Lecture 4. Tangent vectors

4.1 The tangent space to a point

Let M^{n} be a smooth manifold, and x a point in M. In the special case where M is a submanifold of Euclidean space \mathbb{R}^{N}, there is no difficulty in defining a space of tangent vectors to M at x : Locally M is given as the zero level-set of a submersion $G: U \rightarrow \mathbb{R}^{N-n}$ from an open set U of \mathbb{R}^{N} containing x, and we can define the tangent space to be $\operatorname{ker}\left(D_{x} G\right)$, the subspace of vectors which map to 0 under the derivative of G. Alterntively, if we describe M locally as the image of an embedding $\varphi: U \rightarrow \mathbb{R}^{N}$ from an open set U of \mathbb{R}^{n}, then we can take the tangent space to M at x to be the subspace $\operatorname{rng}\left(D_{\varphi^{-1}(x)} \varphi\right)=$ $\left\{D_{\varphi^{-1}(x)} \varphi(u): u \in \mathbb{R}^{n}\right\}$, the image subspace of the derivative map.

If M is an abstract manifold, however, then we do not have any such convenient notion of a tangent vector.

From calculus on \mathbb{R}^{n} we have several complementary ways of thinking about tangent vectors: As k-tuples of real numbers; as 'directions' in space, such as the tangent vector of a curve; or as directional derivatives.

I will give three alternative candidates for the tangent space to a smooth manifold M, and then show that they are equivalent:

First, for $x \in M$ we define $T_{x} M$ to be the set of pairs (φ, u) where $\varphi: U \rightarrow V$ is a chart in the atlas for M with $x \in U$, and u is an element of \mathbb{R}^{n}, modulo the equivalence relation which identifies a pair (φ, u) with a pair (η, w) if and only if u maps to w under the derivative of the transition map between the two charts:

$$
\begin{equation*}
D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)(u)=w \tag{4.1}
\end{equation*}
$$

Remark. The basic idea is this: We think of a vector as being an 'arrow' telling us which way to move inside the manifold. This information on which way to move is encoded by viewing the motion through a chart φ, and seeing which way we move 'downstairs' in the chart (this corresponds to a vector in n-dimensional space according to the usual notion of a velocity vector). The equivalence relation just removes the ambiguity of a choice of chart through which to follow the motion.

Another way to think about it is the following: We have a local description for M using charts, and we know what a vector is 'downstairs' in each chart.

We want to define a space of vectors $T_{x} M$ 'upstairs' in such a way that the derivative map $D_{x} \varphi$ of the chart map φ makes sense as a linear operator between the vector spaces $T_{x} M$ and \mathbb{R}^{n}, and so that the chain rule continues to hold. Then we would have for any vector $v \in T_{p} M$ vectors $u=D_{x} \varphi(v) \in$ \mathbb{R}^{n}, and $w=D_{x} \eta(v) \in \mathbb{R}^{n}$. Writing this another way (implicitly assuming the chain rule holds) we have

$$
D_{\varphi(x)} \varphi^{-1}(u)=v=D_{\eta(x)} \eta^{-1}(w)
$$

The chain rule would then imply $D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)(u)=w$.

Fig.1: A tangent vector to M at x is implicitly defined by a curve through x

The second definition expresses even more explicitly the idea of a 'velocity vector' in the manifold: We define M_{x} to be the space of smooth paths in M through x (i.e. smooth maps $\gamma: I \rightarrow M$ with $\gamma(0)=x$) modulo the equivalence relation which identifies any two curves if they agree to first order (as measured in some chart): $\gamma \sim \sigma \Leftrightarrow(\varphi \circ \gamma)^{\prime}(0)=(\varphi \circ \sigma)^{\prime}(0)$ for some chart $\varphi: U \rightarrow V$ with $x \in U$. The equivalence does not depend on the choice of chart: If we change to a chart η, then we have

$$
(\eta \circ \gamma)^{\prime}(0)=\left(\left(\eta \circ \varphi^{-1}\right) \circ(\varphi \circ \gamma)\right)^{\prime}(0)=D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)(\varphi \circ \gamma)^{\prime}(0)
$$

and similarly for sigma, so $(\eta \circ \gamma)^{\prime}(0)=(\eta \circ \sigma)^{\prime}(0)$.
Finally, we define $D_{x} M$ to be the space of derivations at x. Here a derivation is a map v from the space of smooth functions $C^{\infty}(M)$ to \mathbb{R}, such that for any real numbers c_{1} and c_{2} and any smooth functions f and g on M,

$$
\begin{align*}
v\left(c_{1} f+c_{2} g\right) & =c_{1} v(f)+c_{2} v(g) \quad \text { and } \\
v(f g) & =f(x) v(g)+g(x) v(f) \tag{4.2}
\end{align*}
$$

The archetypal example of a derivation is of course the directional derivative of a function along a curve: Given a smooth path $\gamma: I \rightarrow M$ with $\gamma(0)=x$, we can define

$$
\begin{equation*}
v(f)=\left.\frac{d}{d t}(f \circ \gamma)\right|_{t=0} \tag{4.3}
\end{equation*}
$$

and this defines a derivation at x. We will see below that all derivations are of this form.

Proposition 4.1.1 There are natural isomorphisms between the three spaces $M_{x}, T_{x} M$, and $D_{x} M$.

Proof. First, we write down the isomorphisms: Given an equivalence class $[(\varphi, u)]$ in $T_{x} M$, we take $\alpha([(\varphi, u)])$ to be the equivalence class of the smooth path γ defined by

$$
\begin{equation*}
\gamma(t)=\varphi^{-1}(\varphi(x)+t u) \tag{4.4}
\end{equation*}
$$

The map α is well-defined, since if (η, w) is another representative of the same equivalence class in $T_{x} M$, then α gives the equivalence class of the curve $\sigma(t)=\eta^{-1}(\eta(x)+t w)$, and

$$
\begin{aligned}
(\varphi \circ \sigma)^{\prime}(0) & =\left(\left(\varphi \circ \eta^{-1}\right) \circ(\eta \circ \sigma)\right)^{\prime}(0) \\
& =D_{\eta(x)}\left(\varphi \circ \eta^{-1}\right)(\eta \circ \sigma)^{\prime}(0) \\
& =D_{\eta(x)}\left(\varphi \circ \eta^{-1}\right)(w) \\
& =u \\
& =(\varphi \circ \gamma)^{\prime}(0),
\end{aligned}
$$

so $[\sigma]=[\gamma]$.
Given an element $[\gamma] \in M_{x}$, we take $\beta([\gamma])$ to be the natural derivation v defined by Eq. (4.3). Again, we need to check that this is well-defined: Suppose $[\sigma]=[\gamma]$. Then

$$
\begin{aligned}
\left.\frac{d}{d t}(f \circ \gamma)\right|_{t=0} & =D_{\varphi(x)}\left(f \circ \varphi^{-1}\right)(\varphi \circ \gamma)^{\prime}(0) \\
& =D_{\varphi(x)}\left(f \circ \varphi^{-1}\right)(\varphi \circ \sigma)^{\prime}(0) \\
& =\left.\frac{d}{d t}(f \circ \sigma)\right|_{t=0}
\end{aligned}
$$

for any smooth function f.
Finally, given a derivation v, we choose a chart φ containing x, and take $\chi(v)$ to be the element of $T_{x} M$ given by taking the equivalence class $[(\varphi, u)]$ where $u=\left(v\left(\varphi^{1}\right), \ldots, v\left(\varphi^{n}\right)\right)$. Here φ^{i} is the i th component function of the chart φ.

There is a technicality involved here: In the definition, derivations were assumed to act on smooth functions defined on all of M. However, φ^{i} is defined only on an open set U of M. In order to overcome this difficulty, we will extend φ_{i} (somewhat arbitrarily) to give a smooth map on all of M. For concreteness, we can proceed as follows (the functions we construct here will prove useful later on as well):

$$
\xi(z)= \begin{cases}\exp \left(\frac{1}{z^{2}-1}\right) & \text { for }-1<z<1 \tag{4.5}\\ 0 & \text { for }|z| \geq 1\end{cases}
$$

and

$$
\begin{equation*}
\rho(z)=\frac{\int_{-1}^{z} \xi\left(z^{\prime}\right) d z^{\prime}}{\int_{-1}^{1} \xi\left(z^{\prime}\right) d z^{\prime}} \tag{4.6}
\end{equation*}
$$

Then

- ξ is a C^{∞} function on all of \mathbb{R}, with $\xi(z)$ equal to zero whenever $|z| \geq 1$, and $\xi(z)>0$ for $|z|<1$;
- ρ is a C^{∞} function on all of \mathbb{R}, which is zero whenever $z \leq-1$, identically 1 for $z>1$, and strictly increasing for $z \in(-1,1)$.

Fig. 2: The 'bump function' or 'cutoff function' ξ.

Fig. 3: A C^{∞} 'ramp function' ρ.
Now, given the chart $\varphi: U \rightarrow V$ with $x \in U$, choose a number r sufficiently small to ensure that the closed ball of radius $4 r$ about $\varphi(x)$ is contained in V. Then define a function $\tilde{\rho}$ on M by

$$
\tilde{\rho}(y)= \begin{cases}\rho\left(3-\frac{|\varphi(y)-\varphi(x)|}{r}\right) & \text { for } y \in U \tag{4.7}\\ 0 & \text { for all other } y \in M\end{cases}
$$

Exercise 4.1 Prove that $\tilde{\rho}$ is a smooth function on M.

Note that this construction gives a function $\tilde{\rho}$ which is identically equal to 1 on a neighbourhood of x, and identically zero in the complement of a larger neighbourhood.

Now we can make sense of our definition above:
Definition 4.1.2 If $f: U \rightarrow \mathbb{R}$ is a smooth function on an open set U of M containing x, we define $v(f)=v(\tilde{f})$, where \tilde{f} is any smooth function on M which agrees with f on a neighbourhood of x.

For this to make sense we need to check that there is some smooth function \tilde{f} on M which agrees with f on a neighbourhood of x, and that the definition does not depend on which such function we choose.

Without loss of generality we suppose f is defined on U as above, and define $\tilde{\rho}$ as above. Then we define

$$
\tilde{f}(y)= \begin{cases}f(y) \tilde{\rho}(y) & \text { for } y \in U \tag{4.8}\\ 0 & \text { for } y \in M \backslash U\end{cases}
$$

\tilde{f} is smooth, and agrees with f on the set $\varphi^{-1}\left(B_{2 r}(\varphi(x))\right)$.
Next we need to check that $v(\tilde{f})$ does not change if we choose a different function agreeing with f on a neighbourhood of x.

Lemma 4.1.3 Suppose f and g are two smooth functions on M which agree on a neighbourhood of x. Then $v(f)=v(g)$.

Proof. Without loss of generality, assume that f and g agree on an open set U containing x, and construct a 'bump' function $\tilde{\rho}$ in U as above. Then we observe that $\tilde{\rho}(f-g)$ is identically zero on M, and that $v(0)=v(0.0)=$ $0 . v(0)=0$. Therefore

$$
0=v(\tilde{\rho}(f-g))=\tilde{\rho}(x) v(f-g)+(f(x)-g(x)) v(\tilde{\rho})=v(f)-v(g)
$$

since $f(x)-g(x)=0$ and $\tilde{\rho}(x)=1$.
This shows that the definition of $v(f)$ makes sense, and so our definition of $\chi(v)$ makes sense. However we still need to check that $\chi(v)$ does not depend on the choice of a chart φ. Suppose we instead use another chart η. Then we have in a small region about x,

$$
\begin{equation*}
\eta^{i}(y)=\eta^{i}(x)+\sum_{j=1}^{n} G_{j}^{i}(y)\left(\varphi^{j}(y)-\varphi^{j}(x)\right) \tag{4.9}
\end{equation*}
$$

for each $i=1, \ldots, n$, where G_{j}^{i} is a smooth function on a neighbourhood of x for which $G_{j}^{i}(x)=\left.\frac{\partial}{\partial z^{j}}\left(\eta^{i} \circ \varphi^{-1}\right)\right|_{\varphi(x)}$. To prove this, consider the Taylor expansion for $\eta^{i} \circ \varphi^{-1}$ on the set V, where φ is the chart from U to V.

Now apply v to Eq. (4.9). Note that the first term is a constant.
Lemma 4.1.4 $v(c)=0$ for any constant c.
Proof.

$$
v(1)=v(1.1)=1 . v(1)=1 . v(1)=2 v(1) \Longrightarrow v(1)=0 \Longrightarrow v(c)=c v(1)=0 .
$$

v applied to η^{i} gives

$$
\begin{aligned}
v\left(\eta^{i}\right) & =\sum_{j=1}^{n} G_{j}^{i}(x) v\left(\varphi^{j}\right)+\left(\varphi^{j}(x)-\varphi^{j}(x)\right) v\left(G_{j}^{i}\right) \\
& =\left.\sum_{j=1}^{n} \frac{\partial}{\partial z^{j}}\left(\eta^{i} \circ \varphi^{-1}\right)\right|_{\varphi(x)} v\left(\varphi^{j}\right)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\sum_{i=1}^{n} v\left(\eta^{i}\right) e_{i} & =\left.\sum_{i, j=1}^{n} \frac{\partial}{\partial z^{j}}\left(\eta^{i} \circ \varphi^{-1}\right)\right|_{\varphi(x)} v\left(\varphi^{j}\right) e_{i} \\
& =D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)\left(\sum_{i=1}^{n} v\left(\varphi^{i}\right) e_{i}\right)
\end{aligned}
$$

and so $\left[\left(\varphi, \sum_{i=1}^{n} v\left(\varphi^{i}\right) e_{i}\right)\right]=\left[\left(\eta, \sum_{i=1}^{n} v\left(\eta^{i}\right) e_{i}\right)\right]$ and χ is independent of the choice of chart.

In order to prove the proposition, it is enough to show that the three triple compositions $\chi \circ \beta \circ \alpha, \beta \circ \alpha \circ \chi$, and $\alpha \circ \chi \circ \beta$ are just the identity map on each of the three spaces.

We have

$$
\begin{aligned}
\chi \circ \beta \circ \alpha([(\varphi, u)]) & =\chi \circ \beta\left(\left[t \mapsto \varphi^{-1}(\varphi(x)+t u)\right]\right) \\
& =\chi\left(f \mapsto D_{\varphi(x)}\left(f \circ \varphi^{-1}\right)(u)\right) \\
& =\left[\left(\varphi, \sum_{i=1}^{n} D_{\varphi(x)}\left(\varphi^{i} \circ \varphi^{-1}\right)(u) e_{i}\right)\right] \\
& =[(\varphi, u)] .
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
\alpha \circ \chi \circ \beta([\sigma]) & =\alpha \circ \chi\left(\left.f \mapsto \frac{d}{d t}(f \circ \gamma)\right|_{t=0}\right) \\
& =\alpha\left(\left[\left(\varphi, \sum_{i=1}^{n}(\varphi \circ \gamma)^{\prime}(0)\right)\right]\right) \\
& =\left[t \mapsto \varphi^{-1}\left(\varphi(x)+t(\varphi \circ \gamma)^{\prime}(0)\right)\right]
\end{aligned}
$$

and this curve is clearly in the same equivalence class as γ.
Finally, we have

$$
\begin{aligned}
\beta \circ \alpha \circ \chi(v) & =\beta \circ \alpha\left(\left[\left(\varphi, \sum_{i=1}^{n} v\left(\varphi^{i}\right) e_{i}\right)\right]\right) \\
& =\beta\left(\left[t \mapsto \varphi^{-1}\left(\varphi(x)+t \sum_{i=1}^{n} v\left(\varphi^{i}\right) e_{i}\right)\right]\right) \\
& =\left(\left.f \mapsto \sum_{i=1}^{n} \frac{\partial}{\partial z^{i}}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} v\left(\varphi^{i}\right)\right) .
\end{aligned}
$$

We need to show that this is the same as v. To show this, we note (using the Taylor expansion for $f \circ \varphi^{-1}$) that

$$
f(y)=f(x)+\sum_{i=1}^{n} G_{i}(y)\left(\varphi^{i}(y)-\varphi^{i}(x)\right)
$$

for y in a sufficiently small neighbourhood of x, where G_{i} is a smooth function with $G_{i}(x)=\left.\frac{\partial}{\partial z^{i}}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)}$. Applying v to this expression, we find

$$
\begin{equation*}
v(f)=\sum_{i=1}^{n} G_{i}(x) v\left(\varphi^{i}\right)=\left.\sum_{i=1}^{n} \frac{\partial}{\partial z^{i}}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} v\left(\varphi^{i}\right) \tag{4.10}
\end{equation*}
$$

and the right hand side is the same as $\beta \circ \alpha \circ \gamma v(f)$.
Having established the equivalence of the three spaces M_{x}, T_{x}, and $D_{x} M$, I will from now on keep only the notation $T_{x} M$ (the tangent space to x at M) while continuing to use all three different notions of a tangent vector.

4.2 The differential of a map

Definition 4.2.1 Let $f: M \rightarrow \mathbb{R}$ be a smooth function. Then we define the differential $d_{x} f$ of f at the point $x \in M$ to be the linear function on the tangent space $T_{x} M$ given by $\left(d_{x} f\right)(v)=v(f)$ for each $v \in T_{x} M$ (thinking of v as a derivation). Let $F: M \rightarrow N$ be a smooth map between two manifolds. Then we define the differential $D_{x} F$ of F at $x \in M$ to be the linear map from $T_{x} M$ to $T_{F(x)} N$ given by $\left(\left(D_{x} F\right)(v)\right)(f)=v(f \circ F)$ for any $v \in T_{x} M$ and any $f \in C^{\infty}(M)$.

It is useful to describe the differential of a map in terms of the other representations of tangent vectors. If v is the vector corresponding to the equivalence class $[(\varphi, u)]$, then we have $v: f \mapsto D_{\varphi(x)}\left(f \circ \varphi^{-1}\right)(u)$, and so by the definition above, $D_{x} F(v)$ sends a smooth function f on N to $v(f \circ F)$:

which is the vector corresponding to $\left[\left(\eta, D_{\varphi(x)}\left(\eta \circ F \circ \varphi^{-1}\right)(u)\right)\right]$.
Alternatively, if we think of a vector v as the tangent vector of a curve γ, then we have $v: f \mapsto(f \circ \gamma)^{\prime}(0)$, and so $D_{x} F(v): f \mapsto(f \circ F \circ \gamma)^{\prime}(0)$, which is the tangent vector of the curve $F \circ \gamma$. In other words,

$$
\begin{equation*}
D_{x} F([\gamma])=[F \circ \gamma] . \tag{4.11}
\end{equation*}
$$

In most situations we can use the differential of a map in exactly the same way as we use the derivative for maps between Euclidean spaces. In particular, we have the following results:

Theorem 4.2.2 The Chain Rule If $F: M \rightarrow N$ and $G: N \rightarrow P$ are smooth maps between manifolds, then so is $G \circ F$, and

$$
D_{x}(G \circ F)=D_{F(x)} G \circ D_{x} F .
$$

Proof. By Eq. (4.11),

$$
D_{x}(G \circ F)([\gamma])=[G \circ F \circ \gamma]=D_{F(x)} G([F \circ \gamma])=D_{F(x)} G\left(D_{x} F([\gamma])\right)
$$

Theorem 4.2.3 The inverse function theorem Let $F: M \rightarrow N$ be a smooth map, and suppose $D_{x} F$ is an isomorphism for some $x \in M$. Then there exists an open set $U \subset M$ containing x and an open set $V \subset N$ containing $F(x)$ such that $\left.F\right|_{U}$ is a diffeomorphism from U to V.

Proof. We have $D_{x} F([(\varphi, u)])=\left[\eta, D_{\varphi(x)}\left(\eta \circ F \circ \varphi^{-1}\right)(u)\right]$, so $D_{x} F$ is an isomorphism if and only if $D_{\varphi(x)}\left(\eta \circ F \circ \varphi^{-1}\right)$ is an isomorphism. The result follows by applying the usual inverse function theorem to $\eta \circ F \circ \varphi^{-1}$.

Theorem 4.2.4 The implicit function theorem (surjective form) Let $F: M \rightarrow N$ be a smooth map, with $D_{x} F$ surjective for some $x \in M$. Then there exists a neighbourhood U of x such that $F^{-1}(F(x)) \cap U$ is a smooth submanifold of M.

Theorem 4.2.5 The implicit function theorem (injective form) Let $F: M \rightarrow N$ be a smooth map, with $D_{x} F$ injective for some $x \in M$. Then there exists a neighbourhood U of x such that $\left.F\right|_{U}$ is an embedding.

These two theorems follow directly from the corresponding theorems for smooth maps between Euclidean spaces.

4.3 Coordinate tangent vectors

Given a chart $\varphi: U \rightarrow V$ with $x \in U$, we can construct a convenient basis for $T_{x} M$: We simply take the vectors corresponding to the equivalence classes $\left[\left(\varphi, e_{i}\right)\right]$, where e_{1}, \ldots, e_{n} are the standard basis vectors for \mathbb{R}^{n}. We use the notation $\partial_{i}=\left[\left(\varphi, e_{i}\right)\right]$, suppressing explicit mention of the chart φ. As a derivation, this means that $\partial_{i} f=\left.\frac{\partial}{\partial z^{i}}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)}$. In other words, ∂_{i} is just the derivation given by taking the i th partial derivative in the coordinates supplied by φ. It is immediate from Proposition 4.1 .1 that $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$ is a basis for $T_{x} M$.

4.4 The tangent bundle

We have just constructed a tangent space at each point of the manifold M. When we put all of these spaces together, we get the tangent bundle $T M$ of M :

$$
T M=\left\{(p, v): p \in M, v \in T_{p} M\right\}
$$

If M has dimension n, we can endow $T M$ with the structure of a $2 n$ dimensional manifold, as follows: Define $\pi: T M \rightarrow M$ to be the projection which sends (p, v) to p. Given a chart $\varphi: U \rightarrow V$ for M, we can define a chart $\tilde{\varphi}$ for $T M$ on the set $\pi^{-1}(U)=\{(p, v) \in T M: p \in U\}$, by

$$
\tilde{\varphi}(p, v)=\left(\varphi(p), v\left(\varphi^{1}\right), \ldots, v\left(\varphi^{n}\right)\right) \in \mathbb{R}^{2 n} .
$$

Thus the first n coordinates describe the point p, and the last n give the components of the vector v with respect to the basis of coordinate tangent vectors $\left\{\partial_{i}\right\}_{i=1}^{n}$, since by Eq. (4.10),

$$
\begin{equation*}
v(f)=\left.\sum_{i=1}^{n} \frac{\partial}{\partial z^{i}}\left(f \circ \varphi^{-1}\right)\right|_{\varphi(x)} v\left(\varphi^{i}\right)=\sum_{i=1}^{n} v\left(\varphi^{i}\right) \partial_{i}(f) \tag{4.12}
\end{equation*}
$$

for any smooth f, and hence $v=\sum_{i=1}^{n} v\left(\varphi^{i}\right) \partial_{i}$. For convenience we will often write the coordinates on $T M$ as $\left(x^{1}, \ldots x^{n}, \dot{x}^{1}, \ldots, \dot{x}^{n}\right)$

To check that these charts give $T M$ a manifold structure, we need to compute the transition maps. Suppose we have two charts $\varphi: U \rightarrow V$ and $\eta: W \rightarrow Z$, overlapping non-trivially. Then $\tilde{\eta} \circ \tilde{\varphi}^{-1}$ first takes a $2 n$ tuple $\left(x^{1}, \ldots, x^{n}, \dot{x}^{1}, \ldots, \dot{x}^{n}\right)$ to the element $\left(\varphi^{-1}\left(x^{1}, \ldots, x^{n}\right), \sum_{i=1}^{n} \dot{x}^{i} \partial_{i}^{(\varphi)}\right)$ of $T M$, then maps this to $\mathbb{R}^{2 n}$ by $\tilde{\eta}$. Here we add the superscript (φ) to distinguish the coordinate tangent vectors coming from the chart φ from those given by the chart η. The first n coordinates of the result are then just $\eta \circ \varphi^{-1}\left(x^{1}, \ldots, x^{n}\right)$. To compute the last n coordinates, we need to $\partial_{i}^{(\varphi)}$ in terms of the coordinate tangent vectors $\partial_{j}^{(\eta)}$: We have

$$
\begin{aligned}
\partial_{i}^{(\varphi)} f & =D_{\varphi(x)}\left(f \circ \varphi^{-1}\right)\left(e_{i}\right) \\
& =D_{\varphi(x)}\left(\left(f \circ \eta^{-1}\right) \circ\left(\eta \circ \varphi^{-1}\right)\right)\left(e_{i}\right) \\
& =D_{\eta(x)}\left(f \circ \eta^{-1}\right) \circ D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)\left(e_{i}\right) \\
& =D_{\eta(x)}\left(f \circ \eta^{-1}\right)\left(\sum_{j=1}^{n} D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)_{i}^{j} e_{j}\right) \\
& =\sum_{j=1}^{n} D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)_{i}^{j} D_{\eta(x)}\left(f \circ \eta^{-1}\right)\left(e_{j}\right) \\
& =\sum_{j=1}^{n} D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)_{i}^{j} \partial_{j}^{(\eta)} f
\end{aligned}
$$

for every smooth function f. Therefore

$$
\sum_{i=1}^{n} \dot{x}^{i} \partial_{i}^{(\varphi)}=\sum_{i, j=1}^{n} D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)_{i}^{j} \partial_{j}^{(\eta)}
$$

and

$$
\tilde{\eta} \circ \tilde{\varphi}^{-1}(x, \dot{x})=\left(\eta \circ \varphi^{-1}(x), D_{\varphi(x)}\left(\eta \circ \varphi^{-1}\right)(\dot{x})\right) .
$$

Since $\eta \circ \varphi^{-1}$ is smooth by assumption, so is its matrix of derivatives $D(\eta \circ$ φ^{-1}), so $\tilde{\eta} \circ \tilde{\varphi}^{-1}$ is a smooth map on $\mathbb{R}^{2 n}$.

Fig.4: Schematic depiction of the tangent bundle $T M$ as a 'bundle' of the fibres $T_{x} M$ over the manifold M.

4.5 Vector fields

A vector field on M is given by choosing a vector in each of the tangent spaces $T_{x} M$. We require also that the choice of vector varies smoothly, in the following sense: A choice of V_{x} in each tangent space $T_{x} M$ gives us a map from M to $T M, x \mapsto V_{x}$. A smooth vector field is defined to be one for which the map $x \mapsto V_{x}$ is a smooth map from the manifold M to the manifold $T M$.

In order to check whether a vector field is smooth, we can work locally. In a chart φ, the vector field can be written as $V_{x}=\sum_{i=1}^{n} V_{x}^{i} \partial x_{i}$, and this gives us n functions $V_{x}^{1}, \ldots, V_{x}^{n}$. Then it is easy to show that V is a smooth vector field if and only if these component functions are smooth as functions on M. That is, when viewed through a chart the vector field is smooth, in the usual sense of an n-tuple of smooth functions.

Our notion of a tangent vector as a derivation allows us to think of a vector field in another way:

Proposition 4.5.1 Smooth vector fields are in one-to-one correspondence with derivations $V: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfying the two conditions

$$
\begin{aligned}
V\left(c_{1} f_{1}+c_{2} f_{2}\right) & =c_{1} V\left(f_{1}\right)+c_{2} V\left(f_{2}\right) \\
V\left(f_{1} f_{2}\right) & =f_{1} V\left(f_{2}\right)+f_{2} V\left(f_{1}\right)
\end{aligned}
$$

for any constants c_{1} and c_{2} and any smooth functions f_{1} and f_{2}.
Proof: Given such a derivation V, and $p \in M$, the map $V_{p}: C^{\infty}(M) \rightarrow \mathbb{R}$ given by $V_{p}(f)=(V(f))(p)$ is a derivation at p, and hence defines an element of $T_{p} M$. The map $p \mapsto V_{p}$ from M to $T M$ is therefore a vector field, and it remains to check smoothness. The components of V_{p} with respect to the coordinate tangent basis $\partial_{1}, \ldots, \partial_{n}$ for a chart $\varphi: U \rightarrow V$ is given by

$$
V_{p}^{i}=V_{p}\left(\varphi^{i}\right)
$$

which is by assumption a smooth function of p for each i (since φ^{i} is a smooth function and V maps smooth functions to smooth functions - here one should really multiply φ^{i} by a smooth cut-off function to convert it to a smooth function on the whole of $M)$. Therefore the vector field is smooth.

Conversely, given a smooth vector field $x \mapsto V_{x} \in T_{x} M$, the map

$$
(V(f))(x)=V_{x}(f)
$$

satisfies the two conditions in the proposition and takes a smooth function to a smooth function.

A common notation is to refer to the space of smooth vector fields on M as $\mathcal{X}(\mathcal{M})$. Over a small region of a manifold (such as a chart), the space of smooth vector fields is in 1: 1 correspondence with n-tuples of smooth functions. However, when looked at over the whole manifold things are not so simple. For example, a theorem of algebraic topology says that there are no continuous vector fields on the sphere S^{2} which are everywhere non-zero ("the sphere has no hair"). On the other hand there are certainly nonzero functions on S^{2} (constants, for example).

