
Lecture 9. Riemannian metrics

This lecture introduces Riemannian metrics, which define lengths of vectors
and curves in the manifold.

9.1 Definition

There is one more crucial ingredient which we need to introduce for dealing
with manifolds: Lengths and angles. Given a smooth manifold, since we know
what it means for a curve in the manifold to be smooth, and we have a well-
defined notion of the tangent vector to a curve, all we need in order to have
a notion of distance on the manifold is a way of defining the speed of a curve
— that is, the length of its tangent vector.

Definition 9.1.1 A Riemannian metric g on a smooth manifold M is a
smoothly chosen inner product gx : TxM ×TxM → R on each of the tangent
spaces TxM of M . In other words, for each x ∈M , g = gx satisfies
(1). g(u, v) = g(v, u) for all u, v ∈ TxM ;
(2). g(u, u) ≥ 0 for all u ∈ TxM ;
(3). g(u, u) = 0 if and only if u = 0.

Furthermore, g is smooth in the sense that for any smooth vector fields
X and Y , the function x → gx(Xx, Yx) is smooth.

Locally, a metric can be described in terms of its coefficients in a local
chart, defined by gij = g(∂i, ∂j). The smoothness of g is equivalent to the
smoothness of all the coefficient functions gij in some chart.

Example 9.1.2 The standard inner product on Euclidean space is a special
example of a Riemannian metric. R

n can be made a Riemannian manifold
in many ways: Let fij be a bounded, smooth function for each i and j in
{1, . . . , n}, with fij = fji. Then for C sufficiently large, the functions gij =
Cδij+fij are positive definite everywhere, and so define a Riemannian metric.
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9.2 Existence of Riemannian metrics

Every smooth manifold carries a Riemannian metric (in fact, many of them).
We will prove this using an argument very similar to that used in showing
the existence of connections.

Choose an atlas {ϕα : Uα → Vα}, and a subordinate partition of unity
{ρα}. On each of the regions Vα in R

n, choose a Riemannian metric g(α) (as
in example 9.1.2). Then define

g(u, v) =
∑

α

ραg
(α) (Dϕα(u), Dϕα(v)) .

This is clearly symmetric; g(u, u) ≥ 0; and g(u, u) = 0 iff u = 0. Furthermore
it is smooth, and so defines a Riemannian metric on M .

9.3 Length and distance

Definition 9.3.1 Let γ : [a, b] → M be a (piecewise) smooth curve. Then
the length L[γ] of γ is defined by L[γ] =

∫ b

a
gγ(t)(γ′(t), γ′(t))1/2 dt. Given

two points p and q in M , we define the distance from p to q by

d(p, q) = inf
{
L[γ]

∣∣∣ γ : [a, b] →M piecewise smooth, γ(a) = p, γ(b) = q
}
.

Proposition 9.3.2 If M is a Riemannian manifold with metric g, then
M is a metric space with the distance function d defined above. The metric
topology agrees with the manifold topology.

Proof. The symmetry of the distance function is immediate, as is its non-
negativity. The triangle inequality is also easily established: For any curves
γ1 : [a, b] → M and γ2 : [a′, b′] → M with γ1(b) = γ2(a′), we can define the
concatenation γ1#γ2 : [0, b+ b′ − a− a′] →M by

γ1#γ2(t) =
{
γ1(t+ a) for 0 ≤ t ≤ b− a;
γ2(t+ a− b+ a′) for b− a ≤ t ≤ b+ b′ − a− a′.

Thus γ1#γ2 is a curve with length L[γ1] + L[γ2]. Given points p, q, and r in
M , for any ε > 0 we can choose curves γ1 joining p to q and γ2 joining q to
r, such that L[γ1] < d(p, q) + ε and L[γ2], d(q, r) + ε. Therefore

d(p, r) ≤ L[γ1#γ2] = L[γ1] + L[γ2] < d(p, q) + d(q, r) + 2ε,
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which gives the triangle inequality when ε→ 0.
We still need to check that d(x, y) = 0 only when x = y. Suppose we have

x �= y with d(x, y) = 0. Choose a chart ϕ : U → V around x. Then we can
choose δ > 0 and C > 0 such that on Bδ(ϕ(x)) ⊂ V , g(u, u) ≥ C|Dϕ(u)|2.
Therefore for points z in ϕ−1(Bδ(ϕ(x)), we have d(x, z) ≥ C|ϕ(x) − ϕ(z)|.
So y cannot be in this set. But for y outside this set, any curve from x to
y must first pass through ϕ−1 (∂Bδ(ϕ(x))), and so has length at least Cδ,
contradicting d(x, y) = 0.

The claim that the metric topology is equivalent to the manifold topol-
ogy follows similarly: The metric restricted to charts is comparable to the
Euclidean distance on the chart. �

9.4 Submanifolds

An important situation where a manifold can be given a Riemannian metric
is when it is a submanifold of some Euclidean space R

N . The inclusion into
R

N gives a natural identification of tangent vectors toM with vectors in R
N :

Explicitly, if we write the inclusion as a map F : M → R
N , then we identify a

vector u ∈ TM with its image DF (u) under the differential of the inclusion.
The inner product on R

N can then be used to induce a Riemannian metric
on M , by defining

g(u, v) = 〈DF (u), DF (v)〉.
Similarly, if N is a Riemannian manifold with a metric h, and F : M → N

is an immersion, then we can define the induced Riemannian metric on M
by

g(u, v) = h(DF (u), DF (v)).

Many important Riemannian manifolds can be produced in this way, in-
cluding the standard metrics on the spheres Sn (induced by the standard
embedding in R

n+1), and on cylinders.
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9.5 Left-invariant metrics

Let G be a Lie group, and choose an inner product h on TeG 
 g. This can be
extended to give a unique left-invariant Riemannian metric on G, by defining

〈u, v〉g = h
(
(Delg)−1(u), (Delg)−1(v)

)
.

Similarly, one can define right-invariant metrics; in general these are not the
same.

Example 9.5.1 A metric on hyperbolic space. Recall that the hyperbolic plane
H

2 is upper half-plane, identified with the group of matrices of the form[
y x
0 1

]
for y > 0. If we choose an inner product at the identity (0, 1) such

that (0, 1) and (1, 0) are orthonormal, then the corresponding left-invariant
Riemannian metric on H

2 is the one for which the left-invariant vector fields
E1 = (y, 0) and E2 = (0, y) are orthonormal. Thus in terms of the basis of
coordinate tangent vectors e1 = (1, 0) and e2 = (0, 1), the metric has the
form gij = y−2δij .

Example 9.5.2 Left-invariant metrics on S3 Recall that S3 is the group of
unit length elements of the quaternions. The tangent space at the identity is
the three- dimensional space spanned by i, j, and k, and any inner product
on this space gives rise to a left-invariant metric on S3. If i, j, and k are
chosen to be orthonormal, the resulting metric is the standard metric on S3

(i.e. it agrees with the induced metric from the inclusion of S3 in R
4). Other

choices of inner product give deformed spheres called the Berger spheres.

9.6 Bi-invariant metrics

A more stringent requirement on a Riemannian metric on a Lie group is that
it should be invariant under both left and right translations. Such a metric
is called bi-invariant .

Every bi-invariant metric is left-invariant, and so can be constructed in a
unique way from an inner product for TeG. This raises the question: Which
inner products on TeG give rise to bi-invariant metrics?

For any g, and any u, v ∈ TeG, we must have

〈u, v〉e = 〈Delg(u), Delg(v)〉g = 〈(Derg)−1Delg(u), (Derg)−1Delg(v)〉e.

The maps Adg = (Derg)−1Delg : TeG → TeG are isomorphisms of TeG for
each g ∈ G, and give a representation of G on the vector space TeG, since
AdgAdh = Adgh for all g and h in G. Then the requirement that the inner
product give rise to a bi-invariant metric is the same as requiring that it be
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invariant under the representation Ad of G. If G is commutative, then Adg

is the identity map for every g, so this requirement is vacuous. In some cases
there may be no Ad-invariant inner product on TeG, but it can be shown
that any compact Lie group carries at least one.

Exercise 9.6.1 Show that the adjoint action of S3 on its Lie algebra R
3 gives

a homomorphism ρ : S3 → SO(3) (compare Exercise 5.3.2 and the remark
following it). Deduce that the only bi-invariant metric on S3 is the standard
one.

9.7 Semi-Riemannian metrics

It is sometimes useful to consider a generalisation of Riemannian manifolds
which drops the requirement of positivity: A semi- Riemannian manifold is a
smooth manifold together with a smoothly defined symmetric bilinear form
gx on each tangent space TxM , which is non-singular: gx(u, v) = 0 for all v
implies u = 0. If M is connected, then the signature of M is constant: One
can choose a basis {e1, . . . , en} at each point of M such that gx takes the
form

gx =






1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 −1 0 . . . 0
0 0 . . . 0 0 −1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . −1






with 1 occuring k times and −1 occuring (n − k) times, independent of x.
Of particular interest is the case of Lorenzian manifolds, in which k = n− 1;
when n = 4 these arise as spacetimes in general relativity.

In a semi-Riemannian manifold one can divide vectors into three cate-
gories: Spacelike vectors, for which g(v, v) > 0; timelike vectors, which have
g(v, v) < 0; and null vectors, for which g(v, v) = 0. A submanifold M of a
Lorenzian manifold is similarly called spacelike, timelike, or null if all of its
tangent vectors are spacelike, timelike, or null respectively. IfM is a spacelike
submanifold of a semi-Riemannian manifold, then the induced metric makes
M a Riemannian manifold.

Example 9.7.1 Minkowski space. Let M = R
n+1 with variables x1, . . . , xn, t,

with the constant semi-Riemannian metric gij = diag(1, . . . , 1,−1). The is
the Minkowski space R

n,1. The geometry of the Minkowski space R
3,1 is

the subject of special relativity. The null cone of directions with zero length
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is the right circular cone |x|2 = t2. Directions which point from the origin
above the upper surface or below the lower surface of this cone are timelike,
while those that point between the two surfaces are spacelike. In particular,
a hypersurface given by the graph of a function u over R

n × {0} is spacelike
if the gradient of u is everywhere less than 1 in magnitude.

null
cone

R
n+1 spacelike

direction

timelike
direction

Example 9.7.2 Hyperbolic space. The n-dimensional hyperbolic space arises
as a spacelike hypersurface in the Minkowski space R

n,1: Let H
n = {(x, t) ∈

R
n,1 : t =

√
1 + |x|2}. Thus H

n is one component of the set of vectors of
length −1 in R

n,1; thus it is an analogue of the sphere in this setting. We can
also describe H

n as the open unit ball in R
n with a particular Riemannian

metric: We identify H
n with the unit ball by stereographic projection – given

a point z ∈ H
n, we consider the line from z to the point (0,−1), and let ξ(z)

be the point of intersection of this line with the plane R
n × {0}. with the

unique point on the line from the origin to z which has t = 1. As z ranges
over H

n, ξ(z) ranges over the unit ball in R
n 
 R

n × {0}. This should be
though of as being analogous to stereographic projection from the north pole
in the usual sphere; here we are doing stereographic projection from the point
(0,−1). Explicitly, this gives z =

(
2x

1−|x|2 ,
1+|x|2
1−|x|2

)
.

Exercise 9.7.3 Show that the induced Riemannian metric on the unit ball
in R

n by the stereographic projection described above is

gij =
4

(1 − |x|2)2 δij .

Exercise 9.7.4 Show that the map (x, y) →
(

2x
|x|2+(y−1)2 ,

1−|x|2−y2

|x|2+(y−1)2

)
for

(x, y) ∈ R
n−1 × R 
 R

n diffeomorphically maps the open unit ball to the
upper half space, and induces from the metric on the unit ball in exercise
9.7.3 the following metric on the upper half-space:

gij =
1
y2
δij .
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In the case n = 2, show that this is the same as the left-invariant metric on
H

2 from example 9.5.1.

H
n

(0,-1)

z

x(z)




