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Abstract

The real part of the Riemann zeta function ζ(s) is “usually
positive” in the half-plane to the right of the critical line
<(s) = 1/2. We make this statement precise and show how the
density of positive values can be computed on vertical lines
with fixed real part σ = <(s) > 1/2. Closely related results
apply to arg ζ(s).
This is a longer version of a 25-minute talk given in Newcastle1

last week. It describes joint work with Juan Arias de Reyna and
Jan van de Lune.

1International Number Theory Conference in Memory of Alf van der
Poorten, Newcastle, 12–16 March 2012.
http://carmamaths.org/alfcon/
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Alf van der Poorten

Like almost all number theorists, Alf van der Poorten was
interested in the Riemann zeta function. For example, Alf gave
a very clear exposition of Apéry’s proof of the irrationality of
ζ(3), in his 1979 paper A proof that Euler missed . . . Apéry’s
proof of the irrationality of ζ(3).
Thus, although my only joint work with Alf was on continued
fractions of algebraic numbers, I decided to talk today on a
topic related to the Riemann zeta function.
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Summary

I Notation and definitions.
I Motivation – <ζ(s) is “usually” positive.
I The densities d+(σ), d−(σ) and d(σ).
I A theorem of Bohr and Jessen.
I The characteristic function ψσ(x) as an infinite product.
I The function I(b, x).
I log I(b, x) and related polynomials Qn(x).
I Computation of ψσ(x), d(σ) and d−(σ).
I Numerical results.
I Asymptotics.
I Other L-functions.
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Some notation and definitions

P is the set of primes and p ∈ P is a prime.

We always have s = σ + it ∈ C.
log ζ(s) denotes the main branch defined in the usual way on
the open set G equal to the complex plane C with cuts along
the half-lines (−∞+ iγ, β + iγ] for each zero or pole β + iγ of
ζ(s) with β ≥ 1/2. Thus log ζ(s) is real and positive in (1,+∞).
For s ∈ G, we can define arg ζ(s) by

log ζ(s) = log |ζ(s)|+ i · arg ζ(s).

|B| denotes the Lebesgue measure of a set B.
Usually σ > 1/2 is fixed, t ∈ R is regarded as the independent
variable, and b = pσ.
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Motivation

Several authors (Gram, Titchmarsh, Edwards, . . .) have
observed that <ζ(s) is “usually” positive, at least for σ ≥ 1/2.
This is plausible because the Dirichlet series

ζ(s) = 1 + 2−s + 3−s + 4−s + · · ·

starts with a positive term, and the other terms n−s may have
positive or negative real part, depending on the sign of
cos(t log n).
Our aim is to quantify this observation.
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The Euler product

Recall the Euler product formula

ζ(s) =
∏

p

(
1− p−s)−1

,

valid for σ > 1.
Taking logarithms, we get

log ζ(s) = −
∑

p

log
(
1− p−s) =

∑
p

p−s + O(1).

There is a sense in which log ζ(s) can be approximated by a
“short Dirichlet series”

∑
p≤x p−s in the region 1/2 ≤ σ ≤ 1, but

we won’t discuss this today.
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Remarks
Let σ0 = 1.1923473371 · · · be the real root in (1,+∞) of∑

p

arcsin(p−σ) =
π

2
.

It was shown by Jan van de Lune (1983) that
(∀σ ≥ σ0) <ζ(σ + it) > 0 .

Also, for any σ ∈ (1, σ0), there exist arbitrarily large t such that
<ζ(σ + it) < 0. The proof uses Kronecker’s theorem.2

The result is also true for σ ∈ [1/2,1]. In fact, Voronin’s
“universality” theorem is a vast generalisation of this, but not
our topic today.
For future reference, let σ1 ≈ 1.0068232917 · · · be the (unique)
real root in (1,+∞) of∑

p

arcsin(p−σ) =
3π
2
.

2Titchmarsh, §8.3.
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Figure from Van de Lune (1983)

From the Figure, we see that the prime p contributes at most
arcsin(p−σ) to arg ζ(σ + it). If ζ(σ + it) < 0 then we must have
| arg ζ(σ + it)| > π/2.
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Some numerical results

If we compute ζ(s) for “randomly” chosen s with σ = <(s) ≥ 0.6
(say), we are unlikely to find any negative values of <ζ(s).
For example, taking σ = 1, it can be shown that <ζ(1 + it) > 0
for all t ∈ (0,682112]. Near t = 682112.9169 there is an
interval of length 0.0529 on which <ζ(1 + it) < 0.
For t ∈ (0,16656259] there are 50 intervals on which
<ζ(1 + it) < 0; the total length of these intervals is < 6.484.
Note that 16656259/6.484 ≈ 2.57× 106. Thus, the chance of
finding a value of t such that <ζ(1 + it) < 0 by random
sampling is very small.
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The seventh interval where <ζ(1 + it) < 0
Here is an “x-ray” of ζ(σ + it) for σ ∈ [−1,3],
t ∈ [2195052,2195060], enclosing the seventh interval where
<ζ(1 + it) is negative. <ζ vanishes on the blue lines, and
=ζ vanishes on the red lines. The blue dots are zeros of ζ ′.
The picture is rotated so that the critical strip is horizontal.
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Asymptotic densities

Fix σ > 1/2, and define

d+(σ) := lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : <ζ(σ + it) > 0}| ,

d−(σ) := lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : <ζ(σ + it) < 0}| .

It can be shown that the limits exist.
d+(σ) can be regarded as the probability that a randomly
chosen point σ + it gives a positive value of <ζ(σ + it);
similarly for d−(σ) and negative values.
Since <ζ(s) vanishes on a set of Lebesgue measure zero, we
have d+(σ) + d−(σ) = 1.
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Approximation of d±(σ) via arg ζ(s)

It is easier to work with

d(σ) = lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : | arg ζ(σ + it)| > π/2}| .

Observe that <ζ(s) < 0 iff

| arg ζ(s)| ∈ (π/2,3π/2) ∪ (5π/2,7π/2) ∪ · · ·

Thus
d−(σ) ≤ d(σ),

d+(σ) ≥ 1− d(σ),

and d−(σ) ≈ d(σ) if arg ζ(s) is “usually” small, i.e. unless σ is
close to 1/2 (more on this later).
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A mean-value result

Using Chebyshev’s inequality and a mean-value result3 for
|<ζ(1 + it)|2, we can show that

d−(1) ≤ ζ(2)− 1
ζ(2) + 1

= 0.243837 . . . < 1/4 .

However, this result is far from the truth. We shall see later that

d−(1) ≈ 3.8× 10−7 .

The mean-value approach is simple and elegant, but it throws
away too much information to give sharp results.

3The proof is similar to that of Theorem 7.2 of Titchmarsh, which gives a
mean-value result for |ζ(1 + it)|2.
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Intuition

Informally, the idea is that, for a prime p and large t ,

pit = exp(it log(p))

behaves like a random variable distributed uniformly
on the unit circle.
Moreover, for different primes, the random variables are
independent (because the log p are independent over Q).
A theorem of Bohr and Jessen (to be stated soon) justifies this
intuition.
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The probability space Ω

Let T = {z ∈ C : |z| = 1} denote the unit circle with the usual
probability measure µ (that is dθ

2π if we identify T with the
interval [0,2π) via z = exp(iθ)).
Define Ω := TP with the product measure P = µP .
Each point of Ω is a sequence ω = (xp)p∈P , with each xp ∈ T.
This formalises the idea that the xp may be considered as a
random variables, uid4 on the unit circle.

4Uniformly and independently distributed.
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The measure Pσ of Bohr and Jessen

Before stating the theorem of Bohr and Jessen we need to
define a measure Pσ.
Fix σ > 1/2. The sum of random variables

S = −
∑
p∈P

log(1− p−σxp) :=
∑
p∈P

∞∑
k=1

1
k

p−kσxk
p

converges almost everywhere, so S is a well-defined random
variable.
The measure Pσ of Bohr and Jessen is defined to be the
distribution of S, i.e. for each Borel set B ⊆ C we have

Pσ(B) := P{ω = (xp) ∈ Ω : S(ω) ∈ B}.
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A theorem of Bohr and Jessen

In modern language, Bohr and Jessen (1930/31) showed that,
for each rectangle B with sides parallel to the axes,

Pσ(B) = lim
T→∞

1
2T
|{t ∈ [−T ,+T ], log ζ(σ + it) ∈ B}|

(and the limit exists).
It is easy to deduce that the same result holds for
Jordan-measurable sets B ⊆ C.
Bohr and Jessen also showed that Pσ is absolutely continuous
with respect to the Lebesgue measure on C.
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The measure µσ on R
We can specialise5 to sets B of the form R× B. For Jordan
subsets B ⊆ R, define

µσ(B) := Pσ(R× B).

Then
d(σ) = µσ(R\[−π/2, π/2]) ,

d+(σ) = µσ

(⋃
k∈Z

(2kπ − π/2, 2kπ + π/2)

)
.

The measure µσ is the distribution function of the random
variable =S:

µσ(B) = Pσ(R× B) = P{ω ∈ Ω : S(ω) ∈ R× B}
= P{ω ∈ Ω : =S(ω) ∈ B}.

5Since R is not bounded, we need a limiting argument to justify this.
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The characteristic function ψσ

Recall that the characteristic function ψ(y) of a random variable
X is defined by

ψ(y) := E[exp(iXy)] .

This is just a Fourier transform; we omit a factor 2π in the
exponent to agree with the statistical literature.
The characteristic function associated with µσ is the
characteristic function ψσ of the random variable =S:

ψσ(x) :=

∫
Ω

eix=S(ω) dω .
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ψσ as an infinite product over the primes

We have
ψσ(x) =

∏
p

I(pσ, x) ,

where (as usual) the product is over all primes p, and

I(b, x) :=
1

2π

∫ 2π

0
e−ix arg(1−b−1eit ) dt .

Arias de Reyna, Brent and van de Lune Sign of <ζ



Sketch of the proof

By definition

ψσ(x) =

∫
Ω

eix=S(ω) dω =

∫
Ω

∏
p

e−ix arg(1−p−σxp) dω.

By independence the integral of the product is the product of
the integrals:

ψσ(x) =
∏

p

∫
Ω

e−ix arg(1−p−σxp) dω.

Each random variable xp is distributed as eiθ on the unit
circle.
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I(b, x) as an integral

Assume b > 1. Recall the definition

I(b, x) :=
1

2π

∫ 2π

0
e−ix arg(1−b−1eit ) dt .

Then we have two equivalent expressions for I(b, x) as a
definite integral:

I(b, x) =
1
π

∫ π

0
cos

(
x arctan

(
sin θ

b − cos θ

))
dθ

=
2
π

∫ 1

0
cos
(

x arcsin
u
b

) du√
1− u2

.
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Connection with Bessel functions

Suppose b is large in the first representation

I(b, x) =
1
π

∫ π

0
cos

(
x arctan

(
sin θ

b − cos θ

))
dθ .

Approximating arctan(sin θ/(b − cos θ)) by sin(θ)/b, we get

I(b, x) ≈ 1
π

∫ π

0
cos
(x

b
sin θ

)
dθ = J0(x/b)

from an integral representation of the Bessel function J0.
A more detailed asymptotic analysis shows that I(b, x) has
infinitely many real zeros near the points

{±(3π/4 + kπ)/ arcsin(1/b) : k ∈ Z≥0}.
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What does ψσ look like?

ψσ(x) is a product:

ψσ(x) =
∏

p

I(pσ, x) .

Each factor in the product has infinitely many real zeros, and
the same is true for ψσ(x).
We have the bound

|ψσ(x)| ≤ C exp

(
−c

x1/σ

log x

)

for some positive constants C = C(σ), c = c(σ) and x ≥ 2.
The best possible constants are not known, but empirically we
can take C = c = 1 for all x ≥ 7 and σ > 1/2.
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Pictures of ψ1.02(x)
Due to the exponential decay of |ψσ(x)| it is difficult to give a
single plot that shows its behaviour. Following are plots for
σ = 1.02 and x in the intervals [0,5], [5,10], . . ., [25,30].
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x ∈ [5,10]
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x ∈ [10,15]
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x ∈ [15,20]
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x ∈ [20,25]
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x ∈ [25,30]
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Digression – the hypergeometric differential equation

The hypergeometric differential equation is the second-order
linear equation

z(1− z)w ′′ + (c − (a + b + 1)z)w ′ − abw = 0,

where primes denote differentiation with respect to z. Here
a,b, c are constants. In a neighbourhood of the origin, the
hypergeometric function

2F1(a,b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!

is a solution; a second solution is

z1−c
2F1(1 + a− c,1 + b − c; 2− c; z).
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cos(2x arcsin u) as a hypergeometric function

For |u| < 1 and all x ∈ C,

cos(2x arcsin u) = 1 +
∞∑

n=1

(2u)2n

(2n)!

n−1∏
j=0

(j2 − x2).

To prove this, let f (u) := LHS, g(u) := RHS above. Then

(1− u2)f ′′(u)− uf ′(u) + 4x2f (u) = 0.

Also, g(u) satisfies the same differential equation. Since
g(0) = f (0) = 1 and g′(0) = f ′(0) = 0, the two solutions
coincide.
Notes. When x ∈ Z the series reduces to a polynomial.
The differential equation can be put in standard hypergeometric
form by a linear change of variables.

Arias de Reyna, Brent and van de Lune Sign of <ζ



Corollary

For |b| > 1 we have

I(b,2x) = 1 +
∞∑

n=1

1
b2nn!2

n−1∏
j=0

(j2 − x2).

Combining this result with the product formula for ψσ, we obtain
an explicit expression for ψσ, valid for σ > 1/2 (next slide).
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An explicit expresson for ψσ
The characteristic function ψσ is given by the following product

ψσ(2x) =
∏

p

1 +
∞∑

n=1

1
n!2

n−1∏
j=0

(j2 − x2) · 1
p2nσ

 .

Marc Kac6 gave the probability of log(ϕ(n)/n) being in a given
interval (ω1, ω2) as

1
2π

∫ ∞
−∞

eiω2ξ − eiω1ξ

iξ

∏
p

(
1− 1

p
+

1
p

exp

[
iξ log

(
1− 1

p

)])
dξ ,

and referred to this as “an explicit but nearly useless formula”.
Is our formula for ψσ(2x) in the same category ?

6Mark Kac, Statistical Independence in Probability, Analysis and Number
Theory, 1959, page 64.

Arias de Reyna, Brent and van de Lune Sign of <ζ



Remarks

I Formally, the problem is solved. We can use a Fourier
transform to compute the distribution function µσ from ψσ,
and hence compute d(σ), d±(σ) etc.

I In practice there are still severe difficulties (recall the quote
from Kac). The product over prime p converges slowly, and
we need to compute ψσ accurately to compensate for
cancellation in computing the Fourier transform.
Also, some of the results of interest, such as d−(σ) for
σ ∈ [1, σ0), are tiny, so we need to compute the Fourier
transform accurately.

I In the following slides we show how these difficulties can
be overcome.
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Computing sums/products over primes

There is a well-known technique, going back at least to Wrench
(1961), for accurately computing certain sums/products over
primes.
The idea is to express what we want to compute in terms of the
prime zeta function

P(s) :=
∑

p

p−s (<(s) > 1).

The prime zeta function can be computed from log ζ(s) using
Möbius inversion:

P(s) =
∞∑

r=1

µ(r)

r
log ζ(rs) .

This formula was essentially known to Euler (1748).

Arias de Reyna, Brent and van de Lune Sign of <ζ



Application to computation of ψσ
Recall that

ψσ(x) =
∏

p

I(pσ, x),

so the obvious approach is to take logarithms of each side:

logψσ(x) =
∑

p

log I(pσ, x) ,

and try to express the RHS as a sum
∑

k≥1 ak (x , σ)P(kσ).
Problem – I(pσ, x), considered as a function of x , has zeros.
Thus, the series for logψσ(x) fails to converge.
Solution – If we consider x fixed, then I(pσ, x) > 0 for
p > p0(x , σ). Thus, we can apply a variant of the “prime zeta
function” technique after all, provided we sum over p > p0
rather than over all primes. The finite number of cases p ≤ p0
can be handled in a different manner.
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The function log I(b, x)

Suppose x > 0. There exist even polynomials Qn(x) of
degree 2n such that

log I(b,2x) = −
∞∑

n=1

Qn(x)

n!2
1

b2n ,

and the series converges for b > max(1, |x |).
The polynomials Qn(x) are determined by the following
recurrence:

Qn+1(x) = (n!)2x2 +
n−1∑
j=0

(
n
j

)(
n

j + 1

)
Qj+1(x)Qn−j(x), n ≥ 0.
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Sketch of proof

The existence of the Qn(x) follows easily from the fact that

I(b,2x) = 1 +
∞∑

n=1

Pn(x)

n!2
1

b2n

for certain even polynomials Pn(x).
To prove the recurrence for Qn(x), consider x as fixed and
define f (y) := I(y−1/2,2x). Then f (y) = 2F1(x ,−x ; 1; y)
satisfies the hypergeometric differential equation

y(1− y)f ′′ + (1− y)f ′ + x2f = 0.
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Sketch of proof continued

Define g(y) := f ′(y)/f (y). Then g satisfies the Riccati equation

y(g′ + g2) + g +
x2

1− y
= 0.

Now g(y) =
∑

n≥0 gnyn, where the gn are polynomials in x ,
in fact

gn = − Qn+1

n!(n + 1)!
.

Equating coefficients gives the recurrence

gn = −
(

1
n + 1

)x2 +
n−1∑
j=0

gjgn−1−j

 for n ≥ 0,

from which the recurrence for the Qn follows.
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The coefficients of the polynomials Qn(x)

From the recurrence it is clear that Qn(x) is an even polynomial
of degree 2n such that Qn(0) = 0. Define coefficients qn,k by

Qn(x) =
n∑

k=1

qn,kx2k .

The numbers qn,k are determined by qn,1 = (n − 1)!2 for n ≥ 1,
and, for 2 ≤ k ≤ n + 1, by the recurrence

qn+1,k =
n−1∑
j=0

(
n
j

)(
n

j + 1

) min(j+1,k−1)∑
r=max(1,k−n+j)

qj+1,r qn−j,k−r .

It follows that qn,k is a positive integer for 1 ≤ k ≤ n.
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The integers qn,k

Table: The integers qn,k , 1 ≤ k ≤ n ≤ 6.

n r k 1 2 3 4 5 6
1 1
2 1 1
3 4 4 4
4 36 33 42 33
5 576 480 648 720 456
6 14400 10960 14900 18780 17900 9460

Question. Do the qn,k have a natural combinatorial
interpretation?
The first column is Sloane’s A001044, and the diagonal is
Sloane’s A002190.
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Further remarks on the integers qn,k
1. It is easy to show that

∑n
k=1 qn,k = n! (n − 1)!.

2. We also have

qn,n = n!(n − 1)!
∞∑

k=1

(
2

j0,k

)2n

,

where (j0,k )k≥1 is the sequence of positive zeros of the
Bessel function J0(z) [Carlitz, 1963].

3. The numbers qn,n enjoy interesting congruence properties.
They are analogous to Bernoulli numbers. Compare
Euler’s identity

|B2n| = 2(2n)!
∞∑

k=1

(
1

2πk

)2n

.

4. There are other recurrences giving the polynomials Qn and
the integers qn,k .
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An algorithm for the computation of ψσ
We want to compute

ψσ(2x) =
∏

p

I(pσ,2x).

Choose pσ0 > |x | (a good choice is pσ0 ≈ 8|x |).
Split the product at p0, so ψσ(2x) = AB say.
Then A =

∏
p≤p0
· · · is computed using

A =
∏

p≤p0

1 +
∞∑

n=1

1
p2nσn!2

n−1∏
j=0

(j2 − x2)

 ,

and B =
∏

p>p0
· · · is computed using

B = exp

− ∞∑
n=1

Qn(x)

n!2

P(2nσ)−
∑
p≤p0

p−2nσ

 .
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Remarks
1. The summations required for A involve some cancellation,

so the working precision has to be increased (by O(x) bits)
to compensate.

2. There is inevitably cancellation in computingP(2nσ)−
∑
p≤p0

p−2nσ

 ,
so here too the working precision has to be increased
(by about 2nσ log2 p0 bits) to compensate.

3. The Qk (x) can be computed directly from the
recurrence for Qk , or by using a precomputed
table of the coefficients qn,k .

4. The whole computation is polynomial-time in the sense
that, for fixed x , the time required to compute ψσ(2x) with
absolute error O(2−d ) is bounded by a polynomial in d
(the number of digits).
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The density ρσ
Suppose for the moment that σ > 1. Then the support of the
measure µσ is the interval [−L(σ),L(σ)], where

L(σ) :=
∑

p

arcsin(p−σ).

Recall that
ψσ(x) =

∫
R

eixt dµσ(t).

µσ is the Fourier transform of a function in L2(R), so it is a
measure with density

ρσ(t) =
1

2π

∫
R
ψσ(x)e−itx dx .

The function ρσ is a Fourier transform of a function in L1(R),
hence is continuous.
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Computation of the density d(σ)

Theorem
Let σ > 1 and ` > max(π/2,L(σ)). Then we have

d(σ) = 1− π

2`
− 2
π

∞∑
n=1

1
n
ψ
(πn
`

)
sin
(nπ2

2`

)
.

Sketch of proof. Consider the function ρ̃(x) equal to ρσ(x) in
the interval [−`, `]. Extend ρ̃(x) to the entire real line R, making
it periodic with period 2`. We have

ρ̃(x) =
∑
n∈Z

fne
2πinx

2` , with fn =
1
2`

∫ `

−`
ρ̃(x)e−

2πinx
2` dx .

Now ρ̃(x) = ρσ(x) for |x | ≤ `, and ρσ(x) = 0 for |x | > `.
Therefore

fn =
1
2`

∫ `

−`
ρσ(x)e−

2πinx
2` dx =

1
2`

∫
R
ρσ(x)e−

2πinx
2` dx =

1
2`
ψ
(πn
`

)
.
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Sketch of proof continued

Since ψ(x) is an even function,

ρ̃(x) =
1
2`

∑
n∈Z

ψ
(πn
`

)
e

2πinx
2` =

1
2`

+
1
`

∞∑
n=1

ψ
(πn
`

)
cos

πnx
`
.

Now

d(σ) = 1− µσ([−π/2, π/2]) = 1−
∫ π/2

−π/2
ρσ(t) dt .

Since we assume π/2 ≤ `, we may replace ρσ(t) by ρ̃. Hence,
multiplying the above equality by the characteristic function of
[−π/2, π/2] and integrating, we get the result.
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Remarks

1. The formula for d(σ) is exact, on the assumption that σ > 1
and ` > max(π/2,L(σ)). If σ ∈ (1/2,1] the formula is
approximate, but converges rapidly to d(σ) as `→∞,
because ψσ is exponentially small outside a small compact
interval [−L,L].

2. If we take m := 4`/π in the theorem, we get the slightly
simpler form

d(σ) = 1− 2
m
− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
2πn
m

)
for m > max(2,M(σ)), where M(σ) = 4L(σ)/π.

3. A good choice is m = 4; then only the odd terms in the
sum contribute, since sin(2πn/4) = 0 when n is even.
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Computation of d−(σ)

Recall that d−(σ) is the probability that <(ζ(σ + it) < 0.
Let ak be the probability that | arg ζ(σ + it)| > (2k + 1)π/2.
Then

d−(σ) =
∞∑

k=0

(a2k − a2k+1).

We have seen that

a0 = d(σ) = 1− 2
m
− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
2πn
m

)
.

Similarly, we have

ak = 1− 4k + 2
m

− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
(4k + 2)πn

m

)
.
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Some numerical results

We have three varieties of numerical results:

1. Monte Carlo results. Here we replace pit in the (truncated)
Euler product by a pseudo-random variable uniformly
distributed on the unit circle. In this way we can estimate
d(σ) or d−(σ) from the outcome of a number of trials.
To give one example, we estimated

d(1) = (3.806± 0.020)× 10−7

from 1011 trials taking about 22 hours of computer time.
The method is time-consuming and inaccurate when d(σ)
is small. It is also inaccurate when σ is close to 1/2.
On the positive side, the Monte Carlo method was easy to
program and provided a “sanity check”. It was very helpful
for debugging the “exact” method.
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Numerical results continued

2. Exhaustive search in an interval (0,T ]. For example, we
already mentioned that for t ∈ (0,16656259] there are 50
intervals on which <ζ(1 + it) < 0, and the total length of
these intervals is < 6.484.
The problems with this approach are:
I It requires a bound on |ζ ′(s)| to ensure that we do not miss

any intervals where <(s) changes sign.
I It is slow, requiring computation of ζ(s) at many points.
I The results may not be “typical”, because T is limited by

our computational power.
For example, on the critical line σ = 1/2, for T ≤ 1.1× 1010,
we find that <(1/2 + it) is predominantly (> 66%) positive,
but analytic results due to Selberg (see e.g. Kühn/Tsang)
suggest that <(1/2 + it) is positive with probability
1/2 + o(1) as T →∞. The “o(1)” term tends to zero,
but too slowly for this to be observable!
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Numerical results continued

3. “Exact” computation. Using our algorithm for the
computation of d(σ) via ψσ, as described above, we have
computed the following results (next slide), believed to be
correct to the number of decimals given.
We used two independent programs, one written in
Mathematica and the other in Magma.
The results are consistent with those obtained by the
Monte Carlo method, at least in the range 0.7 ≤ σ ≤ 1.05
where Monte Carlo is feasible.
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Values of d(σ)
Table: d(σ) for various σ ∈ [1/2, σ0], σ0 = 1.192347 · · ·

σ d(σ)

0.5+ 1−
0.5 + 10−11 0.6533592249148917497
0.5 + 10−5 0.4962734204446697434
0.6 7.9202919267432753125× 10−2

0.7 2.5228782796068962969× 10−2

0.8 5.1401888600187247641× 10−3

0.9 3.1401743610642112427× 10−4

1.0 3.7886623606688718671× 10−7

1.1 6.3088749952505014038× 10−22

1.15 1.3815328080907034247× 10−103

1.16 1.1172074815779368125× 10−194

1.165 1.2798207752318534603× 10−283

1.19234 positive
σ0 zero
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d(σ) and d−(σ)
For σ > 0.8, there is no appreciable difference between
d(σ) and d−(σ). This is because the probability that
| arg ζ(σ + it)| > 3π/2 is very small in this region.
There is an appreciable difference very close to the critical line.
For example,
d−(0.5 + 10−11) = 0.4986058426,
d(0.5 + 10−11) = 0.6533592249.

Table: The difference d(σ)− d−(σ)

σ d(σ)− d−(σ)

0.5+ 0.5−
0.5 + 10−11 0.1547533823

0.6 8.073328981× 10−11

0.7 2.676004881× 10−32

0.8 7.655052120× 10−210

σ1 ≈ 1.006823 0
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Plot of d−(σ)

This is a plot of d−(σ) for 0.5 < σ ≤ σ0.
A plot of d(σ) is indistinguishable to the naked eye, but

lim
σ↓0.5

d(σ) = 1 6= lim
σ↓0.5

d−(σ) = 0.5 .
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Asymptotics of d(σ) near σ0

Recall that d(σ) = 0 if σ ≥ σ0 ≈ 1.19235, so we might expect
limσ↑σ0 d (k)(σ) = 0 for all k ≥ 0.
The table of values presented earlier confirms that d(σ)
decreases extremely fast as σ ↑ σ0, e.g. d(1.165) < 10−282.
Let δ := σ0 − σ > 0. A reasonable fit to the computed data for
σ > 1 is given by a function of the form

a δb/δ2

for constants a ≈ 7.14× 10−6, b ≈ 0.1326.
It is plausible to conjecture that

d(σ)� exp(−1/δ2) as δ → 0+ ,

but we have no idea how to prove this. Obtaining analytic
results as δ → 0 appears to be difficult.
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Asymptotics of ψσ near the critical line
What is the behaviour of ψσ as σ ↓ 1/2?
It is clear that ψσ(x) does not tend (pointwise) to a limit as
σ ↓ 1/2. However, a suitably normalised version of ψσ does
tend to a limit. More precisely, let

ψσ(x) = exp

(
x2

4
P(2σ)

)
ψσ(x).

Then there exists

ψ1/2(x) := lim
σ↓1/2

ψσ(x).

Thus, for σ close to 1/2 and x small, we have

ψσ(x) = exp(−z2/2)(1 + O(z2/P(2σ)),

where z = x
√

P(2σ)/2 is the “natural” variable.
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Remarks

We can replace P(2σ) by log ζ(2σ) or by log(1/(2σ − 1)) since
the difference between these is bounded as σ ↓ 1/2.
We can write

ψσ(x) =
∏

p

exp

(
x2

4p2σ

) ∞∑
n=0

1
p2nσ22nn!2

n−1∏
j=0

(4j2 − x2)

 .

The product converges for σ > 1/4. In particular,

ψ1/2(x) =
∏

p

exp

(
x2

4p

) ∞∑
n=0

1
pn22nn!2

n−1∏
j=0

(4j2 − x2)

 .
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Asymptotics of d(σ) near the critical line

Using the asymptotic behaviour of ψσ(x) for σ close to 1/2, we
expect (though have not proved) that

1− d(σ) ∼ c/
√
− log(2σ − 1) as σ ↓ 1/2.

A good fit to the numerical data is

d(σ) ≈ 1− A√
B − log(2σ − 1)

with A = 1.7786, B = 1.6479.
This explains why the convergence of d(σ) to 1 as σ ↓ 1/2 is so
slow.
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What happens on the critical line?

We have seen that <ζ(σ + it) has a limiting distribution on any
line to the right of the critical line. This is not true on the critical
line. Selberg showed that, for t ∼ unif(T ,2T ),

log ζ(1/2 + it)√
1
2 log log T

d→ X + iY

as T →∞, with X ,Y ∼ N(0,1). This implies that d(1/2) = 1.
We also expect that

d−(1/2) = d+(1/2) = 1/2,

but proving this seems more difficult.
Computational verification is impossible, because the
function

√
log log T grows far too slowly.
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Why the difference?
There are several reasons why the critical line σ = 1/2 is
special – for example, it is the line of symmetry for the
functional equation of ζ(s), and a positive proportion
(maybe all) of the nontrivial zeros of ζ(s) lie on it.
If we look at Selberg’s proof to see how the

√
log log T scaling

factor arises, we see that it comes from∑
p<T

1
p
∼ log log T as T →∞ .

Thus, so far as the distribution of arg ζ(σ + it) is concerned,
the essential difference is that∑

p<T

p−2σ

is bounded as T →∞ if σ > 1/2, but unbounded if σ = 1/2.
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Other L-functions

We have only discussed the Riemann zeta function, but similar
results hold for all Dirichlet L-functions because the character
χ(p) in the Euler product

L(s, χ) =
∏

p

(1− χ(p)p−s)−1

can usually be absorbed into the random variable xp.
In more detail – we replaced p−s by p−σxp. In the case of an
L-function we get p−σχ(p)xp, but χ(p)xp is a random variable
distributed uniformly on the unit circle whenever |χ(p)| = 1.
Thus, we merely have to omit (from sums/products over
primes) all primes p for which χ(p) = 0, i.e. all primes that
divide the modulus of the L-function.
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