## Lecture 7. Lie brackets and integrability

In this lecture we will introduce the Lie bracket of two vector fields, and interpret it in several ways.

### 7.1 The Lie bracket.

Definition 7.1.1 Let $X$ and $Y$ by smooth vector fields on a manifold $M$. The Lie bracket [ $X, Y$ ] of $X$ and $Y$ is the vector field which acts on a function $f \in C^{\infty}(M)$ to give $X Y f-Y X f$.

To make sense of this definition we need to check that this does indeed define a derivation. Linearity is clear, but we need to verify the Leibniz rule:

$$
\begin{aligned}
{[X, Y](f g)=} & X(Y(f g))-Y(X(f g)) \\
= & X(f Y(g)+Y(f) g)-Y(f X(g)+X(f) g) \\
= & f(X Y g)+(X f)(Y g)+(X Y f) g+(Y f)(X g) \\
& -(Y f)(X g)-f(Y X g)-(Y X f) g-(X f)(Y g) \\
= & f(X Y g-Y X g)+(X Y f-Y X f) g \\
= & f[X, Y] g+([X, Y] f) g .
\end{aligned}
$$

It is useful to write $[X, Y]$ in terms of its components in some chart: Write $X=X^{i} \partial_{i}$ and $Y=Y^{j} \partial_{j}$ (here I'm using the summation convention: Sum over repeated indices). Note that

$$
\left[\partial_{i}, \partial_{j}\right] f=\partial_{i} \partial_{j} f-\partial_{j} \partial_{i} f=\frac{\partial^{2}}{\partial_{i} \partial_{j}}\left(f \circ \varphi^{-1}\right)-\frac{\partial^{2}}{\partial_{j} \partial_{i}}\left(f \circ \varphi^{-1}\right)=0 .
$$

Therefore we have

$$
\begin{equation*}
[X, Y]=X^{i} \partial_{i} Y^{j} \partial_{j}-Y^{j} \partial_{j} X^{i} \partial_{i}=\sum_{i, j=1}^{n}\left(X^{i} \partial_{i} Y^{i}-Y^{i} \partial_{i} X^{j}\right) \partial_{j} . \tag{7.1}
\end{equation*}
$$

The Lie bracket measures the extent to which the derivatives in directions $X$ and $Y$ do not commute. The following proposition makes this more precise:

Proposition 7.1.1 Let $X, Y \in \mathcal{X}(\mathcal{M})$, and let $\Psi$ and be the local flow of $X$ in some region containing the point $x \in M$. Then

$$
[X, Y]_{x}=\left.\frac{d}{d t}\left(\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}\right)\right|_{t=0}
$$

The idea is this: The flow $\Psi_{t}$ moves us from $x$ in the direction of the vector field $X$. We look at the vector field $Y$ in this direction, and use the $\operatorname{map} D_{x} \Psi_{t}: T_{x} M \rightarrow T_{\Psi_{t}(x)} M$, which is non-singular, to bring $Y$ back to $T_{x} M$. This gives us a family of vectors in the same vector space, so we can compare them by differentiating. In particular, this gives us the nice interpretation: The Lie bracket $[X, Y]$ vanishes if and only if $Y$ is invariant under the flow of $X$. For this reason, the Lie bracket is also often called the Lie derivative, and denoted by $\mathcal{L}_{X} Y$.

Proof (Method 1): I will first give a proof which is quite illustrative, but which has the drawback that we need to consider two separate cases. Fix $x \in M$.
Case 1: Suppose $X_{x} \neq 0$. I will construct a special chart about $x$ as follows: First take any chart $\varphi: U \rightarrow V$ about $x$, and by composition with a linear map assume that $X_{x}=\partial_{n}(x)$. Let

$$
\Sigma=\varphi^{-1}\left(\left\{\left(w^{1}, \ldots, w^{n}\right) \in V: w^{n}=\varphi^{n}(x)\right\}\right)
$$

Then $\Sigma$ is a smooth $(n-1)$-dimensional submanifold of $M$ which passes through $x$, and is transverse to the vector field $X$ on some neighbourhood of $x$ (i.e. $T_{y} \Sigma \oplus \mathbb{R} X_{y}=T_{y} M$ for all $y \in \Sigma$ sufficiently close to $x$ ). Now consider the map $\tilde{\Psi}: \Sigma \times(-\delta, \delta) \rightarrow M$ given by restricting the flow $\Psi$ of $X$ to $\Sigma \times(-\delta, \delta)$ : We have

$$
D_{(x, 0)} \tilde{\Psi}=\left[\begin{array}{cc}
\mathrm{I}_{n-1} & 0 \\
0 & 1
\end{array}\right]
$$

with respect to the natural bases $\left\{\partial_{1}, \ldots, \partial_{n-1}, \partial_{t}\right\}$ for $T_{(x, 0)}(\Sigma \times \mathbb{R})$ and $\left\{\partial_{1}, \ldots, \partial_{n-1}, \partial_{n}=X_{x}\right\}$ for $T_{x} M$. In particular, $D_{(x, 0)} \tilde{\Psi}$ is non-singular, and so by the inverse function theorem there is a neighbourhood of $(x, 0)$ in $\Sigma \times \mathbb{R}$ on which $\tilde{\Psi}$ is a diffeomorphism. We take $\tilde{\varphi}$ to be the chart obtained by first taking the inverse of $\tilde{\Psi}$ to obtain a point in $\Sigma \times \mathbb{R}$, and then applying $\varphi$ to the point in $\Sigma$ to obtain a point in $\mathbb{R}^{n-1} \times \mathbb{R}$. The special feature of this chart is that $X_{y}=\partial_{n}$ on the entire chart.

Now we can compute in this chart: The flow of $X$ can be written down immediately: $\tilde{\varphi} \circ \Psi_{t} \circ \tilde{\varphi}^{-1}\left(x^{1}, \ldots, x^{n}\right)=\left(x^{1}, \ldots, x^{n-1}, x^{n}+t\right)$. If we write $Y=Y^{k} \partial_{k}$, then we have

$$
\left(\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}\right)^{k}=Y^{k}\left(x^{1}, \ldots, x^{n}+t\right)
$$

and so

$$
\left.\frac{d}{d t}\left(\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}\right)^{k}\right|_{t=0}=\frac{\partial Y^{k}}{\partial x^{n}}=X^{j} \frac{\partial Y^{k}}{\partial x^{j}}=[X, Y]^{k}
$$

by (7.1), since $\partial_{i} X^{j}=0$ for all $j$.
Case 2: Now suppose $X_{x}=0$. Then we have $\Psi_{t}(x)=x$ for all $t$, and the local group property implies that the linear maps $\left\{D_{x} \Psi_{t}\right\}$ form a one-parameter group in the Lie group $G L\left(T_{x} M\right) \simeq G L(n)$. Hence $D_{x} \Psi_{t}=e^{t A}$ for some $A$, and we get

$$
\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}=e^{t A} Y_{x}
$$

and

$$
\left.\frac{d}{d t}\left(\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}\right)\right|_{t=0}=-A Y_{x}
$$

It remains to compute $A$ : Working in local coordinates,

$$
A\left(\partial_{j}\right)=\partial_{t} \partial_{j} \Psi_{t}=\partial_{j} \partial_{t} \Psi_{t}=\partial_{j} X
$$

Therefore we get

$$
\left.\frac{d}{d t}\left(\left(D_{x} \Psi_{t}\right)^{-1} Y_{\Psi_{t}(x)}\right)\right|_{t=0}=-Y^{j} \partial_{j} X^{k} \partial_{k}=[X, Y]
$$

by (7.1), since $X^{k}=0$ for all $k$.
Proof (Method 2): Here is another proof which is somewhat more direct but perhaps less illuminating: Choose any chart $\varphi$ for $M$ about $x$. In this chart we can write uniquely $X=X^{j} \partial_{j}$ and $Y=Y^{k} \partial_{k}$, and here the coefficients $X^{j}$ and $Y^{k}$ are smooth functions on a neighbourhood of $x$. Then

$$
\begin{aligned}
\left.\frac{d}{d t}\left(D_{\Psi_{t}(x)} \Psi_{-t} Y_{\Psi_{t}(x)}\right)^{j}\right|_{t=0} & =\left.\left(\partial_{t} \partial_{k} \Psi_{-t}^{j}\right)\right|_{t=0} Y_{x}^{k}+\left.\left(\partial_{k} \Psi_{-t}^{j}\right) \partial_{t} Y^{k}\left(\Psi_{t} x\right)\right|_{t=0} \\
& =\left.\left(\partial_{k} \partial_{t} \Psi_{-t}^{j}\right)\right|_{t=0} Y_{x}^{k}+\delta_{k}^{j} X_{x}^{i} \partial_{i} Y_{x}^{k} \\
& =-Y_{x}^{k} \partial_{k} X_{x}^{j}+X_{x}^{i} \partial_{i} Y_{x}^{j} \\
& =[X, Y]_{x}^{j}
\end{aligned}
$$

We could now deduce the following result on the naturality of the Lie bracket directly from Proposition 7.6.2. However I will give a direct proof:

Proposition 7.1.2 Let $F: M \rightarrow N$ be a smooth map, $X, Y \in \mathcal{X}(M)$, and $W, Z \in \mathcal{X}(N)$ with $W$-related to $X$ and $Z F$-related to $Y$. Then for every $x \in M$,

$$
[W, Z]_{F(x)}=D_{x} F\left([X, Y]_{x}\right)
$$

Think in particular about the case where $F$ is a diffeomorphism: Then the proposition says that the push-forward of the Lie bracket of $X$ and $Y$ is the Lie bracket of the push-forwards of $X$ and $Y$.

Proof. For any $f: N \rightarrow \mathbb{R}$, and $x \in M, y=F(x) \in N$,

$$
\begin{aligned}
{[W, Z]_{y} f } & =W_{y} Z f-Z_{y} W f \\
& =D_{x} F\left(X_{x}\right) Z f-D_{x} F\left(Y_{x}\right) W f \\
& =X_{x}((Z f) \circ F)-Y_{x}((W f) \circ F) \\
& =X_{x}(Y(f \circ F))-Y_{x}(X(f \circ F)) \\
& =[X, Y]_{x}(f \circ F) \\
& =D_{x} F\left([X, Y]_{x}\right) f .
\end{aligned}
$$

Here we used the fact that for every $p \in M$,

$$
(Z f) \circ F_{p}=(Z f)_{F(p)}=D_{p} F\left(Y_{p}\right) f=Y_{p}(f \circ F),
$$

and similarly $(W f) \circ F=X(f \circ F)$.

### 7.2 The Lie algebra of vector fields.

The Lie bracket gives the space of smooth vector fields $\mathcal{X}(M)$ on a manifold $M$ the structure of a Lie algebra:

Definition 7.2.1 A Lie algebra consists of a (real) vector space $E$ together with a multiplication [., ]: : $\times E \rightarrow E$ which satisfies the three properties

$$
\begin{aligned}
{[u, v] } & =-[v, u] ; \\
{[a u+b v, w] } & =a[u, w]+b[v, w] ; \\
{[[u, v], w]+[[v, w], u]+[[w, u], v] } & =0,
\end{aligned}
$$

for all $u, v, w \in E$ and $a, b \in \mathbb{R}$.
The first two properties are immediate. The third (known as the Jacobi identity) can be verified directly:

$$
\begin{aligned}
{[[X, Y], Z] f=} & {[X, Y] Z f-Z[X, Y] f } \\
= & X Y Z f-Y X Z f-Z X Y f+Z Y X f \\
{[[X, Y], Z] f+} & {[[Y, Z], X] f+[[Z, X], Y] f } \\
= & X Y Z f-Y X Z f-Z X Y f+Z Y X f \\
& +Y Z X f-Z Y X f-X Y Z f+X Z Y f \\
& +Z X Y f-X Z Y f-Y Z X f+Y X Z f \\
= & 0
\end{aligned}
$$

The following exercise gives another interpretation of the Jacobi identity:

Exercise 7.2.1 Let $X, Y, Z \in \mathcal{X}(M)$. Let $\Psi$ be the local flow of $Z$ near a point $x \in M$. For each $t$ proposition 7.1.2 gives

$$
D \Psi_{t}([X, Y])=\left[D \Psi_{t}(X), D \Psi_{t}(Y)\right]
$$

Differentiate this with respect to $t$ to get another proof of the Jacobi identity.
Lie algebras play an important role in the theory of Lie groups: Consider the space $\mathfrak{g}$ of left-invariant vector fields on a Lie group $G$. We have already seen that this is a finite-dimensional vector space isomorphic to the tangent space at the identity $T_{e} G$ by the natural construction

$$
v \in T_{e} G \mapsto V \in \mathfrak{g}: V_{g}=D_{e} l_{g}(v)
$$

We will show that $\mathfrak{g}$ is a Lie algebra. It is sufficient to show that the vector subspace $\mathfrak{g}$ of $\mathcal{X}(M)$ is closed under the Lie bracket operation:

## Proposition 7.2.2

$$
[\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{g} .
$$

Proof. Let $X, Y \in \mathfrak{g}$. Then for any $g \in G$, Proposition 7.1.2 gives

$$
[X, Y]=\left[\left(l_{g}\right)_{*} X,\left(l_{g}\right)_{*} Y\right]=\left(l_{g}\right)_{*}[X, Y]
$$

since $X$ is $l_{g}$-related to itself, as is $Y$. Therefore $[X, Y] \in \mathfrak{g}$.

The Lie algebra of a group captures the local or infinitesimal structure of a group. It turns out that the group $G$ itself can be (almost) completely recovered just from the Lie algebra $\mathfrak{g}$ - at least, $\mathfrak{g}$ determines the universal cover of $G$. Different groups with the same universal cover have the same Lie algebra.

Exercise 7.2.2 Show that:
(1). A smooth group homomorphism $\rho: G \rightarrow H$ induces a homomorphism from the Lie algebra $\mathfrak{g}$ of $G$ to the Lie algebra $\mathfrak{h}$ of $H$;
(2). If $H$ is a subgroup of $G$, then $\mathfrak{h}$ is a Lie subalgebra of $\mathfrak{g}$;
(3). A diffeomorphism of manifolds induces a homomorphism between their vector field Lie algebras;
(4). A submersion $F: M \rightarrow N$ induces a Lie subalgebra of $\mathcal{X}(M)$ (consisting of those vector fields which are mapped to zero by $D F)$.

### 7.3 Integrability of families of vector fields

The significance of the Lie bracket, for our purposes, comes from its role in indicating when a family of vector fields can be simultaneously integrated to give a map: Suppose we have $k$ vector fields $E_{1}, \ldots, E_{k}$ on $M$, and we want to try to find a map $F$ from $\mathbb{R}^{k}$ to $M$ for which $\partial_{i} F=E_{i}$ for $i=$ $1, \ldots, k$. The naive idea is that we try to construct such a map as follows: Pick some point $x$ in $M$, and set $F(0)=x$. Then we can arrange $\partial_{k} F=E_{k}$, by setting $F\left(t e_{k}\right)=\Psi_{E_{k}}(x, t)$ for each $t$. The next step should be to follow the integral curves of the vector field $E_{k-1}$ from $F\left(t e_{k}\right)$ for time $s$ to get the point $F\left(t e_{k}+s e_{k-1}\right)$ :

$$
F\left(t e_{k}+s e_{k-1}\right)=\Psi_{E_{k-1}}\left(\Psi_{E_{k}}(x, t), s\right)
$$

and so on following $E_{k-2}, \ldots, E_{2}$, and finally $E_{1}$. Unfortunately that doesn't always work:

Example 7.3.1 Take $M=\mathbb{R}^{2}, E_{1}=\partial_{1}$, and $\left(E_{2}\right)_{(x, y)}=(1+x) \partial_{2}$. Following the recipe outlined above, we set $F(0,0)=(0,0)$, and follow the flow of $E_{2}$ to get $F(0, t)=(0, t)$, and then follow $E_{1}$ to get $F(s, t)=(s, t)$. However, this gives $D F\left(\partial_{1}\right)=E_{1}$ but not $D F\left(\partial_{2}\right)=E_{2}$. Note that if we change our procedure by first integrating along the vector field $E_{1}$, then the vector field $E_{2}$, then we don't get the same result: Instead we get $F(s, t)=(s, t+s t)$.

In fact, there is an easy way to tell this could not have worked: If there was such a map, then we would have

$$
\left[E_{1}, E_{2}\right]=\left[D F\left(\partial_{1}\right), D F\left(\partial_{2}\right)\right]=D F\left(\left[\partial_{1}, \partial_{2}\right]\right)=0
$$

But in the example we have $\left[E_{1}, E_{2}\right]=\partial_{2} \neq 0$. It turns out that this is the only obstruction to constructing such a map:

Proposition 7.3.2 Suppose $E_{1}, \ldots, E_{k} \in \mathcal{X}(M)$ are vector fields which commute: $\left[E_{i}, E_{j}\right]=0$ for $i, j=1, \ldots, k$. Then for each $x \in M$ there exists a neighbourhood $U$ of 0 in $\mathbb{R}^{k}$ and a unique smooth map $F: U \rightarrow M$ satisfying $F(0)=x$ and $D_{y} F\left(\partial_{i}\right)=\left(E_{i}\right)_{F(y)}$ for every $y \in U$ and $i \in\{1, \ldots, k\}$.

Proof. We construct the map $F$ exactly as outlined above. In other words, we set

$$
F\left(y^{1}, \ldots, y^{k}\right)=\Psi_{E_{1}, y^{1}} \circ \Psi_{E_{2}, y^{2}} \circ \ldots \circ \Psi_{E_{k}, y^{k}}(x)
$$

Where $\Psi_{E_{i}, t}$ is the flow of the vector field $E_{i}$ for time $t$. This gives immediately that $D F\left(\partial_{1}\right)=E_{1}$ everywhere, but $D F\left(\partial_{2}\right)$ is not so clear.

Lemma 7.3.3 If $[X, Y] \equiv 0$, then the flows of $X$ and $Y$ commute:

$$
\Psi_{X, t} \circ \Psi_{Y, s}=\Psi_{Y, s} \circ \Psi_{X, t}
$$

Proof. This is clearly true for $t=0$, since $\Psi_{X, 0}(y)=y$ for all $y$. Therefore it suffices to show that

$$
\partial_{t} \Psi_{X, t} \circ \Psi_{Y, s}=\partial_{t} \Psi_{Y, s} \circ \Psi_{X, t} .
$$

The left-hand side is equal to the vector field $X$ by assumption, while the right is equal to $D \Psi_{Y, s}(X)$. We have

$$
\begin{aligned}
D \Psi_{Y, s}(X) & =D \Psi_{Y, 0}(X)+\int_{0}^{s} \frac{d}{d r} D \Psi_{Y, r}(X) d r \\
& =X+\left.\int_{0}^{s} D \Psi_{Y, r} \frac{d}{d r^{\prime}} D \Psi_{Y, r^{\prime}}(X)\right|_{r^{\prime}=0} d r
\end{aligned}
$$

where I used the local group property of the flow of $Y$ to get $D \Psi_{Y, r+r^{\prime}}=$ $D \Psi_{Y, r} \circ D \Psi_{Y, r}$. By Proposition 6.1.1, we have

$$
\left.D \Psi_{Y, r^{\prime}}(X)\right|_{r^{\prime}=0}=-[Y, X]=0
$$

and so $D \Psi_{Y, s}(X)=X$.
Thus we have for every $j \in\{1, \ldots, k\}$ the expression
$F\left(y^{1}, \ldots, y^{k}\right)=\Psi_{E^{j}, y^{j}} \circ \Psi_{E^{1}, y^{1}} \circ \ldots \circ \Psi_{E_{j-1}, y^{j-1}} \circ \Psi_{E_{j+1}, y^{j+1}} \circ \ldots \circ \Psi_{E_{k}, y^{k}}(x)$
and differentiation in the $y^{j}$ direction immediately gives $D F\left(\partial_{j}\right)=E_{j}$.
A closely related but slightly more general integrability theorem is the theorem of Frobenius, which we will prove next.

Definition 7.3.4 A distribution $\mathcal{D}$ of $k$-planes on $M$ is a map which associates to each $x \in M$ a $k$-dimensional subspace $\mathcal{D}_{x}$ of $T_{x} M$, and which is smooth in the sense that for any $V \in \mathcal{X}(M)$ and any chart with coordinate tangent basis $\left\{\partial_{1}, \ldots, \partial_{n}\right\}$, the vector field $V_{\mathcal{D}}$ given by projecting $V$ onto $\mathcal{D}$ (orthogonally with respect to the given basis) is smooth.

Remark. One can make this definition more natural (i.e. with less explicit reference to charts) as follows: Given a manifold $M$, there is a natural manifold $G_{k}(T M)$ constructed from $M$, called the Grassmannian bundle (of $k$-planes) over $M$

$$
G_{k}(T M)=\left\{(x, E): x \in M, E \text { a } k \text {-dimensional subspace of } T_{x} M\right\}
$$

Note that the $k$-dimensional subspaces of $T_{x} M$ are in one-to-one correspondence with the space of equivalence classes of rank $(n-k)$ linear maps from $T_{x} M$ to $\mathbb{R}^{n-k}$, under the equivalence relation

$$
M_{1} \sim M_{2} \Longleftrightarrow M_{1}=L M_{2}, L \in G L(n-k):
$$

We denote the equivalence class of $M$ by $[M]$. Given a $k$-dimensional subspace $E$, we choose any $n-k$ independent linear functions $f_{1}, \ldots, f_{n-k}$ on $T_{x} M$ which vanish
on $E$ (for example, choose a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $T_{x} M$ such that $\left\{e_{1}, \ldots, e_{k}\right\}$ is a basis for $E$, and take $f_{i}$ to be the linear function which takes $e_{k+i}$ to 1 and all the other basis elements to zero. Then $f=\left(f_{1}, \ldots, f_{n-k}\right)$ defines a rank $n-k$ linear map from $T_{x} M$ to $\mathbb{R}^{n-k}$ vanishing on $E$. This correspondence is well-defined as a map into the space of equivalence classes, since if we choose a different basis $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ of this form, then it is related to the first by $e_{i}^{\prime}=A\left(e_{i}\right)$ for some non-singular matrix, and we have $f_{j}^{\prime}=\sum_{m=1}^{n-k} A_{k+j}^{k+m} f_{m}$, i.e. $f^{\prime}=A f \sim F$.

Conversely, given a rank $n-k$ linear function $M$, we associate to it the $k$ dimensional linear subspace $\operatorname{ker} M$. Clearly if $M_{1} \sim M_{2}$ then $\operatorname{ker} M_{1}=\operatorname{ker} M_{2}$.

Now we can choose charts for $G_{k}(T M)$ : Let $\mathcal{A}$ be an atlas for $M, \varphi: U \rightarrow V$ a chart of $\mathcal{A}$. Define an open subset $\tilde{U}$ of $G_{k}(T M)$ by

$$
\tilde{U}=\left\{(x,[F]) \in U \times L\left(T_{x} M, \mathbb{R}^{n-k}\right):\left.F\right|_{\operatorname{span}\left(\partial_{1}, \ldots, \partial_{n-k}\right)} \text { nonsingular }\right\}
$$

and define $\varphi_{\sigma}: U_{\sigma} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{k(n-k)}$ as follows:

$$
\varphi_{\sigma}(x,[F])=(\varphi, N)
$$

where $N \in L_{k, n-k} \simeq \mathbb{R}^{k(n-k)}$ is the $(n-k) \times k$ matrix constructed as follows: Set $F_{i}^{j}=F^{j}\left(\partial_{\sigma(i)}\right)$. Then by assumption the first $(n-k)$ columns of the matrix $F$ form a non-singular $(n-k) \times(n-k)$ matrix, which we denote by $G$. Then we have $[F]=\left[G^{-1} F\right]$, and $G^{-1} F$ has the form

$$
\left[\begin{array}{ll}
\mathrm{I}_{n-k} & N
\end{array}\right]
$$

for some $(n-k) \times k$ matrix $N . N$ is well-defined as a function of the equivalence class $[F]$, since if $\tilde{F}=A F$, then $\tilde{G}=G A^{-1}$, so $\tilde{G}^{-1} \tilde{F}=G^{-1} F$. Explicitly,

$$
N_{i}^{j}=\frac{\sum_{\sigma, \tau \in S_{n-k}} \operatorname{sgn} \sigma \operatorname{sgn} \tau F_{\sigma(1)}^{\tau(1)} \ldots F_{\sigma(n-k-1)}^{\tau(n-k-1)} F_{n-k+i}^{\tau(n-k)} \delta_{\sigma(n-k)}^{j}}{\sum_{\sigma, \tau \in S_{n-k}} \operatorname{sgn} \sigma \operatorname{sgn} \tau F_{\sigma(1)}^{\tau(1)} \ldots F_{\sigma(n-k-1)}^{\tau(n-k-1)} F_{\sigma(n-k)}^{\tau(n-k)}}
$$

for $i=1, \ldots, k$ and $j=1, \ldots, n-k$, where the sums are over all pairs of permutations of $n-k$ objects.

Note that these charts cover $G_{k}(T M)$, because even if $[F] \in G_{k}\left(T_{x} M\right)$ does not have its first $n-k$ columns non-singular with respect to the coordinate tangent basis of $\varphi$, we can choose a new chart for which this is true, of the form $A \circ \varphi$ for some $A \in G L(n)$.

Then we can define a $k$-dimensional distribution to be a smooth map $\mathcal{D}$ from $M$ to $G_{k}(T M)$ such that $\mathcal{D}_{x} \in G_{k}\left(T_{x} M\right)$ for all $x \in M$.

The question which the Frobenius theorem addresses is the following: Given a distribution $\mathcal{D}$, can we find a $k$-dimensional submanifold $\Sigma$ through each point, such that $T_{x} \Sigma=\mathcal{D}_{x}$ for every $x \in \Sigma$ ? This is what is meant by integrating a distribution.

For convenience we will denote by $\mathcal{X}(\mathcal{D})$ the vector space of smooth vector fields $X$ on $M$ for which $X_{x} \in \mathcal{D}_{x}$ for every $x \in M$ (i.e. vector fields tangent to the distribution).

Proposition 7.3.5 (Frobenius' Theorem) A distribution $\mathcal{D}$ is integrable if and only if $\mathcal{X}(\mathcal{D})$ is closed under the Lie bracket operation.

Proof. One direction is clear: Suppose there is such a submanifold $N$, embedded in $M$ by a map $F$. Then for any smooth vector fields $X, Y \in \mathcal{X}(\mathcal{D})$ there are unique vector fields $\tilde{X}$ and $\tilde{Y}$ in $\mathcal{X}(N)$ such that $X$ is $F$-related to $\tilde{X}$ and $Y$ is $F$-related to $\tilde{Y}$. Then Proposition 7.1 .2 gives $[X, Y]=D F([\tilde{X}, \tilde{Y}])$ is in $\mathcal{X}(\mathcal{D})$.

The other direction takes a little more work: Given a distribution of $k$ planes $\mathcal{D}$ which is involutive (closed under Lie brackets), and any point $x \in$ $M$, we want to construct a submanifold through $x$ tangent to the distribution. Choose a chart $\varphi$ for $M$ near $x$, and assume that $\mathcal{D}_{x}$ is the subspace of $T_{x} M$ generated by the first $k$ coordinate tangent vectors. Then by the smoothness of the distribution we can describe $\mathcal{D}_{y}$ for $y$ sufficiently close to $x$ as follows:

$$
\mathcal{D}_{y}=\left\{\sum_{i=1}^{k} c^{i}\left(\partial_{i}+\sum_{j=k+1}^{n} a_{i}^{j}(y) \partial_{j}\right):\left(c^{1}, \ldots, c^{k}\right) \in \mathbb{R}^{k}\right\}
$$

Here the functions $a_{i}^{j}$ are smooth functions on a neighbourhood of $x$, for $i=1, \ldots, k$ and $j=k+1, \ldots, n$. In particular we have $k$ non-vanishing vector fields $E_{1}, \ldots, E_{k}$ tangent to $\mathcal{D}$, given by

$$
\left(E_{i}\right)_{y}=\partial_{i}+\sum_{j=k+1}^{n} a_{i}^{j}(y) \partial_{j}
$$

Now we compute:

$$
\begin{aligned}
{\left[E_{i}, E_{j}\right] } & =\left[\partial_{i}+\sum_{p=k+1}^{n} a_{i}^{p}(y) \partial_{p}, \partial_{j}+\sum_{q=k+1}^{n} a_{j}^{q}(y) \partial_{q}\right] \\
& =\sum_{p=k+1}^{n}\left(\partial_{i} a_{j}^{p}-\partial_{j} a_{i}^{p}+\sum_{q=k+1}^{n}\left(a_{i}^{q} \partial_{q} a_{j}^{p}-a_{j}^{q} \partial_{q} a_{i}^{p}\right)\right) \partial_{p}
\end{aligned}
$$

But by assumption $\left[E_{i}, E_{i}\right] \in \mathcal{X}(\mathcal{D})$, so it is a linear combination of the vector fields $E_{1}, \ldots, E_{k}$. But $\left[E_{i}, E_{j}\right]$ has no component in the direction $\partial_{1}, \ldots, \partial_{k}$. Therefore $\left[E_{i}, E_{j}\right]=0$.

Proposition 7.3 .2 gives the existence of a map $F$ from a region of $\mathbb{R}^{k}$ into $M$ with $D F\left(\partial_{i}\right)=E_{i}$ for $i=1, \ldots, k$. In particular $D F$ is of full rank, and $F$ is an immersion, hence locally an embedding, and the image of $F$ is a submanifold with tangent space equal to $\mathcal{D}$ everywhere.

Example 7.3.2 The Heisenberg group In this example we investigate a situation where a distribution $\mathcal{D}$ is not involutive. Let $G$ be the group of $3 \times 3$ matrices of the form

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{3} \\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right]
$$

which we identify with three-dimensional space $\mathbb{R}^{3}$. The left-invariant vector fields corresponding to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ at the identity $0 \in \mathbb{R}^{3}$ are given by

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{ccc}
1 & x_{1} & x_{3} \\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \simeq e_{1} \\
& E_{2}=\left[\begin{array}{ccc}
1 & x_{1} & x_{3} \\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & x_{1} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \simeq e_{2}+x_{1} e_{3} \\
& E_{3}=\left[\begin{array}{ccc}
1 & x_{1} & x_{3} \\
0 & 1 & x_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \simeq e_{3} .
\end{aligned}
$$

We take a distribution $\mathcal{D}$ on $\mathbb{R}^{3}$ to be the subspace at each point spanned by $E_{1}$ and $E_{2}$. Then $\mathcal{D}$ is not involutive, since we have

$$
\left[E_{1}, E_{2}\right]=\left[e_{1}, e_{2}+x_{1} e_{3}\right]=e_{3}=E_{3}
$$

The behaviour in this case turns out to be as far as one could imagine from that in the involutive case : If there were a submanifold tangent to the distribution, then only points in that submaniofld could be reached along curves tangent to the distribution. In contrst, we have

Proposition 7.3.6 For any $y \in \mathbb{R}^{3}$ there exists a smooth $\gamma:[0,1] \rightarrow \mathbb{R}^{3}$ with $\gamma^{\prime}(t) \in \mathcal{D}_{\gamma(t)}$ for all $t, \gamma(0)=0$, and $\gamma(1)=y$.

In other words, every point can be reached by following curves tangent to $\mathcal{D}$.

Proof. We consider curves tangent to the distribution, given by prescribing the tangent vector at each point:

$$
\gamma^{\prime}(t)=\alpha(t) E_{1}+\beta(t) E_{2}
$$

This gives the system of equations

$$
\begin{aligned}
x^{\prime} & =\alpha ; \\
y^{\prime} & =\beta \\
z^{\prime} & =x \beta
\end{aligned}
$$

which gives

$$
\begin{aligned}
& x(t)=\int_{0}^{t} \alpha(s) d s \\
& y(t)=\int_{0}^{t} \beta(s) d s \\
& z(t)=\int_{0}^{t} \beta(s) \int_{0}^{s} \alpha\left(s^{\prime}\right) d s^{\prime} d s
\end{aligned}
$$

Then if $y=(X, Y, Z)$ we make the choice $\alpha(t)=X+a f(t)$ and $\beta(t)=Y+b f(t)$, where $a$ and $b$ are constants to be chosen, and $f$ is a smooth function which satisfies $\int_{0}^{1} f(t) d t=0$ and $\int_{0}^{1} t f(t) d s=0$, but $\Gamma=\int_{0}^{1} \int_{0}^{t} f(t) f(s) d s d t \neq 0$ (for example, $f(t)=t^{2}-t+1 / 6$ will work). Then we have $x(1)=X, y(1)=Y$, and $z(1)=X Y / 2+a b \Gamma$. Finally, we can choose $a$ and $b$ to ensure that $z(1)=Z$ (e.g. $a=1, b=(Z-X Y / 2) / \Gamma)$.

Example 7.3.3 Subgroups of Lie groups As an application of the Frobenius theorem, we will consider subgroups of Lie groups. We have seen that the left-invariant vector fields on a Lie group $G$ form a finite-dimenensional Lie algebra $\mathfrak{g}$. We will see that subspaces of $\mathfrak{g}$ which are closed under the Lie bracket correspond exactly to connected smooth subgroups of $G$. In one direction this is clear: Suppose $H$ is a Lie group which is contained in $G$, with the inclusion map being an immersion. Then the Lie algebra $\mathfrak{h}$ of $H$ is naturally included in $\mathfrak{g}$, since for any left-invariant Lie algebra $V$ on $H$, we can extend to a left-invariant Lie algebra $\tilde{V}$ on $G$ by setting

$$
\tilde{V}_{g}=D_{0} l_{g}\left(V_{e}\right)
$$

$\tilde{V}$ agrees with $V$ on $H$. The image of this inclusion is a vector subspace of $\mathfrak{g}$. Furthermore, if $X, Y \in \mathfrak{h}$ then $[X, Y]=[\tilde{X}, \tilde{Y}]$ is in this subspace of $\mathfrak{g}$. So we have a subspace of $\mathfrak{g}$ which is closed under Lie brackets.

Proposition 7.3.7 Let $\mathfrak{h}$ be any vector subspace of $\mathfrak{g}$ which is closed under Lie brackets. Then there exists a unique connected Lie group $H$ and an inclusion $i: H \rightarrow G$ which is an injective immersion, such that $D_{h} i\left(T_{h} H\right)$ is the subspace of $T_{i(h)} G$ given by the left-invariant vector fields in $\mathfrak{h}$, for every $h \in H$.

Proof. Since $\mathfrak{h}$ is closed under Lie brackets, the distribution $\mathcal{D}$ defined by the vectors in $\mathfrak{h}$ is involutive: If we take a basis $\left\{E_{1}, \ldots, E_{k}\right\}$ for $\mathfrak{h}$, then any $X, Y \in \mathcal{X}(M)$ can be written in the form $X=X^{i} E_{i}, Y=Y^{j} E_{j}$ for some smooth functions $X^{1}, \ldots, X^{k}$ and $Y^{1}, \ldots, Y^{k}$. Then we have

$$
[X, Y]=\left[X^{i} E_{i}, Y^{j} E_{j}\right]=\left(X^{i} E_{i}\left(Y^{j}\right)-Y^{i} E_{i}\left(X^{j}\right)\right) E_{j}+X^{i} Y^{j}\left[E_{i}, E_{j}\right]
$$

which is in $\mathcal{D}$. By Frobenius' Theorem, there is a submanifold $\Sigma$ passing through $e \in G$ with tangent space $\mathcal{D}$.

To show that $\Sigma$ is a subgroup, we show that $x y \in \Sigma$ for all $x$ and $y$ in $\Sigma$ : Write $y=\exp (s Y)$ for $Y \in \mathcal{D}_{e}$. Then

$$
\frac{d}{d s}(x \exp (s Y))=\left.\frac{d}{d r}(x \exp (s Y) \exp (r Y))\right|_{r=0}=D_{0} l_{x \exp (s Y)} Y \in \mathcal{D}
$$

for each $s$. Thus the curve $s \mapsto x \exp (s Y)$ starts in $\Sigma$ and is tangent to $\mathcal{D}=\mathcal{T} \Sigma$, and so stays in $\Sigma$. Therefore $x y \in \Sigma$, and $\Sigma$ is a subgroup.

