +

1
6
K(ei ∧ el) +

1
6
K(ej ∧ ek).

�
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16.3 Ricci curvature

The Ricci curvature is the symmetric (2, 0)-tensor defined by contraction of
the curvature tensor:

Rij = δkl Rikj
l = gklRikjl.

This can be interpreted in terms of the sectional curvatures: Given a unit
vector v, choose an orthonormal basis for TM with en = v. Then we have

R(v, v) =
n∑

i=1

R(ei, v, ei, v) =
n=1∑

i=1

Rinin =
n∑

i=1

K(v ∧ ei).

Thus the Ricci curvature in direction v is an average of the sectional curva-
tures in 2-planes containing v.

16.4 Scalar curvature

The scalar curvature is given by a further contraction of the curvature:

R = gijRij = gijgklRikjl.

R(x) then (except for a constant factor depending on n) the average of
the sectional curvatures over all 2-planes in TxM .

16.5 The curvature operator

The full algebraic structure of the curvature tensor is elucidated by construct-
ing a vector space on which it acts as a bilinear form.

At each point x of M we let Λ2TxM be the vector space obtained by
dividing the space TxM ⊗ TxM by the relation

u⊗ v ∼ −v ⊗ u.

This is a vector space of dimension n(n− 1)/2, with basis elements

ei ∧ ej = [ei ⊗ ej ]

for i < j. More generally, if u and v are any two vectors in TxM , we denote

u ∧ v = [u⊗ v] .

This is called the wedge product of the vectors u and v.
In particular, if u and v are orthogonal and have unit length, then we

identify u ∧ v ∈ Λ2TxM with the two dimensional oriented plane in TxM
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generated by u and v. The construction of Λ2TxM simply extends the set
of two-dimensional planes in TxM to a vector space, to allow formal sums
and scalar multiples of them. We refer to the space Λ2TxM as the space of
2-planes at x (even though not everything can be interpreted as a plane in
TxM), and the corresponding bundle is the 2-plane bundle of M . We extend
the metric to Λ2TM by taking {ei ∧ ej | 1 ≤ i < j ≤ n} to be an orthonormal
basis for Λ2TxM whenever {e1, . . . , en} is an orthonormal basis for TxM .

A 2-plane which can be expressed in the form u ∧ v for some vectors u
and v is called a simple 2-plane, and such a plane corresponds to a subspace
of TxM .

Exercise 16.5.1 Show that every 2-plane is simple if n = 2 or n = 3, but
not if n ≥ 4.

The importance of the 2-plane bundle is the following:

Proposition 16.5.2 The curvature tensor defines a symmetric bilinear form
on the space of 2-planes Λ2TxM , by

R(Aijei ∧ ej , Bklek ∧ el) = AijBklRijkl.

Here the sum is over all i and j with i < j, and all k and l with k < l.
In particular, this curvature operator, since symmetric, can be diago-

nalised. It is important to note that the eigenvalues of the curvature operator
need not be sectional curvatures! The sectional curvatures are the values of
the curvature operator on simple 2-planes, but there is no reason why the
eigen-vectors of the curvature operator should be simple 2-planes. In partic-
ular, it is possible to have all the sectional curvatures positive (or negative)
at a point, while not having all of the eigenvalues of the curvature operator
positive (negative).

In the special case of three dimensions, however, every 2-plane is simple,
and so the eigenvalues of the curvature operator are sectional curvatures.
In this case we refer to the eigenvectors of the curvature operator as the
principal 2-planes, and the eigenvalues the principal sectional curvatures.

16.6 Calculating curvature

Suppose we are given a metric g and wish to calculate the curvature. In
principle we have all the ingredients to do this, but in practice this can get
very messy:

First, in local coordinates we can write down the connection ceofficients,
which are smooth functions on the coordinate domain, such that



16.6 Calculating curvature 157

∇∂i
∂j = Γij

k∂k.

From these we can calculate the second derivatives:

∇k∇i∂j = ∇k

(
Γij

l∂l

)

= ∂kΓij
l∂l + Γij

lΓkl
p∂p.

This gives the expression for the curvature:

Rikj
l = ∂kΓij

l − ∂iΓkj
l + Γij

qΓkq
l − Γkj

qΓiq
l.

Let us consider a simple case, namely when the parametrisation is con-
formal, so that the metric takes the very simple form

gij = fδij

for some function f . Then the inverse metric is also easy to compute:

gij = f−1δij .

Therefore a connection coefficient is given by

Γij
k =

1
2
gkl (∂igjl + ∂jgil − ∂lgij)

=
1
2
f−1δkl (∂ifδjl + ∂jfδil − ∂lfδij)

=
1
2

(
δkj ∂i log f + δki ∂j log f − δijδkl∂l log f

)
.

This gives the following expression for the curvature tensor components,
where we write u = log

√
f :

Rikj
l = δlj∂k∂iu+ δli∂k∂ju− δijδlp∂k∂pu

− δlj∂i∂ku− δlk∂i∂ju+ δkjδ
lp∂i∂pu

+
(
δqj∂iu+ δqi ∂ju− δijδqp∂pu

) (
δlq∂ku+ δlk∂qu− δkqδ

lm∂mu
)

−
(
δqj∂ku+ δqk∂ju− δkjδ

qp∂pu
) (
δlq∂iu+ δli∂qu− δiqδlm∂mu

)

= δli∂k∂ju− δijδlp∂k∂pu− δlk∂i∂ju+ δkjδ
lp∂i∂pu

+ |Du|2
(
δjkδ

l
i − δijδlk

)

+ δlk∂iu∂ju+ δijδlq∂qu∂ku− δli∂ju∂ku− δjkδlq∂qu∂iu.

Taking the trace over k and l gives the Ricci curvature:

Rij = −δij
(
∆u+ (n− 2)|Du|2

)
− (n− 2) (∂i∂ju− ∂iu∂ju) ,

where ∆u = δkl∂k∂lu is the Laplacian of u. Finally, multiplying by f−1δij

gives the scalar curvature:
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R = −(n− 1)f−1
(
2∆u+ (n− 2)|Du|2

)
.

Example 16.6.1 We will compute the curvature of the left-invariant met-
ric gij = y−2δij on the upper half-plane H

n in R
n, with coordinates

(x1, . . . , xn−1, y), y > 0. If this case we have f = y−2, so u = − log y. There-
fore ∂iu = −y−1δni , and ∂i∂ju = y−2δni δ

n
j . Also |Du|2 = y−2. The equation

above therefore gives

Rikjl = y−4
(
δilδ

n
j δ

n
k + δjkδ

n
i δ

n
l − δijδnk δnl − δklδ

n
i δ

n
j

+ (δjkδil − δijδkl)

+ δklδ
n
i δ

n
j + δijδnk δ

n
l − δjkδ

n
i δ

n
l − δilδnk δnl

)

= y−4 (δjkδil − δijδkl) .

An orthonormal basis is given by {yei}, which gives for any sectional curva-
ture

K = −1.

Thus hyperbolic space has constant negative curvature.

16.7 Left-invariant metrics

Another situation in which is it possible to conveniently write down the cur-
vature of a metric is when it arises as a left-invariant metric for a Lie group.

Let G be a Lie group, with a left-invariant metric g, and an orthonormal
basis of left-invariant vector fields E1, . . . , En. Write [Ei, Ej ] = cij

kEk. Then
we have

∇EiEj =
1
2

(
cij

l + clij + clji

)
El,

and so
∇k∇iEj =

1
4

(
cij

l + clij + clji

)
(ckl

p + cpkl + cplk)Ep.

Also, we have

∇[Ek,Ei]Ej = cki
l∇lEj =

1
2
cki

l (cljp + cplj + cpjl)Ep.

Combining these:

Rikj
p =

1
4

(
cij

l + clij + clji

)
(ckl

p + cpkl + cplk)

− 1
4

(
ckj

l + clkj + cljk

)
(cilp + cpil + cpli)

− 1
2
cki

l (cljp + cplj + cpjl) .
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Example 16.7.1 This gives us another method to compute the curvature of
the metric on the upper half-plane: We think of this as the Lie group G of
matrices of the form






vn v1 v2 . . . vn−1

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0






with vn > 0. We identify this with the upper half-space of R
n by associating

the above matrix with the point (v1, . . . , vn). We take the left-invariant metric
for which the usual basis at the identity (0, . . . , 0, 1) is orthonormal. The
corresponding left-invariant vector fields are:

(Ei)v =






0 0 . . . 0 vn 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 0




 ∼ vnei

for 1 ≤ i ≤ n− 1, and

(En)v =






vn 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




 ∼ vnen.

Therefore the corresponding metric is gij = x−2
n δij . The structure coefficients

cij
k can be computed as follows: If 1 ≤ i, j ≤ n − 1, then [Ei, Ej ] = 0; If

1 ≤ i ≤ n− 1, then
[Ei, En] = −vnEi.

Therefore
cij

k = −δnj δki + δni δ
k
j .

This gives (since with respect to the basis {Ei}, gij = δij)

Rikjl = −1
4

(
δnj δkp − δnk δjp + δnk δjp − δnp δjk + δnj δkp − δnp δjk

)

×
(
δnp δil − δni δpl + δni δpl − δnl δip + δnp δil − δnl δip

)

+
1
4

(
δnj δip − δni δjp + δni δjp − δnp δji + δnj δip − δnp δji

)

×
(
δnp δkl − δnk δpl + δnk δpl − δnl δkp + δnp δkl − δnl δkp

)

+
1
2

(δnk δip − δni δkp)
(
δnj δlp − δnp δjl + δnp δjl − δnl δjp + δnj δjp

)

= −δnj δnk δil + δnj δ
n
l δik + δilδjk − δni δnl δjk

+ δnj δ
n
i δkl − δnj δnl δik − δklδij + δnk δ

n
l δij

+ δnk δ
n
j δil − δnk δnl δij − δni δnj δkl + δni δ

n
l δkj

= −δklδij + δjkδil.
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Hence the curvature operator has all eigenvalues equal to −1, and all of the
sectional curvatures are −1.

16.8 Bi-invariant metrics

The situation becomes even simpler if we have a bi-invariant metric:

Proposition 16.8.1 If g is a bi-invariant metric on a Lie group G, then for
any left-invariant vector fields X, Y , and Z,

g([X,Y ], Z) = g([Z,X], Y ).

Proof. g must be left-invariant, so that for any h ∈ G,

gh(Delh(X), Delh(Y )) = ge(X,Y ).

Similarly, g must be right-invariant, so

gh(Derh(X), Derh(Y )) = ge(X,Y ).

Together these imply that

ge((Derh)−1Delh(X), (Derh)−1Delh(Y )) = ge(X,Y ).

We will denote by Adh the isomorphism of TeG given by (Derh)−1Delh.
Then Ad is a representation of the group G on the vector space TeG, called
the adjoint representation: If γ has tangent vector X, then

AdkAdh(X) =
d

dt
(rk)−1

lk (rh)−1
lh(γ(t))

∣∣∣
t=0

=
d

dt

(
khγ(t)h−1k−1

) ∣∣∣
t=0

= Adkh(X).

So we have g(Adh(X), Adh(Y )) = g(X,Y ), or g is Ad-invariant. But now
differentiate this equation with h = etZ , at t = 0. In doing so we differentiate
the maps Adh.

Definition 16.8.2 The derivative at the identity of the map Ad : G →
GL(TeG) is denoted ad : TeG→ L(TeG,TeG).

The map ad is a representation of the Lie algebra g of G: It is a linear
map such that

[ad(X), ad(Y )] = ad([X,Y ]),
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where on the left hand side the Lie bracket is to be interpreted as the com-
mutator of the linear transformations Ad(X) and Ad(Y ).

Now when we differentiate the Ad-invariance condition, we get:

0 = g(ad(Z)(X), Y ) + g(X, ad(Z)(Y )).

Lemma 16.8.3
ad(X)Y = [X,Y ].

Proof. By definition we have

ad(X)Y =
d

dt
(AdetXY ) |t=0 =

d

dt

d

ds

(
etXesY e−tX

) ∣∣∣
s=t=0

.

This makes sense because d
ds

(
etXesY e−tX

)
|s=0 is a vector in TeG for each

t, and so can be differentiated with respect to t. The identification between
this and the Lie bracket comes from a more general statement:

Lemma 16.8.4 Let M be a smooth manifold, X and Y in X (M), and
x ∈ M . Then if ΨX,t and ΨY,t are local flows of the vector fields X and Y
near x,

∂

∂t

∂

∂s
(ΨY,tΨX,sΨY,−t(x))

∣∣
∣
s=0

∣∣
∣
t=0

= [X,Y ](x).

Proof. In local coordinates near x (say, with xk = 0), we have

Xk(z) = Xk(x) + zi∂iX
k(x) +O(z2).

Therefore by definition of the local flow,

(ΨX,t(z))k = zk + t(Xk(x) + zi∂iX
k(x) +O(z2)) +O(t2)

= zk + tXk(x) + tzi∂iX
k(x) +O(tz2, t2).

From this we can compute:

(ΨY,−t(x))k = −tY k(x) +O(t2),

and

(ΨX,sΨY,−t(x))
k = −tY k(x) + sXk(x) − stY i(x)∂iX

k(x) +O(st2, s2)

and finally,

(ΨY,tΨX,sΨY,−t(x))
k = −tY k(x) + sXk(x) − stY i(x)∂iX

k(x) +O(st2, s2)

+ tY k(x) + t(−tY i(x) + sXi(x))∂iY
k(x) +O(st2, t2)

= sXk(x) − st
(
Y i(x)∂iX

k(x) −Xi(x)∂iY
k(x)

)

+O(s2, t2).



162 Lecture 16. Curvature

Differentiating with respect to s and t when s = t = 0 gives

∂t∂s (ΨY,tΨX,sΨY,−t(x))
k
∣∣∣
s=t=0

= Xi(x)∂iY
k(x) − Y i(x)∂iX

k(x)

= ([X,Y ](x))k
.

�

In the present case, we have

etX = ΨX,t(e);

And by left-invariance,

d

dt
ΨX,t(h) = Xh = DelhXe =

d

dt

(
hetX

)
,

so that
ΨX,t(h) = hetX .

Therefore

etXesY e−tX = ΨX,−t

(
etXesY

)
= ΨX,−tΨY,sΨX,t(e).

So Lemma 16.8.4 gives the result. �

This completes the proof of Proposition 16.8.1. �

Corollary 16.8.5 If G is a Lie group and g a bi-invariant Riemannian met-
ric, then

Rijkl =
1
4
cijpcklp =

1
4

(cikpcjlp − cjkpcilp) .

Proof. By Proposition 16.8.1 we have cijk = cjki, and we also have the sym-
metry cijk = −cjik. Therefore

∇Ei
Ej =

1
2
gkl (cijl + clij + clji)Ek

=
1
2
gkl (cijl + cijl + cjil)Ek

=
1
2
gklcijlEk.

Therefore

Rikjl = g
(
∇k∇iEj −∇i∇kEj −∇[Ek,Ei]Ej , El

)

=
1
4
ckplcijp − 1

4
ciplckjp − 1

2
ckipcpjl

Now we note that the Jacobi identity (cf. Lecture 6) gives
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0 = [Ei, [Ej , Ek]] + [Ej , [Ek, Ei]] + [Ek, [Ei, Ej ]]
= ciplcjkp + cjplckip + ckplcijp

which gives the result, including the equality between the two expressions.
�

Example 16.8.6 We will apply this to a simple example, namely the Lie group
S3: Here the metric for which i, j and k are orthonormal at the identity is
easily seen to be bi-invariant, and we have the structure coefficients

[i, j] = ij − ji = 2k;

and similarly [j, k] = 2i and [k, i] = 2j. This gives, if we label E1 = i, E2 = j,
and E3 = k,

c123 = c231 = c312 = 2

and
c213 = c321 = c132 = −2,

and all others are zero. Thus we have

R1212 =
1
4
c12pc12p =

1
4
c2123 = 1;

and similarly R1313 = R2323 = 1. Also

R1213 =
1
4
c12pc13p = 0,

and similarly R1223 = R1323 = 0. Therefore the curvature operator is just the
identity matrix with respect to the basis E1 ∧E2, E2 ∧E3, E3 ∧E1, and all
the eigenvalues are equal to 1. In particular all the sectional curvatures are
equal to 1.




