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Abstract
We consider the distribution of arg ζ(σ + it) on fixed lines
σ > 1/2, and in particular the density

d(σ) = lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : | arg ζ(σ + it)| > π/2}| ,

where |{· · · }| denotes Lebesgue measure. We also consider
the closely related density

d−(σ) = lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : <ζ(σ + it) < 0}| .

Using classical results of Bohr and Jessen, we obtain an
explicit expression for the characteristic function ψσ(x) of
arg ζ(σ + it). We give explicit expressions for d(σ) and d−(σ) in
terms of ψσ(x). Finally, we consider the (difficult) problem of
evaluating these expressions to obtain accurate numerical
values of d(σ) and d−(σ). For example,

d(1) ≈ 3.7886623606688718671× 10−7.
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Alf van der Poorten

Like almost all number theorists, Alf van der Poorten was
interested in the Riemann zeta function. For example, Alf gave
a very clear exposition of Apéry’s proof of the irrationality of
ζ(3), in his 1979 paper A proof that Euler missed . . . Apéry’s
proof of the irrationality of ζ(3).1

Thus, although my only joint work with Alf was on continued
fractions of algebraic numbers, I decided to talk today on a
topic related to the Riemann zeta function.

1Already mentioned by Jeffrey Shallit in his talk on Tuesday.
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Some notation and definitions

P is the set of primes and p ∈ P is a prime.

We always have s = σ + it ∈ C.
log ζ(s) denotes the main branch defined in the usual way on
the open set G equal to the complex plane C with cuts along
the half-lines (−∞+ iγ, β + iγ] for each zero or pole β + iγ of
ζ(s) with β ≥ 1/2. Thus log ζ(s) is real and positive in (1,+∞).
For s ∈ G, we can define arg ζ(s) by

log ζ(s) = log |ζ(s)|+ i · arg ζ(s).

|B| denotes the Lebesgue measure of a set B.
Usually σ > 1/2 is fixed, t ∈ R is regarded as the independent
variable, and b = pσ.
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Motivation

Several authors (Gram, Titchmarsh, Edwards, . . .) have
observed that <ζ(s) is “usually” positive, at least for σ ≥ 1/2.
This is plausible because the Dirichlet series

ζ(s) = 1 + 2−s + 3−s + 4−s + · · ·

starts with a positive term, and the other terms n−s may have
positive or negative real part, depending on the sign of
cos(t log n).
Our aim is to quantify this observation.
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Remarks

Let σ0 = 1.1923473371 · · · be the real root in (1,+∞) of∑
p

arcsin(p−σ) =
π

2
.

It was shown by Jan van de Lune (1983) that

(∀σ ≥ σ0) <ζ(σ + it) > 0 .

Also, for any σ ∈ (1, σ0), there exist arbitrarily large t such that
<ζ(σ + it) < 0. The proof uses Kronecker’s theorem.2

The result is also true for σ ∈ [1/2,1].

2Titchmarsh, §8.3.
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Figure from Van de Lune (1983)

From the Figure, we see that the prime p contributes at most
arcsin(p−σ) to arg ζ(σ + it). If ζ(σ + it) < 0 then we must have
| arg ζ(σ + it)| > π/2.
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Some numerical results

If we compute ζ(s) for “randomly” chosen s with σ = <(s) ≥ 0.6
(say), we are unlikely to find any negative values of <ζ(s).
For example, taking σ = 1, it can be shown that <ζ(1 + it) > 0
for all t ∈ (0,682112]. Near t = 682112.9169 there is an
interval of length 0.0529 on which <ζ(1 + it) < 0.
For t ∈ (0,16656259] there are 50 intervals on which
<ζ(1 + it) < 0; the total length of these intervals is < 6.484.
Note that 16656259/6.484 ≈ 2.57× 106. Thus, the chance of
finding a value of t such that <ζ(1 + it) < 0 by random
sampling is very small.
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The seventh interval where <ζ(1 + it) < 0
Here is an “x-ray” of ζ(σ + it) for σ ∈ [−1,3],
t ∈ [2195052,2195060], enclosing the seventh interval where
<ζ(1 + it) is negative. <ζ vanishes on the blue lines, and
=ζ vanishes on the red lines. The blue dots are zeros of ζ ′.
The picture is rotated so that the critical strip is horizontal.
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Asymptotic densities

Fix σ > 1/2, and define

d+(σ) := lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : <ζ(σ + it) > 0}| ,

d−(σ) := lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : <ζ(σ + it) < 0}| .

It can be shown that the limits exist.
d+(σ) can be regarded as the probability that a randomly
chosen point σ + it gives a positive value of <ζ(σ + it);
similarly for d−(σ) and negative values.
Since <ζ(s) vanishes on a set of Lebesgue measure zero, we
have d+(σ) + d−(σ) = 1.
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Approximation of d±(σ) via arg ζ(s)

It is easier to work with

d(σ) = lim
T→+∞

1
2T
|{t ∈ [−T ,+T ] : | arg ζ(σ + it)| > π/2}| .

Observe that <ζ(s) < 0 iff

| arg ζ(s)| ∈ (π/2,3π/2) ∪ (5π/2,7π/2) ∪ · · ·

Thus
d−(σ) ≤ d(σ),

and d−(σ) ≈ d(σ) if arg ζ(s) is “usually” small, i.e. unless σ is
close to 1/2 (more on this later).
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A mean-value result

Using Chebyshev’s inequality and a mean-value result3 for
|<ζ(1 + it)|2, we can show that

d−(1) ≤ ζ(2)− 1
ζ(2) + 1

= 0.243837 . . . < 1/4 .

However, this result is far from the truth. We shall see later that

d−(1) ≈ 3.8× 10−7 .

3The proof is similar to that of Theorem 7.2 of Titchmarsh, which gives a
mean-value result for |ζ(1 + it)|2.
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Intuition

Informally, the idea is that, for a prime p and large t ,

pit = exp(it log(p))

behaves like a random variable distributed uniformly
on the unit circle.
Moreover, for different primes, the random variables are
independent (because the log p are independent over Q).
A theorem of Bohr and Jessen (to be stated soon) justifies this
intuition.
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The probability space Ω

Let T = {z ∈ C : |z| = 1} denote the unit circle with the usual
probability measure µ (that is dθ

2π if we identify T with the
interval [0,2π) via z = exp(iθ)).
Define Ω := TP with the product measure P = µP .
Each point of Ω is a sequence ω = (xp)p∈P , with each xp ∈ T.
This formalises the idea that the xp may be considered as a
random variables, uid4 on the unit circle.

4Uniformly and independently distributed.
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The measure Pσ of Bohr and Jessen

Before stating the theorem of Bohr and Jessen we need to
define a measure Pσ.
Fix σ > 1/2. The sum of random variables

S = −
∑
p∈P

log(1− p−σxp) :=
∑
p∈P

∞∑
k=1

1
k

p−kσxk
p

converges almost everywhere, so S is a well-defined random
variable.
The measure Pσ of Bohr and Jessen is defined to be the
distribution of S, i.e. for each Borel set B ⊆ C we have

Pσ(B) := P{ω = (xp) ∈ Ω : S(ω) ∈ B}.
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A theorem of Bohr and Jessen

In modern language, Bohr and Jessen (1930/31) showed that,
for each rectangle B with sides parallel to the axes,

Pσ(B) = lim
T→∞

1
2T
|{t ∈ [−T ,+T ], log ζ(σ + it) ∈ B}|

(and the limit exists).
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The measure µσ on R

We can specialise5 to sets B of the form R× B. For Jordan
subsets B ⊆ R, define

µσ(B) := Pσ(R× B).

Then
d(σ) = µσ(R\[−π/2, π/2]) .

The measure µσ is the distribution function of the random
variable =S:

µσ(B) = Pσ(R× B) = P{ω ∈ Ω : S(ω) ∈ R× B}
= P{ω ∈ Ω : =S(ω) ∈ B}.

5Since R is not bounded, we need a limiting argument to justify this.
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The characteristic function ψσ

Recall that the characteristic function ψ(y) of a random variable
X is defined by

ψ(y) := E[exp(iXy)] .

This is just a Fourier transform; we omit a factor 2π in the
exponent to agree with the statistical literature.
The characteristic function associated with µσ is the
characteristic function ψσ of the random variable =S:

ψσ(x) :=

∫
Ω

eix=S(ω) dω .
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ψσ as an infinite product over the primes

We have
ψσ(x) =

∏
p

I(pσ, x) ,

where (as usual) the product is over all primes p, and

I(b, x) :=
1

2π

∫ 2π

0
e−ix arg(1−b−1eit ) dt .
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Sketch of the proof

By definition

ψσ(x) =

∫
Ω

eix=S(ω) dω =

∫
Ω

∏
p

e−ix arg(1−p−σxp) dω.

By independence the integral of the product is the product of
the integrals:

ψσ(x) =
∏

p

∫
Ω

e−ix arg(1−p−σxp) dω.

Each random variable xp is distributed as eiθ on the unit
circle.
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I(b, x) as an integral

Assume b > 1. Recall the definition

I(b, x) :=
1

2π

∫ 2π

0
e−ix arg(1−b−1eit ) dt .

Then we have two equivalent expressions for I(b, x) as a
definite integral:

I(b, x) =
1
π

∫ π

0
cos

(
x arctan

(
sin θ

b − cos θ

))
dθ

=
2
π

∫ 1

0
cos
(

x arcsin
u
b

) du√
1− u2

.
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What does ψσ look like?

ψσ(x) is a product:

ψσ(x) =
∏

p

I(pσ, x) .

Each factor in the product has infinitely many real zeros, and
the same is true for ψσ(x).
We have the bound

|ψσ(x)| ≤ C exp

(
−c

x1/σ

log x

)

for some positive constants C = C(σ), c = c(σ) and x ≥ 2.
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Pictures of ψ1.02(x)
Due to the exponential decay of |ψσ(x)| it is difficult to give a
single plot that shows its behaviour. Following are plots for
σ = 1.02 and x in the intervals [0,5], [5,10], [10,15], [15,20].
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x ∈ [5,10]
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x ∈ [10,15]

Arias de Reyna, Brent and van de Lune Distribution of arg ζ



x ∈ [15,20]
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cos(2x arcsin u) as a hypergeometric function

For |u| < 1 and all x ∈ C,

cos(2x arcsin u) = 1 +
∞∑

n=1

(2u)2n

(2n)!

n−1∏
j=0

(j2 − x2).

To prove this, let f (u) := LHS, g(u) := RHS above. Then

(1− u2)f ′′(u)− uf ′(u) + 4x2f (u) = 0.

Also, g(u) satisfies the same differential equation. Since
g(0) = f (0) = 1 and g′(0) = f ′(0) = 0, the two solutions
coincide.
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Corollary

For |b| > 1 we have

I(b,2x) = 1 +
∞∑

n=1

1
b2nn!2

n−1∏
j=0

(j2 − x2).

Combining this result with the product formula for ψσ, we obtain
an explicit expression for ψσ, valid for σ > 1/2 (next slide).

Arias de Reyna, Brent and van de Lune Distribution of arg ζ



An explicit expresson for ψσ
The characteristic function ψσ is given by the following product

ψσ(2x) =
∏

p

1 +
∞∑

n=1

1
n!2

n−1∏
j=0

(j2 − x2) · 1
p2nσ

 .

Marc Kac6 gave the probability of log(ϕ(n)/n) being in a given
interval (ω1, ω2) as

1
2π

∫ ∞
−∞

eiω2ξ − eiω1ξ

iξ

∏
p

(
1− 1

p
+

1
p

exp

[
iξ log

(
1− 1

p

)])
dξ ,

and referred to this as “an explicit but nearly useless formula”.
Is our formula for ψσ(2x) in the same category ?

6Mark Kac, Statistical Independence in Probability, Analysis and Number
Theory, 1959, page 64.
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Remarks

I Formally, the problem is solved. We can use a Fourier
transform to compute the distribution function µσ from ψσ,
and hence compute d(σ), d±(σ) etc.

I In practice there are still severe difficulties (recall the quote
from Kac). The product over prime p converges slowly, and
we need to compute ψσ accurately to compensate for
cancellation in computing the Fourier transform.
Also, some of the results of interest, such as d−(σ) for
σ ∈ [1, σ0), are tiny, so we need to compute the Fourier
transform accurately.

I In the following slides we show how these difficulties can
be overcome.
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Computing sums/products over primes

There is a well-known technique, going back at least to Wrench
(1961), for accurately computing certain sums/products over
primes.
The idea is to express what we want to compute in terms of the
prime zeta function

P(s) :=
∑

p

p−s (<(s) > 1).

The prime zeta function can be computed from log ζ(s) using
Möbius inversion:

P(s) =
∞∑

r=1

µ(r)

r
log ζ(rs) .

This formula was essentially known to Euler (1748).

Arias de Reyna, Brent and van de Lune Distribution of arg ζ



Application to computation of ψσ
Recall that

ψσ(x) =
∏

p

I(pσ, x),

so the obvious approach is to take logarithms of each side:

logψσ(x) =
∑

p

log I(pσ, x) ,

and try to express the RHS as a sum
∑

k≥1 ak (x , σ)P(kσ).
Problem – I(pσ, x), considered as a function of x , has zeros.
Thus, the series for logψσ(x) fails to converge.
Solution – If we consider x fixed, then I(pσ, x) > 0 for
p > p0(x , σ). Thus, we can apply a variant of the “prime zeta
function” technique after all, provided we sum over p > p0
rather than over all primes. The finite number of cases p ≤ p0
can be handled in a different manner.
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The function log I(b, x)

Suppose x > 0. There exist even polynomials Qn(x) of
degree 2n such that

log I(b,2x) = −
∞∑

n=1

Qn(x)

n!2
1

b2n ,

and the series converges for b > max(1, |x |).
The polynomials Qn(x) are determined by the following
recurrence:

Qn+1(x) = (n!)2x2 +
n−1∑
j=0

(
n
j

)(
n

j + 1

)
Qj+1(x)Qn−j(x), n ≥ 0.
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An algorithm for the computation of ψσ
We want to compute

ψσ(2x) =
∏

p

I(pσ,2x).

Choose pσ0 > |x | (a good choice is pσ0 ≈ 8|x |).
Split the product at p0, so ψσ(2x) = AB say.
Then A =

∏
p≤p0
· · · is computed using

A =
∏

p≤p0

1 +
∞∑

n=1

1
p2nσn!2

n−1∏
j=0

(j2 − x2)

 ,

and B =
∏

p>p0
· · · is computed using

B = exp

− ∞∑
n=1

Qn(x)

n!2

P(2nσ)−
∑
p≤p0

p−2nσ

 .
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Remarks

1. The summations required for A involve some cancellation,
so the working precision has to be increased to
compensate.

2. There is inevitably cancellation in computingP(2nσ)−
∑
p≤p0

p−2nσ

 ,
so here too the working precision has to be increased
to compensate.
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The density ρσ

Suppose for the moment that σ > 1. Then the support of the
measure µσ is the interval [−L(σ),L(σ)], where

L(σ) :=
∑

p

arcsin(p−σ).

Recall that
ψσ(x) =

∫
R

eixt dµσ(t).

µσ is the Fourier transform of a function in L2(R), so it is a
measure with density

ρσ(t) =
1

2π

∫
R
ψσ(x)e−itx dx .
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Computation of the density d(σ)

Theorem

Let σ > 1 and ` > max(π/2,L(σ)). Then we have

d(σ) = 1− π

2`
− 2
π

∞∑
n=1

1
n
ψ
(πn
`

)
sin
(nπ2

2`

)
.
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Remarks

1. The formula for d(σ) is exact, on the assumption that σ > 1
and ` > max(π/2,L(σ)). If σ ∈ (1/2,1] the formula is
approximate, but converges rapidly to d(σ) as `→∞,
because ψσ is exponentially small outside a small compact
interval [−L,L].

2. If we take m := 4`/π in the theorem, we get the slightly
simpler form

d(σ) = 1− 2
m
− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
2πn
m

)
for m > max(2,M(σ)), where M(σ) = 4L(σ)/π.
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Computation of d−(σ)

Recall that d−(σ) is the probability that <(ζ(σ + it) < 0.
Let ak be the probability that | arg ζ(σ + it)| > (2k + 1)π/2.
Then

d−(σ) =
∞∑

k=0

(a2k − a2k+1).

We have seen that

a0 = d(σ) = 1− 2
m
− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
2πn
m

)
.

Similarly, we have

ak = 1− 4k + 2
m

− 2
π

∞∑
n=1

1
n
ψσ

(
4n
m

)
sin

(
(4k + 2)πn

m

)
.
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Some numerical results

We have three varieties of numerical results:

1. Monte Carlo results. Here we replace pit in the (truncated)
Euler product by a pseudo-random variable uniformly
distributed on the unit circle. In this way we can estimate
d(σ) or d−(σ) from the outcome of a number of trials.
To give one example, we estimated

d(1) = (3.806± 0.020)× 10−7

from 1011 trials taking about 22 hours of computer time.
The method is time-consuming and inaccurate when d(σ)
is small. It is also inaccurate when σ is close to 1/2.
On the positive side, the Monte Carlo method was easy to
program and provided a “sanity check”. It was very helpful
for debugging the “exact” method.
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Numerical results continued

2. Exhaustive search in an interval (0,T ]. For example, we
already mentioned that for t ∈ (0,16656259] there are 50
intervals on which <ζ(1 + it) < 0, and the total length of
these intervals is < 6.484.
The problems with this approach are:
I It is slow, requiring computation of ζ(s) at many points.
I The results may not be “typical”, because T is limited by

our computational power.
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Numerical results continued

3. “Exact” computation. Using our algorithm for the
computation of d(σ) via ψσ, as described above, we have
computed the following results (next slide), believed to be
correct to the number of decimals given.
We used two independent programs, one written in
Mathematica and the other in Magma.
The results are consistent with those obtained by the
Monte Carlo method, at least in the range 0.7 ≤ σ ≤ 1.05
where Monte Carlo is feasible.
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Values of d(σ)
Table: d(σ) for various σ ∈ [1/2, σ0], σ0 = 1.192347 · · ·

σ d(σ)

0.5+ 1−
0.5 + 10−11 0.6533592249148917497
0.5 + 10−5 0.4962734204446697434
0.6 7.9202919267432753125× 10−2

0.7 2.5228782796068962969× 10−2

0.8 5.1401888600187247641× 10−3

0.9 3.1401743610642112427× 10−4

1.0 3.7886623606688718671× 10−7

1.1 6.3088749952505014038× 10−22

1.15 1.3815328080907034247× 10−103

1.16 1.1172074815779368125× 10−194

1.165 1.2798207752318534603× 10−283

1.19234 positive
σ0 zero
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d(σ) and d−(σ)
For σ > 0.8, there is no appreciable difference between
d(σ) and d−(σ). This is because the probability that
| arg ζ(σ + it)| > 3π/2 is very small in this region.
There is an appreciable difference very close to the critical line.
For example,
d−(0.5 + 10−11) = 0.4986058426,
d(0.5 + 10−11) = 0.6533592249.

Table: The difference d(σ)− d−(σ)

σ d(σ)− d−(σ)

0.5+ 0.5−
0.5 + 10−11 0.1547533823

0.6 8.073328981× 10−11

0.7 2.676004881× 10−32

0.8 7.655052120× 10−210

σ1 ≈ 1.006823 0
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Plot of d−(σ)

This is a plot of d−(σ) for 0.5 < σ ≤ σ0.
A plot of d(σ) is indistinguishable to the naked eye, but

lim
σ↓0.5

d(σ) = 1 6= lim
σ↓0.5

d−(σ) = 0.5 .
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Asymptotics of d(σ) near the critical line

Using the asymptotic behaviour of ψσ(x) for σ close to 1/2, we
expect (though have not proved) that

1− d(σ) ∼ c/
√
− log(2σ − 1) as σ ↓ 1/2.

A good fit to the numerical data is

d(σ) ≈ 1− A√
B − log(2σ − 1)

with A = 1.7786, B = 1.6479.
This explains why the convergence of d(σ) to 1 as σ ↓ 1/2 is so
slow.
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Advertisement

Due to the time constraint, I had to omit many details and
almost all the proofs from this talk. If you want to hear more,
please attend my one-hour talk next Monday at the Macquarie
Workshop7 next week!

7Workshop on Number Theory and its Applications in Memory of Alf van
der Poorten, Macquarie University, 19–20 March, 2012.
http://comp.mq.edu.au/~igor/NT-AvdP_Workshop.html

Arias de Reyna, Brent and van de Lune Distribution of arg ζ

http://comp.mq.edu.au/~igor/NT-AvdP_Workshop.html


References

J. ARIAS DE REYNA, X-ray of Riemann’s zeta-function,
arXiv:math/0309433v1, 26 Sept. 2003.
J. ARIAS DE REYNA, R. P. BRENT AND J. VAN DE LUNE, A note
on the real part of the Riemann zeta-function, Herman te Riele
Liber Amicorum, CWI, Amsterdam, 2011. arXiv:1112:4910v1
H. BOHR AND B. JESSEN, Über die Werteverteilung der
Riemannschen Zetafunktion, Acta Mathematica 54 (1930)
1–35; ibid 58 (1931), 1–55.
L. CARLITZ, A sequence of integers related to the Bessel
function, Proc. Amer. Math. Soc., 14 (1963), 1–9.
P. R. HALMOS, Measure Theory, Springer Verlag, NY, 1974.
P. KÜHN, On Selberg’s central limit theorem, Master’s Thesis,
Department of Mathematics, ETH Zürich, March 2011.

Arias de Reyna, Brent and van de Lune Distribution of arg ζ



References continued
J. VAN DE LUNE, Some observations concerning the
zero-curves of the real and imaginary parts of Riemann’s zeta
function. Afdeling Zuivere Wiskunde, Report ZW 201/83.
Mathematisch Centrum, Amsterdam, 1983. i+25 pp.
A. VAN DER POORTEN, A proof that Euler missed . . . Apéry’s
proof of the irrationality of ζ(3), Math. Intel. 1 (1979), 196–203.
J. STEUDING, Value-distribution of L-functions, Lecture Notes in
Mathematics 1877, Springer, 2007.
E. C. TITCHMARSH, The Theory of the Riemann Zeta-function,
2nd edition, revised by D. R. Heath-Brown. The Clarendon
Press, Oxford, 1986.
K. TSANG, The Distribution of the Values of the Riemann
Zeta-function, PhD Thesis, Department of Mathematics,
Princeton University, Oct. 1984.
J. W. WRENCH, Evaluation of Artin’s constant and the twin
prime constant, Math. Comp. 15 (1961), 396–398.

Arias de Reyna, Brent and van de Lune Distribution of arg ζ


