
Lecture 6. Differential Equations

Our aim is to prove the basic existence, uniqueness and regularity results for
ordinary differential equations on a manifold.

6.1 Ordinary differential equations on a manifold.

Any vector field on a differentiable manifold M is naturally associated with
a differential equation: If V ∈ X (M), and x ∈M , the basic problem of ODE
theory is to find a smooth map γ : I → M for some interval I containing 0,
such that

γ′(t) = Vγ(t)

for all t ∈ I, and
γ(0) = x.

This is the general initial value problem. We would like to known several
things about this problem: First, that solutions exist; second, that they are
unique; and third, that the solutions depend in a smooth way on the initial
point x ∈M . The following proposition incorporates all three aspects:

Proposition 6.1.1 Let V ∈ X (M) and x ∈ M . Then there exists δ > 0, a
neighbourhood U of x in M , and a unique smooth map Ψ : U × (−δ, δ) →M
which satisfies 4

∂

∂t
Ψ(y, t) = VΨ(y,t)

Ψ(y, 0) = y

for all y ∈ U and t ∈ (−δ, δ). For each t ∈ (δ, δ), the map Ψt : U →M defined
by Ψt(y) = Ψ(y, t) is a local diffeomorphism, and

Ψt ◦ Ψs = Ψs+t

whenever both sides are defined.

4 Note that There is a natural vector field ∂t defined on on U×(−δ, δ) by (∂tf)(x) =
∂
∂s

f(x, t + s)
∣∣
∣
s=0

. The ODE means that D(y,t)Ψ(∂t) = VΨ(y,t) for all y and t.
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The smoothness of Ψ as a function of y amounts to smooth dependence
of solutions on their initial conditions, and we get the added bonus that the
maps Ψt ( called the (local) flow of V for time t) are local diffeomorphisms,
and they form a “local group”: Ψt◦Ψs = Ψs+t as one would expect for a group
of diffeomorphisms, but this might hold only on a rather restricted domain.

Example 6.1.1: Problems with V . This example demonstrates why we may
only be able to define the flow of a vector field locally, as in the proposition:
Take M = R, and take V to be the vector field

Vx = x2∂x.

Then for each x ∈ R we want to solve the equation

y′(t) = y(t)2;
y(0) = x.

This gives Ψ(x, t) = y(t) = x
1−tx , on the time interval (1/x,∞) if x < 0, or

(−∞, 1/x) if x > 0 (or (−∞,∞) in x = 0). Thus the flow of the vector field
cannot be defined on R× (δ, δ) for any δ > 0, and cannot be defined on U×R

for any open subset U of R. Here the problem seems to arise because the
vector field V is not bounded.

Example 6.1.2: Problems withM . Next consider the exampleM = (0, 1) with
the vector field Vx = ∂x: Now we have the flow

Ψ(x, t) = x+ t

which is defined on the region {(x, t) : t ∈ (−x, 1 − x)}. Again, this flow
cannot be defined on M × (−δ, δ) for any δ > 0, or on U ×R for any U ⊂M .
Here the problem seems to arise because the domain manifold has ‘edges’.

Remark. In fact the distinction between these types of difficulties is not so
clear. The two situations are in some sense the same, since a diffeomorphism
can take a bounded interval to an unbounded region, mapping a bounded
vector field to an unbounded one: For example, the map x → cot(πx) maps
(0, 1) to R and sends the bounded vector field ∂x to the unbounded vector
field −π/ sin2(πx)∂x. When we come to add some further structure to our
manifolds in the form of metrics, we will have some notion of when a vector
field is unbounded and when a manifold has a boundary, but without this
the notions are not meaningful.

To begin the proof of Proposition 5.1.1, we will first reduce the problem to
an ordinary differential equation on R

n, by looking at the flow of the vector
field through a chart:
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M

j

Proposition 6.1.2 Let V ∈ X (M), and suppose Ψ : U × (−δ, δ) → M
satisfies

∂tΨ(y, t) = VΨ(y,t);

Ψ(y, 0) = y;
(6.1)

for each (y, t) ∈ U × (−δ, δ). Let ϕ : W → Z ⊂ R
n be a chart for M such

that Ψ(U × (−δ, δ)) ⊂ W . Then u(z, t) = ϕ ◦ Ψ(ϕ−1(z), t) defines a map
u : ϕ(U) × (−δ, δ) → Z which satisfies

∂tu
k(z1, . . . , zn, t) = Ṽ k(u1(z1, . . . , zn, t), . . . , un(z1, . . . , zn, t))

uk(z1, . . . , zn, 0) = zk,
(6.2)

for k = 1, . . . , n and all (z1, . . . , zn) ∈ ϕ(U) and t ∈ (δ, δ). Here

V
(
ϕ−1(z1, . . . , zn)

)
=

n∑

k=1

Ṽ k(z1, . . . , zn)∂k.

Conversely, if u satisfies (6.2) then Ψ(y, t) = ϕ−1 (u(ϕ(y), t)) defines a
solution of (6.1).

Proof. We have D(z,t)u(∂t) = DΨ(ϕ−1(z),t)ϕ ◦D(ϕ−1(z),t)Ψ(∂t) = Dϕ (V ). By
definition Dϕ(∂j) = ej for j = 1, . . . , n, so if V =

∑
Ṽ k∂k, then Dϕ(V ) =∑

Ṽ kek. �

We will prove Proposition 6.1.1 by constructing a unique solution for the
ODE (6.2) on a region of R

n.
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6.2 Initial value problems.

We begin the proof of Proposition 6.1.1 by constructing solutions of initial
value problems:

Proposition 6.2.1 Let F : Z → R
n be smooth, where Z is an open set of

R
n. Assume supZ ‖F‖ = M0 < ∞, and supZ ‖DF‖ = M1 < ∞. Let z ∈ Z.

Then there exists a unique smooth γ : (−δ, δ) → Z satisfying

d

dt
γi(t) = F (γ1(t), . . . , γn(t));

γ(0) = z
(6.3)

for i = 1, . . . , n. Here δ = d(z,∂Z)
M0

.

The curves constructed in this proposition are called the integral curves
of the vector field F i∂i.

Proof. We use the method of successive approximations, or ‘Picard iteration’.
Begin with some approximation to the solution, say γ(0)(t) = z for all t ∈
(−δ, δ). Then we try to improve this approximation by iteration: Suppose
we have an approximation γ(k). Then produce a new approximation by the
formula

γ(k+1)(t) = z +
∫ t

0

F
(
γ(k)(s)

)
ds.

This is based on the following observation: The approximation γ(k+1) satisfies
the differential equation

d

dt
γ(k+1) = F (γ(k)),

so we are using the kth approximation to tell us the direction of motion for
the (k+1)st approximation. If this iteration converges to a limit, the required
ODE must be satisfied. Note that this iteration makes sense, because we have

‖γ(k)(t) − z‖ ≤ |t|M0 < δM0 = d(z, ∂Z)

so γ(k)(t) is always an element of Z.
To show that the iteration converges, consider the difference between suc-

cessive approximations: We will prove that

‖γ(k+1)(t) − γ(k)(t)‖ ≤ M0M
k
1 |t|k+1

(n+ 1)!
(6.4)

for all k ≥ 0 and t ∈ (−δ, δ). This is true for k = 0, since ‖γ(1) − γ(0)‖ =
‖

∫ t

0
F (z)ds‖ ≤ |t|M0. We proceed by induction: Suppose the inequality holds

for k − 1. Then
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∥
∥
∥γ(k+1)(t) − γ(k)(t)

∥
∥
∥ =

∥
∥∥∥

∫ t

0

F (γ(k)(s)) − F (γ(k−1)(s)) ds
∥
∥∥∥

≤
∣∣∣∣

∫ t

0

M1

∥∥∥γ(k)(s) − γ(k−1)(s)
∥∥∥ ds

∣∣∣∣

≤M1

∣∣
∣∣∣

∫ t

0

M0M
k−1
1 |s|k
k!

ds

∣∣
∣∣∣

≤ M0M
k
1 |t|k+1

(k + 1)!
.

This implies that the sequence {γ(k)} is a Cauchy sequence in the com-
plete space of continuous maps with respect to uniform convergence, and so
converges to a continuous limit γ. The continuity of F and the dominated
convergence theorem then imply that

γ(t) = z +
∫ t

0

F (γ(s)) ds (6.5)

for all t ∈ (−δ, δ), so that γ is differentiable and satisfies the equation

γ′(t) = F (γ(t))

for each t, and the initial condition γ(0) = z. Smoothness follows, since
γ ∈ C(k) implies γ ∈ Ck+1 by the identity (6.5) and the smoothness of F .
This establishes the existence of a solution.

To prove uniqueness, suppose γ and σ are two solutions of the initial value
problem. Then

‖γ(t) − σ(t)‖ =
∥∥∥∥

∫ t

0

F (γ(s)) − F (σ(s)) ds
∥∥∥∥

≤M1

∣∣∣∣

∫ t

0

‖γ(s) − σ(s)‖ ds
∣∣∣∣

(6.6)

Let C = sup ‖γ − σ‖. Then an induction similar to that above shows that

‖γ(t) − σ(t)‖ ≤ CMk
1 |t|k
k!

for any k. Taking k → ∞ gives γ ≡ σ. �
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6.3 Smooth dependence on initial conditions.

The result of the previous section produced the unique flow Ψ of the vector
field V , but did not address the smoothness of Ψ except in the t direction.
Since smoothness is measured by reference to charts, it is enough to show
smoothness of the map u from Proposition 6.1.2:

Proposition 6.3.1 The function u which takes a pair (z, t) to the solution
γ(t) of the initial value problem (6.3) is smooth on the open set

S = {(z, t) ∈ Z × R : |t| < d(z, ∂Z)/M0} .

Proof. I will show that u is the Ck limit of a family of smooth functions for
any k: Define u(0)(z, t) = z, and successively approximate using

u(k+1)(z, t) = z +
∫ t

0

F
(
u(k)(z, s)

)
ds. (6.7)

Clearly u(k) maps S to Z for each k, u(k) is smooth for each k, and by (6.4)
we have

‖u(k+1)(z, t) − u(k)(z, t)‖ ≤ M0M
k
1 |t|k+1

(k + 1)!
.

Differentiating (6.7) with t fixed gives

∥∥∥Dzu
(k+1)
t

∥∥∥ =
∥∥∥∥I +

∫ t

0

DF ◦Dzu
(k)
s ds

∥∥∥∥ ≤ 1 +M1

(∫ t

0

∥∥∥Dzu
(k)
s

∥∥∥ ds
)

which gives by induction

∥∥∥Dzu
(k)
t

∥∥∥ ≤
k∑

j=0

M j
1 |t|j
j!

≤ eM1|t|

independent of k. We also have ‖∂tu
(k)‖ ≤ M0 for all k, so {u(k)} is uni-

formly bounded in C1. Similar arguments with higher derivatives give uni-
form bounds on {u(k)} in Cj for every j.

Exercise 6.3.2 Show that a sequence of functions {u(k)} which converges in
C0 and is bounded in Cj converges in Cm for m = 1, . . . , j − 1 [Hint: The
key to this is the following interpolation inequality : For any Cj function u,
and any l ∈ {1, . . . , j − 1}, there is a constant C such that

‖Dlu‖C0 ≤ C‖u‖1−l/j
C0 ‖Dju‖l/j

C0 .

Prove this by first proving the case l = 1, j = 2, and then applying this
successively to get the other cases. Then apply the estimate to differences
u(k) − u(k′)].
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This completes the proof of Proposition 6.3.1, since Exercise 6.3.2 shows
that u = limu(k) is in Cj for every j. �

Remark. It is possible to show more explicitly that the approximations u(k)

converge in Cj for every j, by differentiating the formula u(k+1)−u(k) j times.

6.4 The local group property.

Next we show that the flow Ψ we have constructed satisfies the local group
property

Ψt ◦ Ψs = Ψt+s

whenever both sides of this equation make sense.
This is very easy: Ψt ◦ Ψs and Ψt+s both satisfy the same differential

equation
∂tΨ = V ◦ Ψ,

and have the same initial condition at t = 0. Hence by the uniqueness part
of Proposition 6.2.1, they are the same.

6.5 The diffeomorphism property.

We need to show that DΨt is non-singular. Again, this is very easy: It is
true for t small (uniformly in space) since Ψ is smooth and DΨ0 = I. But
by the local group property, Ψt =

(
Ψt/m

)m, so DΨt is a composition of m
non-singular maps, and hence is non-singular.

This completes the proof of Proposition 6.1.1.

6.6 Global flow.

Proposition 6.1.1 gives the existence of the flow of a vector field locally , and
we have seen that there are examples which show that one cannot in general
expect better than this. However there are some very important situations
where we can do better:

Proposition 6.6.1 Let V ∈ X (M) be a vector field with compact support
– that is, assume that suppV = {x ∈M : V (x) �= 0} is a compact subset of
M . Then there exists a unique smooth map Ψ : M × R →M satisfying

∂tΨ = V ◦ Ψ ; Ψ(x, 0) = x.

The maps {Ψt} form a one-parameter group of diffeomorphisms of M .
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Fig. 6.2: A vector field supported in the
unit disk.

Proof. Cover suppV by sets of the form ϕ−1
α (Brα/2(0)) where ϕα : Wα → Zα

is a chart for M and Brα
(0) ⊂ Zα. By compactness there is a finite subcover

{ϕ−1
i (Bri/2(0))}N

i=1. Let r = infi=1,...,N ri/2 > 0.
Proposition 6.1.1 gives a local flow Ψi on each region ϕ−1

i (Bri/2(0)) ×
(−δ, δ), where δ = infi=1,...,N

r
supZi

‖Ṽi‖
> 0. The uniqueness of solutions

implies that these local flows agree on the overlaps of these sets, so they
combine to give a local flow on the set M × (−δ, δ) (by taking Ψ to be the
identity map away from suppV ). The local group property implies that these
maps are diffeomorphisms, since Ψ−1

t = Ψ−t for |t| < δ. Finally, for any t ∈ R,
define Ψt =

(
Ψt/m

)m, where m is sufficiently large to ensure that |t|/m < δ.
Then Ψ satisfies the required differential equation and is defined on M × R.

�

In particular, a smooth vector field on a compact manifold M always has
a globally defined flow.

Exercise 6.6.1 Show that the exponential map on a Lie group G is a smooth
map defined on all of TeG [Hint: First prove existence in a neighbourhood of
the origin. Then use the one-parameter subgroup property to extend to the
whole of TeG].

An important feature of flows of vector fields (i.e. of solving differential
equations) is the possibility of substituting new variables in a differential
equation. We will formalise this as follows:
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Fig. 6.3: Images of a standard grid at a sequence of times under the flow of the
vector field from Fig. 6.2

Definition 6.6.1 Let F : M → N be smooth. Vector fields X ∈ X (M) and
Y ∈ X (N) are F -related if, for every x ∈ X,

DxF (Xx) = YF (x).

In particular, if F is a diffeomorphism, every X ∈ X (M) has a unique F -
related N ∈ X (N), which we denote F∗(X), the push forward of X by F .

Proposition 6.6.2 Let F : M → N be smooth, and X ∈ X (M), Y ∈ X (N)
F -related. Let Ψ be the local flow of X, and Φ the local flow of Y . Then

Φ(F (y), t) = F ◦ Ψ(y, t)

for all y sufficiently close to x and t sufficiently small.

Proof. The uniqueness of solutions of initial value problems applies, since
∂t (F ◦ Ψ) (y, t) = DΨ(y,t)F (XΨ(y,t)) = YF◦Ψ(y,t) and F ◦ Ψ(y, 0) = F (y).

�




