
Lecture 17. Extrinsic curvature of
submanifolds

In this lecture we define the extrinsic curvature of submanifolds in Euclidean
space.

17.1 Immersed submanifolds

By an immersed submanifold of Euclidean space R
N I will mean a differen-

tiable manifold M together with an immersion X : M → R
N . Note that for

any x ∈M there is a neighbourhood U of x such that X|U is an embedding.
A particular case of an immersed submanifold is an embedded submanifold.

The inner product 〈., .〉 on R
N induces a metric g and corresponding

Levi-Civita connection ∇ on M , defined by

g(u, v) = 〈DX(u), DX(v)〉

and
∇uv = πTM (Du(DX(v))) .

A particular case of this is an immersed hypersurface, which is the case
where M is of dimension N − 1. We will develop the theory of extrinsic
curvature first for the simpler case of hypersurfaces, and then extend this to
the more general case of immersed submanifolds.

17.2 The Gauss map of an immersed hypersurface

Let Mn be an oriented immersed hypersurface in R
n+1. Then for each point

x ∈M there is a well-defined unit normal n to M (more precisely, to X(M))
at x. This is defined by the requirements 〈n,n〉 = 1, 〈n,DX(u)〉 = 0
for all u ∈ TxM , and if e1, . . . , en are an oriented basis for TxM then
DX(e1), . . . , DX(en),n is an oriented basis for R

n+1.
This defines a smooth map n : M → Sn ⊂ R

n+1, called the Gauss map
of M .
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17.3 The second fundamental form of a hypersurface

Having defined the Gauss map of an oriented immersed hypersurface, we can
define a tensor as follows:

h(u, v) = 〈Dun, DX(v)〉.

This is called the second fundamental form on M , and is a tensor of type
(2, 0).

The second fundamental form has an alternative expression, which we
can deduce as follows: Let U and V be smooth vector fields on M . Since
〈n, DX(V ) = 0, we have

0 = U〈n, DX(V )〉
= 〈Dun, DX(V )〉 + 〈n, DUDX(V )〉
= h(U, V ) + 〈n, DUDX(V )〉

and therefore
h(U, V ) = −〈DUDVX,n〉.

From this we can deduce a useful symmetry:

h(U, V ) = −〈DUDVX,n〉 = −〈DVDUX +D[U,V ]X,n〉 = −h(V,U)

since D[U,V ]X = DX([U, V ]) is tangential to M , hence orthogonal to n.
Therefore the second fundamental form is a symmetric bilinear form on the
tangent space TxM at each point.

Since h is symmetric, it can be diagonalized with respect to the met-
ric g — that is, we can find a basis e1, . . . , en for TxM and real numbers
λ1, . . . , λn such that h(ei, u) = λig(ei, u) for all vectors u ∈ TxM . The num-
bers λ1, . . . , λn are called the principal curvatures of M at x.

The mean curvatureH is the trace of h with respect to g:H = gijhij . This
can also be expressed in terms of the principal curvatures: H = λ1 + . . .+λn.

The Gauss curvature K is the determinant of h with respect to g, which
is therefore also equal to

∏n
i=1 λi.

In the case where M is not orientable, it is not possible to choose a unit
normal vector continuously on M , and so n, and hence h and the principal
curvatures λi are defined only up to sign.

Remark. It is very easy to get a geometric understanding of the second fun-
damental form of a hypersurface: Fix z ∈M . Assume that the origin of R

n+1

is at X(z) and choose an orthonormal basis e1, . . . , en+1 for R
n+1 such that

DX(TzM) = span{e1, . . . , en}. By the implicit function theorem, X(M) can
be written locally in the form {xiei : xn+1 = u(x1, . . . , xn)}. Then near z we
have in the coordinates x1, . . . , xn

∂iX = ei +
∂u

∂xi
en+1
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and
n(z) = en+1.

Therefore

∂i∂jX =
∂2u

∂xi∂xj
en+1

and so at z,

hij = − ∂2u

∂xi∂xj
.

To put this another way, we have

u(y) = −1
2
hij(z)yiyj +O(y3)

as y → 0. This says that the second fundamental form gives the best approx-
imation of the hypersurface by a paraboloid defined over its tangent plane.

17.4 The normal bundle of an immersed submanifold

Now we go on to the general case of an immersed submanifold Mn in R
N .

Then at each point of M , rather than having a single unit normal vector, we
have a normal subspace NxM = {v ∈ R

N : v ⊥ DX(TxM)}. This defines the
normal bundle NM of M : NM = {(p, v) : p ∈M, v ⊥ DX(TpM)}. This is a
differentiable manifold of dimension N .

17.5 Vector Bundles

The normal bundle (and indeed the tangent bundle and the tensor bundles we
have already defined) is an example of a more general object called a vector
bundle. A vector bundle E of dimension k over M is defined by associating
to each x ∈ M a vector space Ex (often called the fibre at x), and taking
E = {(p, v) : p ∈ M, v ∈ Ep}. We require that E be a smooth manifold, and
that for each x ∈ M there is a neighbourhood U of x in M such that there
are k smooth sections φ1, . . . , φk of E (i.e. smooth maps φi from M to E
such that π ◦φi = id) such that φ1(y), . . . , φk(y) form a basis for Ey for each
y ∈ U (it follows that the restriction of the bundle E to U is diffeomorphic
to U × R

k).
We denote the space of smooth sections of E (i.e. smooth maps from M

to E which take each x ∈M to the fibre Ex at x) by Γ (E).
A connection on a vector bundle E is a map which takes a vector u ∈ TxM

and section φ ∈ Γ (E) and gives an element ∇uφ ∈ Ex, smoothly in the sense
that if U ∈ X (M) and φ ∈ Γ (E) then ∇Uφ ∈ Γ (E), which is linear in the
first argument and satisfies a Leibniz rule in the second:
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∇u(fφ) = f∇uφ+ u(f)φ

for all f ∈ C∞(M), u ∈ TxM and φ ∈ Γ (E).
We can also define tensors which either act on E or take their values in

E, to be C∞-multilinear functions acting on sections of E or its dual E∗, and
the connection extends to such tensors.

17.6 Curvature of a vector bundle

If E is a vector bundle over M with a metric 〈., .〉 and a connection ∇ which
is compatible with the metric:

∇u〈φ, ψ〉 = 〈∇uφ, ψ〉 + 〈φ,∇uψ〉.

Then we can define the curvature of the bundle E as follows: If X,Y ∈ X (M)
and φ, ψ ∈ Γ (E), then we take

R(X,Y, φ, ψ) = 〈∇Y ∇Xφ−∇X∇Y φ−∇[Y,X]φ, ψ〉.

This is tensorial in all arguments — that is, the value of the resulting function
when evaluated at any point x ∈ M depends only on the values of X, Y , φ
and ψ at x. The proof of this is identical to the proof that the curvature ofM
is a tensor (Lecture 16). This can be considered as an operator which takes
Λ2TxM to Λ2Ex, since it is antisymmetric in the first two and the last two
arguments.

17.7 Connection on the normal bundle

We can define a connection on the normal bundle as follows: If V is a section
of the normal bundle, and U is a smooth vector field on M , then we define

∇UV
∣∣
x

= πNxM (DUV ) .

This is a connection: For any f ∈ C∞(M), we have

∇U (fV ) = πNM ((Uf)V + fDUV )
= U(f)πNMV + fπNMDUV

= U(f)V + f∇UV

so the Leibniz rule holds. This connection is compatible with the metric
induced on NM by the inner product on R

N . By the argument above, this
defines a curvature tensor acting on Λ2TM ⊗ Λ2E, which we denote by R⊥

and call the normal curvature of M .
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17.8 Second fundamental form of a submanifold

The second fundamental form is defined in an analogous way to that for the
hypersurface case: Given U, V ∈ X (M) define

h(U, V ) = −πNxM (DUDVX) = −DUDVX +DX(∇UV ).

This does in fact define a tensor field, since

h(fU, gV ) = −πNxM (DfUDgVX)
= −πNxM (fgDUDVX + f(Ug)DVX)
= fgh(U, V )

since DVX ⊥ NxM . h therefore defines at each x ∈ M a bilinear map from
TxM × TxM to NxM .

We can also define an operator W from TxM ×NxM to TxM as follows:

W(u, φ) = πTxM (Duφ)

for u ∈ TxM and φ ∈ Γ (NM). This is again tensorial, since

W(u, fφ) = πTxM (Dufφ) = πTxM (fDuφ+ (uf)φ) = fW(u, φ).

This is related to the second fundamental form as follows:

0 = v〈φ,DuX〉 = 〈Dvφ,DuX〉+〈φ,DvDuX〉 = 〈W(v, φ), DuX〉−〈h(v, u), φ〉

and so 〈W(v, φ), DuX〉 = 〈h(v, u), φ〉 for any u and v in TxM and φ in NxM .
The second fundamental form of a submanifold can be interpreted in a

similar way to the hypersurface case: If we fix z ∈ M , then X(M) can be
written locally as the graph of a smooth function from TxM to NxM — that
is, if we choose a basis e1, . . . , eN such that DX(TzM) = span{e1, . . . , en}
and NzM = span{en+1, . . . , eN}, then for some open set U containing z,

X(M) = {X(z) + xiei : xj = f j(x1, . . . , xn), j = n+ 1, . . . , N}.

Then we find

f j(x1, . . . , xn) = −1
2
〈hkl(z), ej〉xkxl +O(x3)

as x → 0. Thus the second fundamental form at z defines the best approxi-
mation to X(M) as the graph of a quadratic function over DX(TzM).




