
From Mersenne Primes to

Random Number Generators
∗

Richard P. Brent

MSI & RSISE

ANU

8 May 2006

∗Advanced Computation seminar, ANU.

Copyright c©2006, the author. AdvCom1t



Abstract

Fast and reliable pseudo-random number
generators are required for simulation and other
applications in Scientific Computing. Because
of Moore’s law, random number generators that
were satisfactory in the past may be inadequate
today.

We outline some requirements for good uniform
random number generators, and describe a class
of generators having very fast vector/parallel
implementations. These generators are based on
primitive or almost primitive polynomials, and
the degrees of the polynomials correspond to
the exponents of certain Mersenne primes.

We consider how to combine two generators to
give a generator with better statistical and/or
cryptographic properties, and also discuss the
problem of initialization. We also mention some
new “xorshift” generators.

2



Outline

• Requirements for RNGs

• Linear Congruential RNGs

• Generalized Fibonacci and LFSR RNGs

• Ordering of triples

• Irreducible and primitive trinomials

• Almost primitive trinomials

• Application to RNGs

• Initialization of LFSR generators

• Combining generators

• Comments on some available RNGs

• Recent developments

3



Introduction

Pseudo-random number generators (RNGs) are
widely used in simulation.

A program running on a fast computer or
cluster of PCs might use 109 random numbers
per second for many hours (or weeks). Small
correlations or other deficiencies could easily
lead to spurious results.

In order to have confidence in the results of
simulations, we need to have confidence in the
statistical properties of the random numbers
used. There are several examples of flaws in a
random number generator being mistaken for
significant physical phenomena.

4



Some Requirements

• Uniformity. This is the easiest
requirement to achieve, at least when
considered over the whole period.

• Independence. d-tuples should be
uniformly and independently distributed
in d-dimensional space (say for d ≤ 6).
Subsequences (e.g. odd/even) of the main
sequence should be independent.

• Long Period. The period (length of a
cycle in the random numbers generated)
should be large, certainly at least 1016 and
preferably much larger (say at least 1032).

A few years ago, a generator in the library
of at least one supercomputer
manufacturer had period 231 and ran
through a complete cycle in a few seconds!
This and similar generators are obsolete
and must be avoided.

5



Requirements continued

• Statistical Tests. The generator should
appear random when subjected to any
“natural” statistical test (i.e. one which
does not depend on a detailed knowledge
of the algorithm used to generate the
“random” numbers) using an amount of
computation comparable to that in
applications (say 1016 operations).

There are many statistical tests.
Here are a few examples:

– Marsaglia’s “birthday spacings” test.

– Shchur, Heringa and Blöte’s 1D
random-walk test.

– A test on orderings of triples
(un, un−i, un−j) for 0 < j < i ≤ B,
B2/2 ≤ 1016 say. This test is
designed to detect generators based
on 3-term recurrences with lags ≤ B.

– Similarly for k-tuples with
Bk−1/(k − 1)! ≤ 1016, 3 ≤ k ≤ 7 say.

6



Requirements continued

• Proper Initialization The initialization
of random number generators, especially
those with a large amount of state
information, is an important and often
neglected topic. In some applications only
a short sequence of random numbers is
used after each initialization of the
generator, and it is important that short
sequences produced with different seeds
are uncorrelated, even if the seeds are
consecutive integers.

• Disjoint Subsequences. If a simulation
is run on a parallel machine or on several
independent machines, the sequences of
random numbers generated on each
machine must be independent (at least
with very high probability).

7



Requirements continued

• Unpredictability In cryptographic
applications, it is not sufficient for the
sequence to pass standard statistical tests
for randomness; it also needs to be
unpredictable in the sense that there is no
efficient deterministic algorithm for
predicting un (with probability of success
significantly greater than chance) from
(u0, u1, . . . , un−1), unless n is so large that
the prediction is infeasible.

Unpredictability is not required in
scientific applications. However, if a
random number generator is predictable
then we can always devise a statistical test
(albeit an artificial one) that the generator
will fail. Thus, it is a wise precaution to
use an unpredictable generator if the cost
of doing so is not too high.

Unpredictability implies uniformity,
independence, and a (very) long period.
However, it is worthwhile to state these
simpler requirements separately.

8



Requirements continued

• Efficiency. Only a few arithmetic
operations should be required to generate
each random number. Procedure call
overheads should be minimised (e.g. one
call could fill an array with random
numbers).

• Repeatability. For testing and
development it is useful to be able to
repeat exactly the same sequence as was
used in another run, but not necessarily
starting from the beginning of the
sequence.

Thus, it should be easy to save all the
state information required to restart the
generator.

• Portability. For testing and development
it is useful to be able to generate exactly

the same sequences on different machines.

9



Linear Congruential RNGs

Introduced by D. H. Lehmer in 1948.

Un+1 = (aUn + c) mod m

where m > 0 is the modulus, a is the multiplier,
and c is an additive constant.

Often m = 2w is chosen as a convenient power
of 2. In this case it is possible to get period m.
However, w = 32 is not nearly large enough
(1016 > 253).

If m is prime and c = 0, we can get period
m − 1 by choosing a to be a primitive root.

Linear congruential generators have difficulty
passing the spectral test (“Random numbers
fall mainly in the planes” – Marsaglia).

Marsaglia and Zaman have introduced “add
with carry” and “subtract with borrow”
generators, which are essentially linear
congruential generators with large moduli
of a special form.

10



Generalized Fibonacci Generators

Un = Un−r θ Un−s

where r and s are fixed “lags” and θ is some
binary operator. We always assume 0 < s < r.

For example, the choice of θ = + (mod 2w) that
we usually assume below is convenient on a
binary machine. In this case the period is at
most

2w−1(2r − 1) ,

and this is attained if xr + xs + 1 is a primitive
polynomial over GF(2) and the initial values
U0, . . . , Ur−1 are not all even.

The case of addition in GF(2), i.e. w = 1,
θ = ⊕, gives a linear feedback shift register

(LFSR) generator which is easy to implement in
hardware. This (and the case w > 1, θ = ⊕) is
also called a Tausworthe generator.

11



Problem with Ordering of Triples

If θ = + (mod m), then the orderings of certain
triples do not occur with the correct probability
(1/6). This is unacceptable if r = 2 (Fibonacci),
but it is not so serious if r is large. Neglecting
probabilities O(1/m), we have:

Ordering Probability

Un−r < Un−s < Un 1/4

Un−r < Un < Un−s 0

Un−s < Un−r < Un 1/4

Un−s < Un < Un−r 0

Un < Un−r < Un−s 1/4

Un < Un−s < Un−r 1/4

We can implement a statistical test that gives a
significant result for ordering of triples, knowing
only that 0 < s < r ≤ B say, with O(B) words
of memory, B + O(log B) random number calls,
and O(B2 log B) overall operations.

12



Generating Functions

Suppose xn = xn−r + xn−s over any field F .
We define the generating function

G(t) =
∑

n≥0

xntn .

It is easy to see that

G(t) =
G0(t)

P (t)
,

where G0(t) is a polynomial of degree (at most)
r − 1 defined by the initial values x0, . . . , xr−1,
and

P (t) = 1 − ts − tr

is defined by the recurrence.

The generating function can be used to obtain
various theoretical results (expected values,
correlations, etc).

13



Some Definitions

For the sake of simplicity, when considering
generating functions we only consider
polynomials over GF(2). We won’t repeat this

statement every time!

Recall that, for polynomials u, v over GF(2),
2u = 2v = 0. This implies that u − v = u + v
and (u + v)2 = u2 + v2.

We say that a polynomial P (x) is reducible if it
has nontrivial factors; otherwise it is irreducible.

If P (x) is irreducible of degree r > 1, then
GF(2r) ≈ Z2[x]/(P (x)). If x is generator for the
multiplicative group of Z2[x]/(P (x)), then we
say that P (x) is primitive.

Since the multiplicative group has order 2r − 1,
we need to know the complete factorization of
2r − 1 in order to test if an irreducible
polynomial is primitive. However, if r is a
Mersenne exponent, i.e. 2r − 1 is prime, then
irreducibility implies primitivity.

14



Some Well-Known Results

The following results can be found in texts such
as Lidl, Menezes et al. Here µ is the Möbius
function, and φ is Euler’s phi function.

1. x2n

+ x is the product of all irreducible
polynomials of degree d|n. For example,

x8 +x = x(1+x)(1+x+x3)(1+x2 +x3) .

2. Let Jn be the number of irreducible
polynomials of degree n. Then

∑

d|n

dJd = 2n and Jn =
1

n

∑

d|n

2dµ(n/d) .

In particular, if n is prime then
Jn = (2n − 2)/n.

3. The number of primitive polynomials of
degree n is Pn = φ(2n − 1)/n ≤ Jn.

In particular, if n is a Mersenne exponent,
then Pn = Jn = (2n − 2)/n.

15



The Reciprocal Polynomial

If P (x) =
∑r

j=0 ajx
j is a polynomial of degree r,

with a0 6= 0, then

PR(x) = xrP (1/x) =
r∑

j=0

ajx
r−j

is the reciprocal polynomial. Clearly P (x) is
irreducible (or primitive) iff PR(x) is irreducible
(or primitive).

In particular, if

P (x) = 1 + xs + xr , 0 < s < r

is a trinomial, then the reciprocal trinomial is

PR(x) = 1 + xr−s + xr .

If it is convenient, we can assume that s ≤ r/2
(else consider the reciprocal trinomial).

When applied to random number generation,
the reciprocal polynomial generates the
sequence in reverse order.

16



Irreducible Trinomials

For applications such as random number
generation, we want irreducible (or better,
primitive) polynomials of high degree r and (for
efficiency) a small number of nonzero terms.
Let’s restrict attention to trinomials of the form

P (x) = Pr,s(x) = 1 + xs + xr , 0 < s < r .

Swan’s Theorem

Swan (1962) determines the parity of the
number of irreducible factors by an argument
involving the discriminant. (Swan’s Theorem is
actually a rediscovery of 19th century results.)

If r is an odd prime, then Swan’s theorem
implies that Pr,s(x) has an even number of
irreducible factors (and hence is reducible) if
r = ±3 mod 8 and s 6= ±2 mod r.

The condition on s can not be omitted,
e.g. x29 + x2 + 1 is irreducible.

17



Some Primitive Trinomials

In Table 1 (next slide) we give a table of
primitive trinomials xr + xs + 1 where r is a
Mersenne exponent (i.e. 2r − 1 is prime). We
assume that 0 < 2s ≤ r (so xr + xr−s + 1 is not
listed).

Results for smaller r can be found on my
website or in the literature.

The entries for r ≤ 3021377 have been checked
by running at least two different programs on
different machines.

During this checking process, the entry with

r = 859433, s = 170340

was found. This was surprising, because
Kumada et al. claimed to have searched the
whole range for r = 859433. It turns out that
Kumada et al. missed this entry because of a
bug in their sieving routine!

18



Some Primitive Trinomials cont.

In Table 1, xr + xs + 1 is primitive over GF(2).
The starred entries were found by Brent,
Larvala and Zimmermann (2000–2002).

The last three lines are for Mersenne primes
with r = ±1 mod 8 found in 2004/5 by GIMPS.
No serious attempt has yet been made to find
primitive trinomials of these degrees (it would
take a long time).

r s

132049 7000, 33912, 41469, 52549, 54454

756839 215747*, 267428*, 279695*

859433 170340*, 288477

3021377 361604*, 1010202*

6972593 3037958*

24036583 ?

25964951 ?

30402457 ?

Table 1: Some primitive trinomials

19



Almost Primitive Trinomials

There is a large gap between some of the
Mersenne exponents r for which primitive
trinomials exist. For example, there are none in
the interval 859433 < r < 3021377, even though
there are three Mersenne exponents in this
interval. This is because Swan’s theorem rules
out about half of the Mersenne exponents –
it rules out most exponents of the form
r = ±3 mod 8.

The usual solution is to consider pentanomials
(five nonzero terms) instead of trinomials, but a
faster alternative is to use almost primitive

trinomials (introduced by Brent and
Zimmermann).

Definition. We say that a polynomial P (x) is
almost primitive with exponent r and increment

δ < r if P (x) has degree r + δ, P (0) 6= 0, and
P (x) has a primitive factor of degree r.

20



Almost Primitive Trinomials cont.

For example, the trinomial x16 + x3 + 1 is
almost primitive with exponent 13 and
increment 3, because

x16 + x3 + 1 = (x3 + x2 + 1)D(x),

where

D(x) = x13+x12 +x11+x9 +x6 +x5+x4 +x2 +1

is primitive.

In Table 2 (next slide) we list some almost
primitive trinomials. In fact, we give at least
one for each Mersenne exponent r < 107 for
which no primitive trinomial of degree r exists.

The search is complete for Mersenne exponent
degrees r < 107.

21



r δ s f

13 3 3 7

19 3 3 7

61 5 17 31

107 2 8, 14, 17 3

2203 3 355 7

4253 8 1806 255
1960 85

9941 3 1077 7

11213 6 227 63

21701 3 6999, 7587 7

86243 2 2288 3

216091 12 42930 3937

1257787 3 74343 7

1398269 5 417719 21

2976221 8 1193004 85

Table 2:

Some almost primitive trinomials over GF(2).
xr+δ + xs + 1 has a primitive factor of degree r;

δ is minimal; 2s ≤ r + δ; the period ρ = (2r − 1)f .

22



A Larger Example

Consider the entry r = 216091, δ = 12,
s = 42930 in Table 2. We have

x216103 + x42930 + 1 = S(x)D(x),

where

S(x) = x12 + x11 + x5 + x3 + 1,

and D(x) is a (dense) primitive polynomial of
degree 216091.

The factor S(x) of degree 12 splits into a
product of two primitive polynomials,

x5 + x4 + x3 + x + 1 and

x7 + x5 + x4 + x3 + x2 + x + 1.

The contribution to the period from these
factors is f = LCM(25 − 1, 27 − 1) = 3937.

23



Application to RNGs

If T (x) = xr+δ + xs + 1 is almost primitive with
exponent r, we can use the corresponding linear
recurrence

Un = Un−r−δ + Un−s mod 2w

as a generalized Fibonacci (or LFSR) random
number generator.

The period will be a multiple of 2r − 1 provided
U0, . . . , Uδ are odd. This condition ensures that
a recurrence with lags ≤ δ (corresponding to
the degree-δ factor of T (x)) is not satisfied.

24



Initialization

When discussing requirements we mentioned the
problem of initialization. Many random number
generators fall down here. One example is the
generator recommended in Volume 2 of Knuth’s
The Art of Computer Programming, third
edition (fixed at the ninth printing, Jan. 2002).

Using the theory of generating functions (or,
less efficiently, linear algebra), it is possible to
“skip ahead” n terms in the sequence for a
generalized Fibonacci or LFSR RNG in
O(log n) arithmetic operations. The idea is
similar to that of forming n-th powers by
squaring and multiplication.

This technique allows us to guarantee that
different seeds give different sequences for all
practical purposes (e.g. use segments of the full
sequence separated by more than 1018

numbers). With care we can ensure that the
first random number in each sequence behaves
like a random function of the seed.

25



Lazy Initialization

Consider a generalized Fibonacci RNG based on
a primitive trinomial of degree r, using addition
mod 2w. There are W = 2r(w−1)(2r − 1) ways to
initialize r words of w bits so that not all words
are even. Each cycle has length
L = 2w−1(2r − 1). Thus there are

C = W/L = 2(r−1)(w−1)

distinct cycles. Provided w ≥ 2 and r is not too
small, C is very large.

If we initialize the RNG twice using an
independent RNG, it is extremely unlikely that
the two sequences will be in the same cycle. In
fact, the probability is 1/C = 2−(r−1)(w−1).
Thus, in practice this “lazy” method of
initialization is adequate whenever we want to
generate different random sequences (e.g. on
different processors of a parallel computer).

26



Improving Generators

We have shown how three-term generators with
large periods can be obtained. Now we show
how their statistical properties can be
improved. This is necessary because the
three-term property necessarily implies a
deterministic relation between certain triples in
the sequence, and this can cause generators to
fail certain statistical tests: see L’Ecuyer (2004)
and Brent (2006) for further discussion.

27



Improving a RNG by “Decimation”

If (x0, x1, . . .) is generated by a 3-term
recurrence, we can obtain a (hopefully better)
sequence (y0, y1, . . .) by defining yj = xjp, where
p > 1 is a suitable constant. In other words, use
every p-th number and discard the others.
(“Decimation” refers to p = 10, though the
term is inaccurate because with p = 10 we
discard 90% and not 10% of the numbers.)

Consider the case w = 1 (i.e. LFSR generators).
If p = 2, the yj satisfy the same 3-term
recurrence! However, if p = 3 we do get
something new. Using generating functions, it is
easy to show that the yj satisfy a 5-term
recurrence.

28



Ziff’s “Fast Decimation”

For LFSR generators, Ziff has given a method
for obtaining 5-term recurrences in some cases
of “decimation” with p = 3, 5, and 7. Note that
the case p = 3 and some of the cases p = 5 are
not recommended because of certain 4-point
correlations. The remaining cases should be
much better for RNG than the original 3-term
recurrences, and not much slower.

For example, consider a 3-term generator G
with lags r and s, where 7|(2r − s). Ziff’s
“rule (5b)” says that the 7-decimation of G is a
5-term generator with lags
r, (5r + s)/7, (r + 3s)/7, r.

For example, the 7-decimation of the 3-term
generator with lags 3021377 and 1010202 is a
5-term generator with lags 3021377, 2302441,
1010202 and 864569. The 5-term generator is
slightly slower than the 3-term generator, but
has much better statistical properties in 3 and 4
dimensions.

29



Lüscher’s Decimation by Blocks

An improvement (suggested by Lüscher) over
simple decimation is decimation by blocks.
Choose a blocksize, say B. (For 3-term
generators choose B ≤ r.) Use one block of B
numbers, then discard the next p − 1 blocks.
Roughly speaking, the justification is that any
correlations between blocks should be “washed
out” by a mixing process if p is sufficiently large.

Decimation by blocks is slower than Ziff’s
method, e.g. for p = 7 it is 3 to 4 times slower.
However, it is more general, as it can be applied
to any random number generator, and it should
give better statistical results.

30



Combining Generators by Addition

We can combine some number K of generalized
Fibonacci generators by addition (mod 2w)
(similarly for ⊕). If each component generator
is defined by a primitive trinomial

Tk(x) = xrk + xsk + 1 ,

with distinct prime degrees rk, then the
combined generator has period

2w−1
K∏

k=1

(2rk − 1)

and satisfies a 3K-term linear recurrence.

Because the speed of the combined generator
decreases like 1/K, we would probably take
K ≤ 3 in practice. The case K = 2 seems to be
better (and more efficient) than “decimation”
with p = 3. It should also be better, and of
comparable efficiency, to decimation with p ≤ 7
by Ziff’s method.

31



Combining by Shuffling

Suppose we have two pseudo-random sequences
X = (x0, x1, . . .) and Y = (y0, y1, . . .). We can
use a buffer V of size B say, fill the buffer using
the sequence X, then use the sequence Y to
generate indices into the buffer. If the index is j
then the random number generator returns V [j]
and replaces V [j] by the next number in the X
sequence [Knuth, Algorithm M].

In other words, we use one generator to shuffle
the output of another generator. This seems to
be as good (and about as fast) as combining
two generators by addition. B should not be
too small.

32



Combining by Shrinking

Coppersmith et al suggested using one sequence
to “shrink” another sequence.

Suppose we have two pseudo-random sequences
(x0, x1, . . .) and (y0, y1, . . .), xi, yi ∈ GF(2).
Suppose yi = 1 for i = s0, s1, . . . Define a
sequence (z0, z1, . . .) to be the subsequence
(xs0

, xs1
, . . .) of (x0, x1, . . .). In other words, one

sequence of bits (yi) is used to decide whether
to “accept” or “reject” elements of another
sequence (xi). This is sometimes called
“irregular decimation”.

Combining two sequences by shrinking is slower
than combining the sequences by ⊕, but is less
amenable to analysis based on linear algebra or
generating functions, so is preferable in
applications where the sequence needs to be
unpredictable (e.g. in cryptography – see
Menezes et al, §6.3).

33



Faster Shrinking

Methods for generating cryptographically strong
sequences, such as Coppersmith’s “shrinking”
generator, give only one random bit at a time.
This is slow. To speed up such generators, we
could try to generate w bits at a time, but this
could introduce a cryptographic weakness!

To see why this might be so, suppose we can
find distinct w-bit outputs zα, zβ, zγ such that

zα = zβ ⊕ zγ .

This will occur by chance with probability 2−w.
Thus, if w = 1 the relation is probably just a
coincidence, but if w = 64 it is extremely
unlikely to be a coincidence, so it gives us some
information about the “hidden” sequences (xi)
and (yi).

A compromise is possible. w = 8 should be
secure if the “hidden” sequences are based on
primitive trinomials of sufficiently high degree
(r ≫ 2w), and this is already eight times faster
than the usual case w = 1.

34



Comments on Some Available RNGs

Many implementations of linear congruential
generators are available. They usually have a
period which is too short and do not give good
d-dimensional uniformity for d > 3 (Marsaglia).

Marsaglia dislikes Tausworthe RNGs because
they fail the “birthday spacings” test. He
recommends add/subtract with carry/borrow
(“Very Long Period”) generators, but these may
also fail the birthday spacings test or the gap
test.

Shchur, Heringa and Blöte showed that
generalized Fibonacci generators based on
primitive trinomials of small degree fail a 1D
random-walk test. To avoid this, we recommend
using large degree and/or combining at least
two generators.

The idea of combining generators is not
original – it has been suggested by several
people, although apparently it has seldom been
used in practice.

35



Blocking of Output

It is easy to vectorise both linear congruential
and generalized Fibonacci RNGs. This is only
useful if batches of random numbers are
generated together. Thus, the interface to a
library routine should allow an array of random
numbers to be returned.

This comment applies even on a scalar
workstation, because returning an array of
random numbers reduces subroutine-call
overheads.

36



Mersenne twister

The Mersenne twister is a random number
generator developed since 1997 by Makoto
Matsumoto and Takuji Nishimura. There are
several versions; my comments apply to
MT 19937.

The generator uses a primitive trinomial of
degree 19937 and is similar to a LFSR, but a
“twist” is incorporated to overcome the
problems of generators based on trinomials.
The storage requirement is about 19937 bits or
624 32-bit words. The output should be
equidistributed in 623 dimensions (more than
adequate for most purposes). MT 19937 is quite
fast and is a popular generator. There are
implementations in several languages
including C.

37



ranut

Many random number generators based on
primitive trinomials have been documented in
the literature, but the implementations are
usually for a fixed trinomial. The choice of
trinomial involves a tradeoff. Larger values of
the degree r give generators with better
statistical properties, but the space
requirements and the time required for
initialization increase with r. Thus, the optimal
choice of a trinomial depends on the particular
application and computing resources available.

We have implemented an open-source uniform
pseudo-random number generator ranut that
automatically selects a primitive or almost
primitive trinomial whose degree depends on
the size of the working space allocated by the
user, and then implements a generalized
Fibonacci generator based on that trinomial.

ranut has been tested with Marsaglia’s Diehard

package and no anomalous results have been
observed.

38



ranut continued

ranut does not attempt to combine more than
one generator (there are too many possibilities
and tradeoffs). The user can easily combine two
or more generators (some or all of these can be
implemented by ranut) if this is desired.

Combining generators by addition is extremely
straightforward. Since ranut gives
floating-point numbers in [0, 1), it is only
necessary to add these and discard the integer
part of the result.

39



Recent Developments – xorgens

Recently Marsaglia (2003) proposed an
interesting new class of RNGs that are
implemented with the operations of left/right
shift and “exclusive or” (xor) operating on
32-bit or 64-bit words. The generators are very
fast and easy to code in C.

Brent (2004) showed that Marsaglia’s class is
closely related to LFSRs but the associated
generating polynomials have high weight
(number of nonzero terms) so problems of
generators based on trinomials are avoided, and
a “twist” should not be necessary.

I have extended Marsaglia’s class to get
generators with periods up to 101200 (more
precisely 232(24096 − 1)). An implementation
(xorgens) is available on my website. The
theory will be described in a paper to be
presented at the CTAC conference in July.

40



References

[1] S. L. Anderson, Random number generators on
vector supercomputers and other advanced
architectures, SIAM Rev. 32 (1990), 221–251.

[2] R. P. Brent, ranut: Some uniform and normal

random number generators, version 1.03
(January 2002). Available from http://

wwwmaths.anu.edu.au/~brent/random.html

[3] R. P. Brent, xorgens: Some long-period random

number generators, version 2.01 (August 2004).
Available from · · ·/random.html

[4] R. P. Brent, Note on Marsaglia’s xorshift
random number generators, J. Statistical

Software 11, 5, 2004, 1–4. http://
www.jstatsoft.org

[5] R. P. Brent, Fast and reliable random number
generators for scientific computing, Proc.

PARA’04 Workshop on the State-of-the-Art in

Scientific Computing, Lyngby, Denmark, June
2004; LNCS 3732 (2006), 1-10. http://
wwwmaths.anu.edu.au/~brent/pub/

pub217.html

[6] R. P. Brent, Some long-period random number
generators using shifts and xors, accepted for
CTAC06, Townsville, July 2006.

41



[7] R. P. Brent, S. Larvala and P. Zimmermann, A
fast algorithm for testing irreducibility of
trinomials mod 2 . . ., Math. Comp. 72 (2003),
1443–1452. · · ·/pub199.html

[8] R. P. Brent, S. Larvala and P. Zimmermann, A
primitive trinomial of degree 6972593, Math.

Comp. 74 (2005), 1001–1002. · · ·/pub214.html

[9] R. P. Brent and P. Zimmermann, Random
number generators with period divisible by a
Mersenne prime, LNCS 2667, Springer-Verlag,
Berlin, 2003, 1–10. · · ·/pub211.html

[10] R. P. Brent and P. Zimmermann, Algorithms
for finding almost irreducible and almost
primitive trinomials, in Primes and

Misdemeanours . . ., Fields Institute, Toronto,
2004, 91–102. · · ·/pub212.html

[11] A. Compagner and A. Hoogland,
Maximum-length sequences, cellular automata,
and random numbers, J. Computational

Physics 71 (1987), 391–428.

[12] D. Coppersmith, H. Krawczyk and Y. Mansour,
The shrinking generator, Proc. CRYPTO’93,

LNCS 773 (1994), 22–39.

42



[13] P. L’Ecuyer, Random Number Generation, in
Handbook of Computational Statistics, Ch. 2, J.
E. Gentle, W. Haerdle, and Y. Mori, eds.,
Springer-Verlag, 2004, 35–70. Available from
http://www.iro.umontreal.ca/~lecuyer/

papers.html

[14] A. M. Ferrenberg, D. P. Landau and
Y. J. Wong, Monte Carlo simulations: Hidden
errors from “good” random number generators,
Phys. Rev. Lett. 69 (1992), 3382–3384.

[15] GIMPS, The Great Internet Prime Search,
http://www.mersenne.org/

[16] S. W. Golomb, Shift register sequences,

Holden-Day, San Francisco, 1967.

[17] J. R. Heringa, H. W. J. Blöte and
A. Compagner. New primitive trinomials of
Mersenne-exponent degrees for random-number
generation, International J. of Modern Physics

C 3 (1992), 561–564.

[18] F. James, A review of pseudorandom number
generators, Computer Physics Communications

60 (1990), 329–344.

[19] D. E. Knuth, The art of computer programming,

Volume 2: Seminumerical algorithms (third
ed.), Addison-Wesley, Menlo Park, CA, 1998.

43



[20] T. Kumada, H. Leeb, Y. Kurita and M.
Matsumoto, New primitive t-nomials (t = 3, 5)
over GF(2) whose degree is a Mersenne
exponent, Math. Comp. 69 (2000), 811–814.
Corrigenda: ibid 71 (2002), 1337–1338.

[21] Y. Kurita and M. Matsumoto, Primitive
t-nomials (t = 3, 5) over GF(2) whose degree is
a Mersenne exponent ≤ 44497, Math. Comp. 56

(1991), 817–821.

[22] R. Lidl and H. Niederreiter, Introduction to

Finite Fields and their Applications, Cambridge
Univ. Press, Cambridge, second edition, 1994.

[23] M. Lüscher, A portable high-quality random
number generator for lattice field simulations,
Computer Physics Communications 79 (1994),
100-110.

[24] G. Marsaglia, Random numbers fall mainly in
the planes, Proc. Nat. Acad. Sci. USA 61

(1968), 25-28.

[25] G. Marsaglia, A current view of random
number generators, in Computer Science and

Statistics: The Interface (edited by L. Billard),
Elsevier Science Publishers B. V.
(North-Holland), 1985, 3–10.

44



[26] G. Marsaglia, Xorshift RNGs, J. Statistical
Software 8, 14 (2003). http://
www.jstatsoft.org

[27] G. Marsaglia and L. H. Tsay, Matrices and the
structure of random number sequences, Linear

Algebra Appl. 67 (1985), 147–156.

[28] G. Marsaglia and A. Zaman, A new class of
random number generators, Ann. of Appl. Prob.

1 (1991), 462-480.

[29] M. Matsumoto and T. Nishimura, Mersenne
twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator,
ACM Trans. on Modeling and Computer

Simulations 8 (1998), 3–30.

[30] A. J. Menezes, P. C. van Oorschot and S. A.
Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.
http://cacr.math.uwaterloo.ca/hac/

[31] J. F. Reiser, Analysis of additive random

number generators, Ph. D. thesis, Department
of Computer Science, Stanford University,
Stanford, CA, 1977. Also Technical Report
STAN-CS-77-601.

45



[32] E. R. Rodemich and H. Rumsey, Jr., Primitive
trinomials of high degree, Math. Comp. 22

(1968), 863–865.

[33] L. N. Shchur and P. Butera, The RANLUX

generator: resonances in a random walk test,
May 1998, preprint hep-lat/9805017 available
from http://xxx.anl.gov.

[34] L. N. Shchur, J. R. Heringa and H. W. J. Blöte,
Simulation of a directed random-walk model:
the effect of pseudo-random-number
correlations, Physica A 241 (1997), 579.

[35] R. G. Swan, Factorization of polynomials over
finite fields, Pacific J. Math. 12 (1962),
1099–1106.

[36] R. C. Tausworthe, Random numbers generated
by linear recurrence modulo two, Math. Comp.

19 (1965), 201–209.

[37] S. Tezuka, Efficient and portable combined
Tausworthe random number generators, ACM

Trans. on Modeling and Computer Simulation 1

(1991), 99–112.

[38] I. Vattulainen, T. Ala-Nissila and K. Kankaala,
Physical tests for random numbers in
simulations, Phys. Rev. Lett. 73 (1994),
2513–2516.

46



[39] N. Zierler, Primitive trinomials whose degree is
a Mersenne exponent, Inform. and Control 15

(1969), 67–69.

[40] R. M. Ziff, Four-tap shift-register-sequence
random-number generators, Computers in

Physics 12 (1998), 385–392.

47


