
Lecture 19. The Cartan Moving Frame
Method

In this lecture we will explore the use of differential forms to compute con-
nection coefficients and curvatures for given Riemannian metrics.

We start with a technical Lemma (Cartan’s Lemma):

Lemma 19.1 Let ωi, i = 1, . . . , n be a collection of 1-forms on a region
U which form a basis for the space of covectors at each point. Suppose ηij,
1 ≤ i, j ≤ n be a collection of 1-forms which satisfy

n∑

j=1

ηij ∧ ωj = 0

for each i, and
ηij + ηji = 0

for each i and j. Then ηij = 0 for all i and j at every point of U .

Proof. We can write uniquely

ηij =
∑

k

aijkωk.

The identity ηij ∧ ωj then becomes

aijk − aikj = 0

for each i, j and k. The second identity gives

aijk + ajik = 0.

Thus we have

aijk = −ajik = −ajki = akji = akij = −aikj = −aijk,

so that aijk = 0 and ηij = 0. �

To proceed, suppose we have a manifold M equipped with a Riemannian
metric g, such that there is a smoothly defined orthonormal collection of
vector fields e1, . . . , en. Let ω1, . . . , ωn be the dual basis of 1-forms.
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Then we have the following result:

Proposition 19.2 There exists a unique collection of 1-forms ωij for 1 ≤
i, j ≤ n such that

dωi = ωij ∧ ωj

and
ωij + ωji = 0.

Proof. We start by proving uniqueness: Suppose that ω̄ij is any other collec-
tion of one-forms satisfying the same conditions. Then let ηij = ω̄ij − ωij .
Then we have

ηij ∧ ωj = ω̄ij ∧ ωj − ωij ∧ ωj = dωi − dωi = 0

and
ηij + ηji = 0.

By Lemma 19.1, we have ηij = 0, and therefore ωij = ω̄ij .
Now we prove existence. We set ωij = g(∇ek

ei, ej)ωk, where ∇ is the
Levi-Civita connection of g. We use the identity

dω(X,Y ) = Xω(Y ) − Y ω(X) − ω([X,Y ])

from section 13.7. Applying this with ω = ωi, X = ej and Y = ek, we find
(noting ωi(ej) = δij) that

dωi(ek, el) = −ωi([ek, el]) = −ωi(∇ek
el −∇el

ek) = −Γkli + Γlki

and

ωij ∧ ωj(ek, el) = g(∇ek
ei, ej)δjl − g(∇el

ei, ej)δjk = Γkil − Γlik.

The fact that these two agree follows from the compatibility of the connection
with the metric, which gives

0 = ekδij = Γkij + Γkji.

The same identity shows that ωij + ωji = 0. �

The 1-forms ωij are called the connection 1-forms corresponding to the
frame {ei}. Once these have been computed, we can compute the curvature
as follows:

Proposition 19.3 For any orthonormal frame {ei}, the curvature 2-form

Ωij = −1
2
Rijklωk ∧ ωl

can be computed from the connection 1-forms as follows:
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Ωij = dωij − ωik ∧ ωkj .

Proof. From the proof of the previous proposition, we have ωij(ek) =
g(∇ek

ei, ej). Taking the exterior derivative, we find

dωij(ek, el) = ekωij(el) − elωij(ek) − ωij([ek, el])
= ekg(∇el

ei, ej) − elg(∇ek
ei, ej) − g(∇[ek,el]ei, ej)

= g(∇ek
∇el

ei, ej) + g(∇el
ei,∇ek

ej)
− g(∇el

∇ek
ei, ej) − g(∇ek

ei,∇el
ej)

− g(∇[ek,el]ei, ej)

= −Rijkl + ωip(el)ωjp(ek) − ωip(ek)ωjp(el)
= (Ωij + ωip ∧ ωpj)(ek, el)

�

An important special case to keep in mind is the following: If n = 2, then
we have the simple set of equations

dω1 = ω12 ∧ ω2

dω2 = −ω12 ∧ ω1

Ω12 = dω12.

In this case it is very easy to find the connection 1-form ω12, since if we write
ω12 = aω1 + bω2, then

dω1(e1, e2) = a

and
dω2(e1, e2) = −b

so that
ω12 = dω1(e1, e2)ω1 − dω2(e1, e2)ω2.

The connection 2-form is also particularly simple in this case, since the
curvature tensor has only one component up to symmetries: R1212 = K, the
Gauss curvature. Thus we have

Ω12 = −Kω1 ∧ ω2.

Example 19.4 We will compute the curvatures of the Riemannian metric gij =
f2δij on a region of R

n, where f = f(xn).
Here we have an obvious orthonormal frame given by ei = f−1∂i, and the

corresponding basis of 1-forms ωi = fdxi. Computing exterior derivatives,
we find

dωi = d(fdxi) = f ′dxn ∧ dxi.

This gives the equations
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ωij ∧ ωj = f ′/f2ωn ∧ ωi

for i < n, and
ωnj ∧ ωj = 0.

Now define 1-forms ηij by taking ηij = ωij for i < j < n, ηin = ωin +f ′/f2ωi

for i < n, and requiring ηij + ηji = 0. Then the equations read:

ηij ∧ ωj = 0.

Therefore by Cartan’s Lemma, ηij = 0 everywhere, and we deduce that
ωij = 0 for i < j < n and ωin = −f ′/f2ωi.

Taking exterior derivatives, we find:

dωij = 0

for i < j < n, and
dωin = −(f ′/f)′/f2ωn ∧ ωi.

Also we have
ωik ∧ ωkn = 0

since the sum over k has either k = n, hence ωkn = 0, or k < n, hence
ωik = 0. On the other hand we have

ωik ∧ ωkj = ωin ∧ ωnj = −(f ′)2/f4ωi ∧ ωj .

Combining these identities, we find

Ωij = (f ′)2/f2ωi ∧ ωj

for i < j < n, and
Ωin = (f ′/f)′/f2ωi ∧ ωn.

This shows that
Rinin = −(f ′/f)′/f2,

for 1 ≤ i ≤ n− 1, and and

Rijij = −(f ′)2/f4

for 1 < i < j < n, while (except for symmetries) all other curvature compo-
nents are zero.

An important special case of this example is where f(x) = x−1. Then we
find (f ′/f)′/f2 = 1 and (f ′)2/f4 = 1, and therefore all sectional curvatures
of this metric are equal to −1.




