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Abstract

This thesis introduces the Progressive Messages model of communication.
It is an event-driven framework for building scalable parallel and dis-
tributed computing applications on modern networks. In particular, the
paradigm provides notification of message termination. That is, when
a message succeeds or fails, the user’s application can capture an event
(often through a callback) and perform a designated action.

The semantics of the Progressive Messages model are defined as an ex-
tension to the message-driven model, which is like an asynchronous RPC.
Together, these models can be contrasted to the message-passing model
(the basis of Sockets and MPI), which has no event notification.

Using Progressive Messages allows for a more scalable design than permit-
ted by either the message-passing or message-driven model. In particular,
Progressive Messages can handle communication concurrently with com-
putation, which means that one process does not need to wait in order to
service a request or response from another process. This overlap leads to
more efficiency.

As part of the study of Progressive Messages, we create the MATE (Mes-
sage Alerts Through Events) library, which is a prototype API that sup-
ports event notification in communication. This API was implemented
in both MPI and InfiniBand verbs (OpenFabrics). “Unit tests” of net-
work metrics shows that there is some latency in event-driven message
handling, though it is difficult to determine if the source of the latency is
hardware or software based.

The goal of the Progressive Messages model is that parallel and distributed
computing applications will be easier to build and will be more scalable.
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Chapter 1

Introduction

Parcel services allow customers to track their packages and see when the transporta-
tion enters a new state of progress, such as completion of delivery or refusal by the
recipient. Such facilities add peace of mind and allow carrier clients to better han-
dle unforeseen events. Knowledge of message progress is essential to building robust
communication frameworks.

This thesis is about Progressive Messages, a model of communication for computer
networks. At the heart of this model is the ability to track a message’s termination
(success or failure). The user, like the shipping company’s customer, relies on alerts
to follow the message and to carry out contingency plans.

Associated with this model is a set of simple semantics to describe communication
systems. As such, Progressive Messages is a tool for building communication soft-
ware based on the premise that user knowledge of message progress leads to better
scalability.

The work in this thesis arose from the need to address inadequacies in current com-
munication tools. Users traditionally have had to “design around” libraries to handle
unexpected messages. Because such issues are application-specific, a library that
provides more flexible communication primitives is ideal. The techniques for such a
library are captured here as Progressive Messages.

A couple of patterns are observable in communications software for high-end systems.
First is that data transfer procedures are rarely coordinated and that the system’s
organization is only very loosely coupled. The second is that the system is mostly
managed by the user, rather than by the computer itself. While these methods
may degrade performance slightly or introduce extra complexity, they lead to better
processing of unexpected events.

Within the Progressive Messages framework, events represent changes of progress for
a message, such as submission or arrival. The user, upon request, is alerted once
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an event occurs. The user may then handle this event in whatever manner is best
suited for his application. The entire mechanism follows from the above observations.
Unlike existing communications models, the Progressive Messages framework does
not assume static message patterns.

1.1 Contributions

The aim of this thesis is to make communications programming more expressive
and scalable. Towards this goal, we introduce the Progressive Messages model of
communication. This is an event-driven framework where message termination1 can
be observed by the user application. The semantic definition for this framework is
an extension to the message-driven model of communication. We can contrast event-
driven communication to the message-passing model, but because the the precise
meaning of both message-passing and message-driven is hazy in the literature, this
thesis identifies its own semantics for each.

In comparing the relative performance of all three communications models, we show
via simulation that Progressive Messages scales better than message-driven or message-
passing simply because it can handle communication concurrently with computation.
We also believe that Progressive Messages is more expressive for designing parallel
and distributed computing applications.

The thesis further introduces a prototype API known as MATE, which supports
Progressive Messages communication. MATE was implemented in both MPI and
directly on InfiniBand verbs, and this thesis explains the design details for these
implementations.

Lastly, this thesis covers a vast amount of the literature in communications frame-
works, modern networks, and applications. The survey is significant and provides a
holistic view of the problem space.

1.2 Organization

This thesis begins with Chapter 2, which outlines the preliminaries of modern net-
works and the current trends in message-based communication. One of the primary
trends is towards asynchronous, event-driven communication. The chapter introduces
the two most common communication frameworks, which are message-passing (which
is used in Sockets) and message-driven (which acts as an asynchronous RPC). This

1The name “Progressive Messages” came from the goal of tracking message progress. In this
thesis, the scope of progress has been limited to success or failure of the message, but we include
some investigation of other state changes. The MATE API can track when a message has timed out
or when the sending buffer has become reusable.
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second framework is the springboard for our notion of Progressive Messages. Several
features in modern networks also point towards event-driven communication, and we
investigate these features in some detail. Lastly, the chapter covers some applications
in parallel and distributed computing.

Chapter 3 covers the message-passing and message-driven frameworks in greater de-
tail. Literature does not have a precise definition of what these are, so the chapter
introduces its own semantics inherited from CSP and MPI. We then cover how a few
computing applications are programmed with these two models. The sample appli-
cation of dynamic load balancing will be referenced in later chapters when exploring
issues with scalability and expressiveness.

Chapter 4 presents the Progressive Messages model. This model is an expansion of
the message-driven paradigm to include progress notification for several state changes
that a message may go through. This thesis contends that providing these event
alerts to user applications makes communications programming more expressive and
scalable. The chapter closes by covering AJAX, a programming methodology widely
used in web development that is very similar to Progressive Messages. The concepts
in this thesis were developed independently and around the same time that AJAX
became known, and it is useful to see that there are real-world applications using
this.

We then turn to Chapter 5, which presents an implementation of the Progressive
Messages model as a prototype API called MATE. Unlike AJAX, Progressive Mes-
sages is intended for high-performance networks, and so MATE has been implemented
using both MPI and InfiniBand verbs (OpenFabrics). The chapter explains the de-
sign used for the implementation and references literature for other high-performance
messaging APIs.

Chapter 6 then investigates the performance of the Progressive Messages model.
The chapter first presents scalability simulations of the three messaging paradigms
(message-passing, message-driven and Progressive Messages) given a dynamic load-
balancing application. Because a program designed with Progressive Messages can
respond to work requests at anytime, communication is concurrent with computation,
which leads to better scalability. The chapter also covers “unit test” performance met-
rics for MATE. There is added latency to using an event-driven model, which this
chapter investigates.

Finally, Chapter 7 summarizes the main points in this thesis. Progressive Messages
was conceived as an extension to message-driven semantics to take better advantage
of modern networks when scaling parallel and distributed applications. We conclude
with some potential future work to further advance this model.
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Chapter 2

Background and Related Work

This chapter introduces terms and concepts that will be used throughout the thesis.
Section 2.1 briefly defines common vocabulary to remove background ambiguity. Sec-
tion 2.2 presents features in the area of modern high-performance networks that have
attracted notice among software developers. Chief among these features is user-level,
zero-copy, asynchronous communication. Section 2.3 then describes existing message-
based communication models with a view towards efficient use of modern network
features. In particular, it introduces the message-passing and message-driven models,
which will be detailed in later chapters. Finally, Sections 2.4 and 2.5 present two
primary applications of networks: parallel and distributed computing.

This chapter is important as it discusses the core concepts that lead to the Progressive
Messages model, which ultimately tries to bridge the gap between applications and
modern commodity hardware.

2.1 Definitions

Today’s high-performance computing systems usually employ multiple processors to
perform different tasks simultaneously. These machines may be classified by the man-
ner of communication that processors use among themselves. In a “shared-memory”
model, memory is accessible by all processors via read / write primitives. This is dif-
ferent from a “distributed-memory” arrangement, in which processors have their own
private memory and thus explicitly communicate with each other, usually through
messages. The shared-memory vs. distributed-memory classification can describe
both hardware (physical partitioning of memory) and software (partitioning of the ad-
dress space). Thus it is possible for a machine to have distributed-memory hardware,
and shared-memory software; this special case is usually referred to as “distributed
shared memory” or occasionally “virtual shared memory”.
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Given that the above taxonomy only classifies computers using their inter-process
communication, it may be useful to describe machines based on latency differences. In
a “symmetric multiprocessor” (SMP), the amount of time required to load a word from
memory is constant, regardless of where in memory that word is stored. The opposite
is the “non-uniform memory access” (NUMA) architecture, in which the time to
fetch may vary from one memory region to another. These classifications are entirely
hardware-based because they rely on performance characteristics. Software may be
identical on either machines as both SMPs and cache-coherent NUMAs (ccNUMAs)
are shared memory.

Software shared-memory systems are programmed with “threads”, which represent
independent steps of execution within a single address space. The communications
medium is usually a set of global variables. In contrast, as mentioned earlier, software
distributed-memory systems have multiple address spaces and thus rely on messages.
The message is an abstraction of communication (similar to a file’s being an abstrac-
tion of IO) and contains meta-data about the communication. This thesis covers
messages.

2.2 Networks

A network is the physical infrastructure that hosts communication among processors
in a distributed-memory environment. The most common network in use today is
Ethernet [20, 38, 93, 116], though there are many others that may be more appropriate
for high-end applications.

The Virtual Interface Architecture (VIA) [27, 49] is an abstract model of user-level
zero-copy communication (see Section 2.2.1) that may be used to enhance existing
networks or design new ones. One VIA-inspired network is the InfiniBand Architec-
ture (IBA) [111], which was devised to connect almost everything within a computing
system and thus replace Ethernet, Fibre Channel, PCI, etc. While its no-legacy goal
has not panned out [106], InfiniBand has gained ground within the high-end inter-
connect market. In addition to hardware, the IBA standard lists a set of “verbs”,
functions that must exist. Originally the syntax of these verbs was left to the vendor,
but the OpenFabrics Alliance eventually created an open-source software stack known
as the OpenFabrics Enterprise Distribution (OFED) [65]. This API will be covered
in more detail in later chapters.

Another VIA-inspired network is the Internet Engineering Task Force (IETF) Re-
mote Data Direct Placement (RDDP) standard, more commonly known as the In-
ternet Wide Area RDMA Protocol (iWARP) [44, 92]. It is an update of the RDMA
Consortium’s RDMA over TCP standard [107], which specifies zero-copy transmis-
sion over legacy TCP (see next section). Because the kernel implementation of the
TCP stack is a tremendous bottleneck, a few vendors now implement TCP in hard-
ware. As simple data losses are rare in tightly coupled network environments, the

5



error-correction mechanisms of TCP may be performed by software while the more
frequently performed communications are handled strictly by logic embedded on the
network interconnect card (NIC). This additional hardware is known as the TCP
offload engine (TOE) [10, 42].

TOE itself does not obviate copying on the receive side, and must be combined with
RDMA hardware (see Section 2.2.2) for totally zero-copy results. The iWARP spec-
ification is a set of different wire protocols intended to be implemented in hardware
(though it seems feasible to emulate them in software for compatibility without the
performance benefits). The main component is the Data Direct Protocol (DDP),
which permits the actual zero-copy transmission. DDP itself does not perform the
transmission; TCP does. However, TCP does not respect message boundaries; it
sends data as a sequence of bytes without regard to protocol data units (PDU). In
this regard, DDP itself may be better suited for SCTP. To run DDP over TCP
requires a tweak known as marker PDU aligned (MPA) framing so as to guarantee
boundaries of messages.

Furthermore, DDP is not intended to be accessed directly. Instead, a separate RDMA
protocol (RDMAP) provides the services to read and write data. Therefore, the entire
RDMA-over-TCP specification is really RDMAP over DDP over MPA over TCP. All
of these protocols are intended to be implemented in hardware. In sum however,
iWARP may be thought of as the principles of InfiniBand applied to Ethernet.

While InfiniBand and iWARP are gaining acceptance in the community, the VIA
model of communication hardly represents the only means of obtaining higher per-
formance in a network. One of the more popular interconnects is Myrinet [17], which
has been around for far longer than the Virtual Interface Architecture. Another ma-
ture network standard is the Scalable Coherent Interface (SCI) [64], which is unique
in that it specifies its topology as a ring instead of the more common switch (see
Section 2.2.3). A third, newer, interconnect is QsNet [102].

The following subsections explain many of the concepts present in modern networks.
Not all networks have every feature described below, nor do they all agree on a best
approach. This thesis will advocate some methods over others because of their impact
on the messaging techniques presented in Chapter 4.

2.2.1 Kernel-Bypass, Zero-Copy and Asynchronous Commu-
nication

As mentioned above, kernel implementations of transmission protocols such as TCP
are a performance bottleneck in communication. However, traditional networks re-
quire the kernel for protection because the network is a shared resource among the
processes. For user-level NIC control, the network must somehow be privatised for
each process.
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One of the classic developments in computer science is virtual memory, a combination
of hardware and software that creates the illusion of private memory for each process,
among other benefits. In the same school of thought, a virtual network interface
protected across process boundaries could be accessed at the user level. With this
technology, the “consumer” manages his own buffers and communication schedule
while the “provider” handles the protection.

Thus, the NIC provides a “private network” for a process, and a process is usually al-
lowed to have multiple such networks. The virtual interface (VI) of VIA refers to this
network and is merely the destination of the user’s communication requests. Commu-
nication takes place over a pair of VIs, one on each of the processing nodes involved
in the transmission. Other networks have different terminology but essentially the
same concept: the user manages his own buffers in “kernel-bypass” communication.

In addition to user-level communication, all of the high-end networks have “zero-
copy” communication. In traditional networks, arriving data is placed in a pre-
allocated buffer and then copied to the user-specified final destination. Copying large
messages can take a long time, and so eliminating this step is beneficial. Another
classic development in computer science is direct memory access (DMA), in which a
device can access main memory directly. Regarding networks, a DMA-enabled NIC
can fetch outgoing data directly from the user’s memory buffer without waiting for
the OS to first copy the data to a kernel-level pool. Thus, zero-copy and kernel-bypass
features are entwined.

An additional benefit of DMA is that the CPU is free to perform other tasks while
the NIC accesses the memory. Because the speed of light is constant and because
the internode connector (the network cable) is longer than the intranode connector
(the system bus), all remote memory accesses will take longer than local memory
accesses. Thus regardless of any tweaks to the NIC or driver, there will always be
communication latency. Therefore, some applications overlap communication with
computation to “hide” message latency.

Yet another classic development in computer science is the cache, and particularly
prefetching to the cache [100]. With prefetching, a processor may request a word
from main memory before it is needed; the processor is able to continue working
while the data is retrieved in the background. Similarly, high-end networks allow
calls for communication before the effects are required.

The user normally submits his request for remote data to a queue on the NIC. VIA-
inspired networks have separate queues for send and receive requests that form “queue
pairs”; other networks make no distinction between requests to send instead of receive.
However the request is lodged, the user must alert the NIC—VIA refers to this action
as pressing the “doorbell”—ordinarily by setting a memory-mapped register. (Most
programming interfaces actually combine the actions of enqueueing and alerting so
that the sequence is accomplished in one stroke.) The processor may continue with
its workload once the request has been acknowledged.
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The user then has three options to determine when the request has been fulfilled. The
VIA networks have a completion queue that the user may investigate; other networks
have a similar mechanism. For these kinds of checks, the user may either poll the
NIC for status, or block until the completion of the request. The third option is
to associate a callback function to be invoked upon completion. Depending on the
network, the callback may be implemented as a thread or as an interrupt. Regardless
of the method used to ensure completion, once the request has been fulfilled, the
results of the communication will be valid.

Kernel-bypass, zero-copy, asynchronous communication is usually presented as a sin-
gle package in modern networks because of the overlap in requirements for hard-
ware support. There are, however, some tradeoffs among these features because of
the way they are implemented [71]. Given such diversity in network capability (see
Section 2.2.3), it is useful to measure the performance of the three characteristics.
Latency measures the benefits of user-level messages, bandwidth demonstrates zero-
copy results, and CPU overhead shows how much communication and computation
can overlap. A fuller explanation of these metrics is available in Section 6.2.

2.2.2 Remote Direct Memory Access

The above capabilities are represented via two-sided communication: one side explic-
itly sends while another side explicitly receives. Two-sided communication does have
a drawback in that only the sending node experiences zero-copy transmission; the
receiving node must intermittently copy the data through a buffer for the simple rea-
son that the receiving NIC does not know where the data is ultimately to be placed.
That is, the application must give the NIC the address of the destination buffer.

With “remote direct memory access” (RDMA), the sending node provides the receiv-
ing node with its destination memory address; at no point does the receiving node
explicitly (from the application’s perspective) handle the message. This one-sided
communication is modeled after classic load / store instructions and thus permits
zero-copy benefits through DMA on the receiving node.

RDMA is not a panacea [59]. For a NIC to access data through DMA, the user’s
buffer must actually be in memory and not paged-out to the disk. The VIA-inspired
networks require that the page be “pinned-down” to physical memory through a
memory registration, which invokes the kernel. That is, the operating system is
actually required for RDMA in VIA, at least for initial communication.

Furthermore, to ensure that only the process that owns the registered memory may
access it, the VIA NICs require permission keys known as “protection tags” during
communication. The sending node must have this protection tag before communica-
tion can even begin, which means that the RDMA network must rely on two-sided
communication as a bootstrap. Of course the protection tag would ideally be cached
on the sending node. For numerous protection tags (if there are many communication
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partners over the network, and each has a large number of buffers), the cache to store
these tags may become quite large.

There is a more subtle problem as well [6]. The Ohio State University’s series of papers
on InfiniBand programming [73, 86, 83, 84, 90] represent a set of design patterns for
VIA. Design patterns are best-practice architecture that permit reuse of a solution
to a common programming problem [56]. Design patterns are also a sign that the
underlying language is incomplete [94]. After all, a pattern implies automation, and
automation implies a machine. That is, VIA does not provide explicit support for
many common communication cases.

QsNet provides RDMA without VIA’s troubles. All remote memory is directly ac-
cessible by the remote process’s virtual address. Protection for this network occurs
through swapping process ids during job startup. Thus, protection is for the whole
process, not just regions of memory. Also, there is no memory pinning with QsNet;
the NIC will simply hold received data until the page is swapped into memory.

QsNet is able to provide these features by means of a kernel patch. These modules
are developed for very specific versions of the kernel based on assumptions regarding
the Linux API. Given this level of required specificity, administering a cluster that
involves kernel patches can be quite tedious.

Whether through kernel patches or user intervention, there is currently no commodity
RDMA network that does not possess serious downsides for the end user. Therefore,
this thesis does not rely on RDMA.

2.2.3 Special Features

Some high-performance networks include unique features that may be of interest to
software developers. While the Progressive Messages model does not require any of
these characteristics, a few interesting properties will be presented here as they did
inspire some subtle aspects of the model.

One very important mechanism for communication reliability is the acknowledgment,
in which a recipient confirms the arrival of data. If the sender does not receive an
acknowledgment within a certain amount of time, it may try to resend the message
(possibly through another path [68]). Networks that are more resilient—able to re-
cover quickly in the event of a packet loss—have higher bandwidth, especially in
error-prone environments [76]. All of the networks described here provide acknowl-
edgments directly in hardware rather than require them from software. What distin-
guishes some of these networks is the necessity of connections (in the TCP sense) to
obtain reliability.

For example, VIA is connection-oriented; the user must have linked two VIs—one local
and one remote—prior to any communication. A VI is exclusive to a connection, and
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a connection is exclusive to a pair of NICs. (The same is true for QsNet, though
the connection setup is not as explicit.) That is, a node must have an established
connection for each concurrently open communication partner in a network, and an
established VI for either endpoint of each connection. All of this information is stored
in memory, either on the NIC or with the host node.

It would appear that this potentially vast amount of data—the information required
for the connections between all pairs—would actually lead to less reliability [101]. If a
remote node is reset, then the local records must be reconfigured. And given the stor-
age requirements of this set-up, it would appear connection-oriented communication
is less scalable as well.

For this reason, the InfiniBand standard offers a “reliable datagram” service that
features acknowledgments but does not require connections. While not widely used,
the ability to communicate reliably without the overhead of connections appears to
be very beneficial. Note that the iWARP standard offers no such datagram service
as TCP is inherently connection-oriented.

Regarding physical connections, most modern networks link nodes together through
a switch, a central hub that routes data to its final destination. The use of a switch
allows for easy scalability as new nodes are added to the network merely by plugging
them in. QsNet’s switch, in addition to point-to-point routing, offers hardware sup-
port for collective communication, thereby giving greater scalability for operations
such as one-to-many broadcasts and many-to-one reductions [39, 40, 110]. InfiniBand
also has multicasting through its “unreliable datagram” service, but only for data
that can fit within a single message transmission unit (up to 4KB).

The use of a switch, however, presents a single point of failure, though this risk may
be reduced through the inclusion of redundant switches. A greater limiting factor
in the use of switches is the length of the cable when connecting a distant node. A
solution to these problems is to not use a switch at all, which is precisely what the
SCI standard dictates. All nodes in this network are placed in a ring in which only
neighbouring nodes are connected together. SCI allows for rings of rings, such as
two-dimensional or three-dimensional torus topologies. This set-up is intended for
better reliability and scalability in very large computing systems.

2.2.4 Shared-Memory Innovations

Though this thesis is dedicated to message-based communication, it may be helpful
to review the state of shared-memory systems. Some trends here are growing rapidly
and will undoubtedly have an impact on distributed-memory computing. Consider,
for example, traditional CPU architecture.

Decreasing transistor sizes have lead to a diminishing Moore’s Law. Chips must
consume ever more energy to yield slightly better performance. This increased con-
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sumption further leads to increased heat generation. Simply decreasing the transistor
size is no longer viable for future growth.

A solution to this issue is the multicore processor, in which many CPUs fit onto one
die [58, 60]. This arrangement allows for multiprocessing with a single chip, thereby
making parallel hardware more accessible in the market. Given the recent widespread
adoption of multicore processors, it is likely that even consumer desktop software will
be written as multithreaded applications [48].

Of course, massively multicore chips can lead to the potential for bus saturation.
The solution to this problem is not to have a bus at all, but rather to embrace a
direct-connect architecture through a link like HyperTransport (HT) [3], in which
components are connected point-to-point. HT has been the subject of some other
supercomputing innovations, such as the InfiniPath network [47].

Despite the name, InfiniPath is not InfiniBand (the two are merely “compatible”).
The NIC features high-speed memory that is mapped into a user-level process. The
NIC notices when an application accesses this mapped memory and then performs
the communication. Thus, it relies on the host node’s CPU to copy the data and
perform any additional set-up.

This architecture of course violates the observations in Section 2.2.1. Indeed, while
InfiniPath can move many small messages in a short time period (by relying on the
sheer speed of the CPU), it permits no overlap of communication and computation,
and therefore provides no performance benefits for large messages [21]. The InfiniPath
vendor’s business plan relied heavily on the adoption of multicore CPUs in the hopes
of making this issue moot.

2.3 Messages

All of the networks discussed here have their own lower-level programming interfaces.
Myrinet has both MX (Myrinet Express) and GM (Glenn’s Messages). QsNet has
Elan and the associated Tports. SCI has SISCI (Software Infrastructure for SCI).
VIA has VIPL (VI Provider Library). Even the Open Group has defined its own
API: RDMA-Capable NIC Programming Interface (RNIC-PI) [108].

Obviously, software written directly for a lower-level interface is not portable. There-
fore, it is beneficial to have an upper-layer protocol (ULP) to support applications.
An early transport-independent API is the user Direct Access Programming Library
(uDAPL) [45], defined by the DAT Collaborative. This ULP provides much of the
same functionality of VIPL, but substitutes notions like queue pairs and virtual in-
terfaces with the more generic “endpoints” and “asynchronous communication”. Ad-
ditionally, uDAPL provides some quality-of-service controls as this feature is natively
present in InfiniBand [30]. Borrowing heavily from uDAPL is the Open Group’s
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Interconnect Transport API (IT-API) [70], which includes unreliable datagram com-
munication, another InfiniBand feature.

While these new APIs may be suitable for new applications, Sockets still have a
major place in application development given the vast amount of existing software
based on the legacy interface. (Also of note is that the new APIs require an external
mechanism for bootstrap, which usually ends up being Sockets anyway.) To maintain
backwards-compatibility with legacy applications, both InfiniBand and iWARP define
the Sockets Direct Protocol (SDP). SDP is a byte-stream oriented transport protocol
(SOCK_STREAM) similar to TCP, but allows for exploitation of RDMA devices. Each
socket in SDP corresponds to a single queue pair.

In some SDP implementations, the software may only require a re-link to use the
new interconnects. For better exploitation though, the Open Group has defined
the Extended Sockets API (ES-API) [115] with functions that handle asynchronous
communication on RDMA networks. This API merely adds a few new subroutines
to traditional Sockets.

What is important to note here is that in all of the variety of networks and their APIs,
one abstraction is consistent: messages. Messages are the dominant abstraction of
communication, regardless of the platform or application. The following subsections
detail two communications paradigms involving messages. Chapter 4 will propose an
alternative model that captures many of the benefits of modern networks.

2.3.1 Message-Passing Platforms

The most straightforward means of communicating with messages is to simply pass
data from one node to another. The basic procedure involves both nodes, in which one
actively sends while the other receives. Because this two-sided model is represented
in the Sockets API and is available on many networks, the message-passing paradigm
has become ubiquitous and is commonly used for its portability. A standard API
available for parallel computing using this model is the Message-Passing Interface
(MPI) [62, 113].

MPI also offers one-sided communication in which the user requests data to be placed
in or retrieved from a remote node’s address space. These semantics (which mimic
get / set accessor methods) map directly to RDMA network capabilities as described
earlier. Thus, in theory, an RDMA-enabled NIC can offload the communication and
thereby have higher performance. To achieve the full potential, the user must overlap
his communication and computation by taking advantage of MPI’s asynchronous
functions; this assumes that the MPI implementation supports independent progress,
whether through the use of threads or interrupts [23].

While MPI has many features, it does not encompass all of message passing. For
example, the ARMCI library [95] can perform one-sided communication of non-
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contiguous data, similar to the POSIX functions readv() and writev(). Further-
more, MPI requires synchronization across processing nodes for seemingly trivial
actions, such as memory registration [19]. The GASnet [18] library can perform
one-sided communication without such restrictions.

One other remote memory access library worth mentioning is Sandia Portals [22].
In this system, each process maintains a queue of events. An event is generated
whenever a message enters a new state of progress, such as submission, completion or
failure. The events are entered into the queue, which the user may check to determine
message progress. The goal is that Portals allows for independent progress and thus
better overlap of communication and computation. The Progressive Messages model
presented in Chapter 4 similarly uses event-driven progress monitoring, albeit through
callbacks rather than a queue that must be checked explicitly.

As well as point-to-point communication, MPI defines functions for collective com-
munication, useful for bulk synchronous operations. This mode of transmission is
usually implemented as coordinated point-to-point message transfers, though it can
be mapped to special network hardware for better performance. This thesis does not
require collective communication.

2.3.2 Message-Driven Platforms

Even the least restrictive message-passing systems lack the functionality many ap-
plications require [24, 25]. Ordinarily the remote node is not alerted (at the user
level) when a message arrives. Thus, the user must probe for incoming messages,
which violates the principle of independent progress. A better approach is for the
user to preordain a function to handle the arrival of a message. In the message-driven
model, an incoming message specifies which handler to execute and may include any
parameters for the handler [63].

The arrival of a message triggers an interrupt or alerts a thread, thus invoking the
handler (for this reason, a precursor to the message-driven paradigm was known as
the “Actor model”). The handler is a small function that runs to completion; it is
usually atomic and may not be interrupted. In many implementations, it may not
block or busy-wait (to prevent deadlock).

There are a number of message-driven implementations, the most common being
the Remote Procedure Call (RPC) [41]. RPCs encapsulate the communications in-
frastructure so that the user believes he is making local function calls. The remote
handler returns a value back to the calling process by means of a message. Both
messages are blocking, which prevents overlap of computation and communication.

The Active Messages library [122] is asynchronous. The handler incorporates the
message’s data and may respond with a result, but the sending node does not block
while waiting for a response. Active Messages was originally created to reduce packet
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processing overhead, and thus allow applications to take full advantage of a high-
performance network. It was designed for library writers and was never intended for
users.

The Charm++ [75] extensions to C++ allow for parallel object-oriented program-
ming. Here a “chare” object represents a basic unit of parallelism. The public
methods of a chare object may be invoked remotely and asynchronously through
a pointer-like structure known as a “proxy”. The Charm++ runtime system will,
for each processor, nondeterministically choose a pending message and invoke its
associated method.

Regardless of idiosyncrasies, message-driven frameworks are better able to handle un-
expected communication. Indeed, a variant of Active Messages serves as the basis for
both GASNet and ARMCI when the underlying network hardware does not natively
support RDMA. The reason is that get / set accessors for abstract data types are
usually implemented as functions anyway, and these accessors act over a network.

This thesis advocates event notification for handling unexpected messages. The Pro-
gressive Messages model extends this concept to all facets of communication, not just
message receipt.

2.4 Applications: Parallel Computing

Parallel computing refers to running a similar job on multiple processors simulta-
neously. The software is often written in a single-program, multiple-data (SPMD)
format, in which the same process executes on different processors with different in-
put. Usually these processes must communicate or synchronize during execution to
ensure correctness or improve efficiency. Many times the communication operations
are performed collectively in that all processes are involved in the bulk exchange of
messages.

As of this writing, the most popular means of parallel programming involves explicit
communication because user-directed messages are portable and flexible, and thus
may be used in many situations [35, 61]. Furthermore, distributed-memory program-
ming solves one of the difficulties of concurrent software development: nondetermi-
nacy [79]. Shared-memory programs may require mutex locks or condition variables,
which present their own troubles as indiscriminate use can lead to deadlock.1

However, explicitly writing parallel software is difficult for reasons that include the
manual division of tasks or data, the job initialization and startup, synchronization,
and the exchange of data [121]. Furthermore, distributed-memory software lacks
the data structures to have a continuously updated shared state. That is, tasks

1There is some active research in the area of lock-free synchronization, particularly with “trans-
actional memory”, but this work has yet to lead to production-level systems.
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that are heavily dependent on each other would do well to have a central location
for globally required information, which implies that they would benefit more from
shared-memory models. And to be fair, nondeterminism is not always a requirement
for concurrency, as witnessed by VLIW processors.

This section covers a few tools that automate some parts of parallel programming.
These compilers and languages manage the common cases, thus abstracting out the
network and freeing the user to develop higher-level software. While a few special-
purpose languages feature radically different syntax and semantics, most are exten-
sions of C or Fortran because of the volume of legacy technical code written in those
two languages. This allows to user to parallelise his sequential code in incremental,
easy-to-debug steps [74].

Parallelising compilers and languages do have downsides though. In abstracting out
the network, they remove direct control of communication, thereby preventing op-
timisations of certain special cases. Today’s parallelising compilers also introduce
their own overhead. The user must weigh these shortcomings against the benefits of
higher-level software development.

2.4.1 Shared-Memory Abstractions

Most high-performance compilers aim to parallelise loops to speed-up technical codes.
Automatic parallelisation is possible but extremely difficult because the semantics of
the sequential program may be changed. Therefore, most users provide some advice
to the compiler. A very common method is to use a standard set of directives known
as OpenMP [31], in which the user expresses which sections of the code are to be
parallel via a “pragma”.

Ordinarily with OpenMP, the software is executed serially by a single master thread.
Upon reaching a parallel loop, slave threads are spawned to perform some iterations.
When the loop completes, the threads are rejoined to the master, which continues
executing alone and sequentially. An important trait of this master / slave model
is that the program’s structure is independent of the system resources. There are
a few rules about what can be parallelised though. For example, the loops must
have a deterministically countable number of iterations. That is, the exact number
of iterations must be determined before the loop executes.

Within the loop, the user specifies the scope of the variables. Variables may be shared
across all threads (typically global variables), or may have private allocations within
each thread (normally local variables). The only communication between two threads
then is through one of these shared variables. By default, OpenMP will privatise the
index of the outermost loop and leave all other variables as shared. Correctness is
left to the user.

To handle race conditions, the user expresses where critical sections are. These
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sections are abstractions for mutex locks and are usually sufficient for synchronization.
Dealing with dependencies, however, is left to the user.

OpenMP has a few mechanisms for handling load imbalance. By default, the schedul-
ing of loop iterations among the threads is performed statically. However, the user
may request that the schedule be dynamic, in which case a fixed-size chunk of iter-
ations is assigned at runtime. A guided self-scheduling using a varying chunk size is
also available.

While these features make OpenMP a great tool for SMPs, because there is no means
for directing data placement—either statically or dynamically—OpenMP has poor
performance on NUMAs [33]. Some vendors have added language extensions that
resemble High Performance Fortran’s directives for data distribution (see below).
Others have experimented with sophisticated page migration routines that move data
closer to the needing thread. None of these schemes are standard as yet.

There have also been recommendations to privatise as much data as possible and only
use shared data to communicate between threads. But one has to wonder whether
this simply degenerates to programming like MPI. For now, there is no clear solution
to using OpenMP beyond SMPs.

In contrast to OpenMP’s task-driven model, in which the user specifies the distri-
bution of iterations among processors, “data-parallel” programming allows users to
specify the distribution of arrays among processors. Only those processors owning the
data will perform the computation. In OpenMP’s master / slave approach, all code
is executed sequentially on one processor by default; in data-parallel programming,
all code is executed on every processor in parallel by default.

The most widely used standard set of extensions for data-parallel programming are
those of High Performance Fortran (HPF) [77]. With HPF, a user declares how to
DISTRIBUTE data among abstract processors, usually in a BLOCK or CYCLIC fashion,
the former intended for applications with nearest-neighbour communication, and the
latter for load-balancing purposes. Additionally, the user may also ALIGN data ele-
ments with each other. The elements of arrays that have thus been mapped will be
assigned to exactly one processor; all other (non-mapped) data is copied to each of
the processors.

To parallelise a loop, the user declares iterations as being INDEPENDENT. Data within
the loop that has been given the NEW attribute will remain private in scope; all other
data is copied to each processor. Correctness is left to the user.

While HPF has been designed for NUMAs, its performance in practice has been un-
predictable [104]. The reason does not appear to be the communication, but rather
the data manipulation that occurs before and after the communication. It is im-
portant here to observe that the performance impact of modern high-performance
networks is actually less of an issue compared to the software’s overhead.
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Another key observation to make at this time is that of the “optimisation envy” of the
parallelising-compiler groups. Just as some OpenMP users seek to exploit NUMAs,
there are a few HPF users who hope to achieve better performance on SMPs [14]. One
approach has been to include DYNAMIC and GUIDED attributes for the SHARE clause as-
sociated with INDEPENDENT. The compiler then produces multithreaded object code,
rather than message-passing code. An important difference with this approach from
the HPF standard is that non-mapped data is owned by a single master thread and is
globally accessible by all other threads. The performance benefit of this approach is
that there is no software translation of the global address (a major source of overhead
during runtime) as the hardware already provides this support.

2.4.2 Partitioned Global Address Spaces

To reconcile the parallelism in both tasks and data, a different programming model
has emerged that claims to have the best of both HPF and OpenMP. It is the par-
titioned global address space (PGAS) model, and has been implemented in a variety
of languages, the most widely used being Unified Parallel C (UPC) [29].

In UPC, by default, all variables are private and every instruction is executed by each
process. However, the user may declare that some data be shared and may specify
its distribution in either block or cyclic form. Furthermore, the user may divide
the iterations of a parallel loop either based on data ownership (like HPF) or in a
thread-specific manner (as in OpenMP). UPC also has synchronization mechanisms
and allows the user to choose between strict or relaxed memory consistency.

The benefit of PGAS is that communication with remote memory resembles a simple
assignment statement within the programming language. Furthermore, the PGAS
compilers are simpler than those for data-parallel languages because the level of so-
phistication is lower. (To that end, there is even a portable PGAS library, known as
Global Arrays (GA) [96], that requires no special compiler.)

While UPC’s constructs appear to be well-suited for parallel programming, its per-
formance has not lived up to expectations as of yet [15, 28, 34]. Again, a major cause
of concern is the address translation. Ordinary pointer manipulation requires integer
arithmetic; manipulating the pointers in UPC require much more computation. The
runtime system will not know where a shared array’s elements lie until after the
translation has been made, even if the element in question resides in local memory.
The performance studies indicate that the time required to access a locally stored
element through a shared array is close to the time required to retrieve a remotely
stored element! To access the locally stored element in a smaller amount of time, the
user must cast the element as private.

Given these results, one might wonder if an SMP or a ccNUMA might be a better
target platform for UPC. A study on the matter did demonstrate substantially bet-
ter access times when forgoing translation in favour of simple loads and stores [12].
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Therefore, PGAS languages may be best suited for multicore CPUs [7].

2.4.3 Other Languages

There are many other programming environments and paradigms for parallel com-
puting. This section gives a brief overview of some newer or lesser known languages.
No independent analysis of these have been found in the literature, thus performance
results will not be listed.

ZPL [114] is an array-based parallel language in which the regions of an array, rather
than the array’s individual elements, are the target of operation. ZPL’s higher level
of abstraction allows for a special optimisation where the compiler generates its own
loop iteration order. The constructs are also easier to parallelise because the commu-
nication requirements are more deterministic.

Because the primary use of parallel computers is to speed-up calculations, it makes
sense to provide a parallel mathematical environment. Star-P [37] is such a platform.
Originally part of an attempt to parallelise MATLAB, Star-P is now an independent
middleware that has very high-level numerical computing constructs. Again, this
level of abstraction aids the compiler in parallelising the user’s desires.

An approach to bring parallel array-based programming to MATLAB has resulted
in Hierarchically Tiled Arrays (HTAs) [55]. An HTA is an array whose elements are
grouped together in tiles. Tiles themselves may be grouped together in tiles. Tiles do
not need to be the same size; the user defines how the array is partitioned and how
the partitions may be partitioned and so on. The compiler may then parallelise the
program by holding the inner tile locally and accessing the outer tiles remotely. This
partitioning scheme resembles data-parallel programming and maintains the ability
to operate on whole chunks of the array.

2.5 Applications: Distributed Computing

Distributed computing ensures that access to resources across a network remains
transparent. Most often the objective is to improve reliability or provide a means
for retrieving shared data, though increased performance may also be an aim. Given
the abstraction requirements, the lowest-level software device tends to be the RPC,
mentioned in Section 2.3.2.

An RPC appears to the user much like a normal function call. However, the function
may reside in the address space of a process different from the caller. The RPC
library handles the data encoding and the message passing, hiding the details of these
actions from the user. An existing procedure need only be registered as a service to
be remotely invoked.
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The RPC system relies on the client / server model, in which the caller consumes
the resources that the server provides. In this manner, distributed software is most
often written in multiple-program, multiple-data (MPMD) form, which simplifies the
handling of unexpectedly arriving messages.

Communication within a distributed system does tend to be slower than in parallel
systems [32]. The MPMD model relies on threads (at least logically), which leads
to overhead from creation, synchronization and switching. Also, a message is not
considered complete until it has been serviced, though this is a concern with two-
sided message passing as well. For some applications, MPMD execution may actually
be faster overall as the threads will hide latency even if the communication is slower.
Furthermore, distributed systems may be more responsive by providing a mechanism
for immediate callbacks, rather than relying on the user’s polling. These are some
trade-offs that must be evaluated for each application.

The following sections cover a few of the more common applications in distributed
computing.

2.5.1 File Systems

A distributed file system presents users with a single logical file system even if storage
resources are physically located across a network [81]. Remote directories may be
mounted into a machine’s local name space. By using a consistent naming scheme, it
is possible to have the same user directories present on any workstation in a network,
thereby providing mobility for the end user.

A distributed file system must be provided by a server, though this machine may in
fact be a client of another file system. Clients may access remote files just as they
do local ones; the server performs all file operations independently. The file system
is implemented as software, either in the kernel or as a user-level service, by means
of RPCs to handle create, read, write and delete operations.

For performance, the file is often cached on the client, similar to how open local files
are buffered in a conventional file system. Of course, if two clients modify the same file,
then cache coherence becomes an issue. A server in a “stateful” file system maintains
information about clients, which allows the server to alert the clients that a change
has been made and that the buffers must be flushed. A server in a “stateless” file
system maintains no information; each action from the client is self-contained. The
benefit here is that the client can crash with no side-effects to the server. Likewise,
the server can even reboot with minimal impact on the client.

The most common file system is Sun’s Network File System (NFS) [117], which usu-
ally serves as the baseline when considering other architectures. In addition to its
use as a workgroup filesystem, NFS has been extended to be a back-end for appli-
cation servers. By mapping RPCs to RDMA transports like the Virtual Interface
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Architecture, NFS can have high performance [26]. Furthermore, the Direct Access
File System (DAFS) [46] extended the NFS protocol with RDMA to include richer
semantics, such as shared file locks that can recover if the node that owns the lock
has crashed. The RDMA of course requires that the memory be registered, but the
server may be able to cache commonly accessed regions [51].

There are filesystems that exist beyond NFS. Newer architectures may use more
recent communications infrastructures; Lustre [124] aims for greater scalability in
clustered systems by using Sandia Portals.

2.5.2 Databases

A distributed database stores and processes information on a number of nodes [13].
The architecture for these systems can be distinguished by how data responsibilities
are shared among the processors.

In a “shared-nothing” architecture, the partitioning is such that each compute node
owns a subset of the data. That is, a node will operate exclusively on a particular
subset. Scalability of course depends on wise partitioning. The physical partitioning
may be that a compute node places its data portion on its local disk, and that all
nodes are connected via a high-speed network. Such a scheme—which resembles a
storage area network—reduces fault tolerance as a node crash makes a portion of the
database inaccessible. Therefore, the physical partitioning may actually share the
disks so that one node can “take over” in the event that another node crashes. This
is approach that IBM’s DB2 favours [16].

In a “shared-everything” (or “shared-disk”) architecture, any compute node can op-
erate on any portion of the database. The physical layout usually involves network-
attached storage, in which all nodes communicate with a separate, shared disk via
a high-speed interconnect. Again the logical partitioning is key for scalability. The
obvious downside to a shared-everything architecture is that there may be enormous
contention when numerous nodes attempt to communicate with the disk simultane-
ously. Oracle RAC builds a shared cache on each of the compute nodes by using the
network to maintain coherency [98].

Both DB2 and Oracle RAC use uDAPL to communicate among nodes in the server,
and the Sockets Direct Protocol to communicate with the client node.

2.5.3 Web Services

Most PCs connected to the Internet today are underused, which means that their
computing powers could be shared and combined to form a supercomputer on-the-
fly. SETI@home [2, 78] uses many volunteer computers around the world to process
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observations made in the sky. The program works over HTTP to get around firewalls
and supports two types of communications from clients: requests for more work, and
solutions to previous work requests. There is no communication between clients.
Because observations in the sky are independent from one another, the work is easy
to parallelise. This model of computing is generally known as “grid” computing [53]
and is available through software packages such as Globus [54] and Condor [82].

Given the restrictions on inter-client communication, this model of computing is ill-
suited for applications that cannot be divided into individual units. However, the
“Web services” used in grid computing and other Internet applications do provide an
interesting case study. SOAP2 [80] is an RPC protocol that communicates with XML
over HTTP. While flexible, it has a number of performance drawbacks: the XML
encoding / decoding and the need to reestablish the TCP connection for each SOAP
message [103].

A competing model of Web services programming is Representational State Trans-
fer (REST) [50], in which HTTP’s own facilities are used to specify a service. For
example, the URL identifies the desired resource while the method (POST, PUT, GET,
or DELETE) specifies the desired action. In analogy to remote memory access as de-
scribed earlier, SOAP is like relying on GASNet or ARMCI, whereas REST is like
having RDMA capabilities directly. Of course, neither of these systems are expected
to have nearly the performance required in a parallel computing environment, and
thus their respective overheads are usually acceptable.

One final Web communications paradigm worth noting is AJAX (Asynchronous Java-
Script and XML) [57], which relies on the XMLHttpRequest API. The client machine
can initiate an HTTP message with a server (usually through REST) and request that
a callback be invoked when the status of communication changes. This indeed is the
essence of the Progressive Messages model. The material in this thesis was developed
independently of Web services and is aimed at high-performance computing applica-
tions. However, AJAX’s success in production-level software already provides strong
evidence for event-driven message tracking.

2.6 Summary

This chapter introduced the starting concepts for this thesis. We focused on mes-
sages since that is the most portable and low-level communication primitive. Parallel
computing applications rely on messages in distributed-memory systems. While there
are higher-level frameworks such the partitioned global address space model, the best
performance outside multicore chips has been recorded from explicit communication.
Likewise, distributed computing applications like file systems and databases hide

2The W3C has considered the definition “Service Oriented Access Protocol”, but officially SOAP
stands for nothing.
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resource partitioning from the user, but still require robust messaging for implemen-
tation.

A few of the modern network features presented in this chapter will form the as-
sumed platform for this thesis. User-level communication handles messaging without
the need of the kernel. Zero-copy communication further provides communication
without intermediate copying, and often accompanies user-level messaging. Finally,
asynchronous communication permits independent message progress, which overlaps
communication handling with the user’s computation needs. Together, these features
form the messaging infrastructure that this thesis will assume is present.

The messaging paradigms presented in this chapter bridge the gap between appli-
cations and networks. Message-passing primitives like Socket’s send() and recv()

are ubiquitous and easily usable for single-threaded applications. Message-driven
semantics, like remote procedure calls, are available for applications that require con-
currency. This thesis takes the view that neither of these models fully capture how
parallel or distributed applications are developed, nor do these models map well to
modern network features. This belief will be explained in Chapter 3.
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Chapter 3

Formalising Existing Messaging
Systems

The previous chapter discussed the tangible systems available to us that use and
transmit messages. This chapter identifies some common theoretical constructs in
messaging models through formal semantics. We will need these semantics in the next
chapter to describe Progressive Messages and its relationship to existing platforms.
Because there is no standard formal definition of message-passing or message-driven
models, we must make our own.

Section 3.1 presents the message-driven semantics and Section 3.2 presents message-
passing semantics. The message-driven model is presented first simply because its
syntax is better defined in the literature. Section 3.3 will be shown that message-
driven semantics can be defined in terms of message-passing and vice-versa. Sec-
tions 3.4 and 3.5 will present a few common software examples and how existing
semantics are used to encode these examples. This chapter should ideally give moti-
vation for a different way of handling communication, which will be revealed in the
next chapter.

3.1 Message-Driven Semantics

As mentioned in Section 2.3.2, message-driven frameworks operate by invoking a
handler whenever a message arrives. Many of these frameworks, like Active Messages
and Charm++, are represented by asynchronous RPCs. The user specifies what a
process is supposed to do when a particular message arrives.

To inject some formalism into our message-driven semantics, we can look towards
process algebras. A process algebra [8] is a framework for reasoning about concur-
rency. It is a labeled transition system that describes the behaviours that occur as
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a result of interaction in concurrent systems. A process is represented as a directed
graph where the nodes are states and the edges are transitions. In this respect, the
transition system is similar to the state machines of automata theory, but it does not
necessarily have finitely many states or transitions.

There are many process algebras. Unlike MPI’s ubiquity in message-passing, there is
no one algebra that has risen above the others. So for our purposes, we may as well just
pick one and carry on. We will identify the process algebra Communicating Sequential
Processes (CSP) [67, 109] as the representative of message-driven semantics.1

The simplest CSP process is STOP . There is no progress beyond a STOP and the
process does not communicate.

Now consider a process P that triggers when event a occurs:

a→ P

This is read “a then P” and is known as “prefixing”. Thus, it is possible to define a
complete process that halts when an action occurs:

P = a→ STOP

In the context of a service, an application defined this way could only ever handle
one event before shutting down. CSP allows recursion in process definitions:

P = a→ P

Thus, a server that responds to one request at a time can be defined as:

SERVER = request → response → SERVER

CSP has a choice operation to define alternative event possibilities:

(a→ P | b→ Q)

So we can extend the server definition to explicitly state what happens during an
unrecoverable error:

SERVER = (request → response → SERVER | error → STOP)

1In particular, CSP has gained in popularity recently as the basis for the concurrency model in
the Go programming language.
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CSP has no global variables; each process has local variables and and can perform
boolean and arithmetic operations. Processes must communicate with each other, and
it is CSP’s communication primitives that are the primary interest of this section.
Sending a value v over a channel c and continuing as process P is represented by:

c!v → P

Likewise, receiving a value v over a channel c and continuing as process P is repre-
sented by:

c?v → P (v)

Suppose our server from above implements a function f and communicates via a
bidirectional socket. Then a perpetual request/response is indicated by:

SERVER = socket?x→ socket !f(x)→ SERVER

3.2 Message-Passing Semantics

Message-passing frameworks are often not as sophisticated as message-driven seman-
tics, but they are important to cover since almost all communication is implemented
via message passing at the lowest level of the stack. As described in Section 2.3.1,
message-passing frameworks simply have one node send data while another node re-
ceives it.

For the purposes of this thesis, we define message-passing semantics as the Cypher-
Leu semantics [43], which is the formal basis of the Message-Passing Interface (MPI).
Cypher-Leu does not have algebraic syntax, so we define our own to match the syntax
from the message-driven semantics.

Given a value v and a channel c, the following non-blocking communication primitives
are available in Cypher-Leu:

Post Send r := c ⇑ v
Post Recv r := c ⇓ v
Wait .(r) ≡ while ¬ / (r) do SKIP end

Poll /(r) ≡
{

true if request has completed
false otherwise

The r above is a “request object”, which uniquely identifies the communication at-
tempt. SKIP is a process that terminates immediately and successfully. Unlike with
STOP , further progress is allowed following a SKIP .
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We will add the sequential composition operator from CSP. This process behaves
like P initially; when P terminates, the process behaves like Q:

(P ;Q)

There are two properties that come directly from the above definitions (≡ means
indistinguishable):

(SKIP ;P ) ≡ P ≡ (P ; SKIP)

(STOP ;P ) ≡ STOP

Consider this example process, which begins a communication, completes a series of
steps, and then finishes the communication:2

P = r := c ⇑ v;P1;P2; · · · ;Pn; .(r)

Message-passing semantics allow for wild cards in the receive channel, which means
that a message may be received on any channel. The following is perfectly reasonable
(the specific channel with the message is returned by the wait primitive):

r :=⇓ v; · · · ; c := .(r)

For the sake of clarity, message-passing semantics include blocking communication:

Send c ↑ v ≡ r := c ⇑ v; .(r)
Recv c ↓ v ≡ r := c ⇓ v; .(r)

Combining the above two receive operators, we have blocking communication with a
wild-card channel (the specific channel is returned when the message is received):3

c :=↓ v
2This is similar to a “superstep” in the Bulk-Synchronous Parallel model of computation.
3This is the mechanism for multiplexing, like select() in the Sockets API.
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3.3 Equivalence of Message-Passing and Message-

Driven Semantics

The models introduced in the previous sections present very different mechanisms
for receiving data. (It should be clear that sending data is equivalent when using
message-passing’s blocking semantics.) The message-driven paradigm triggers a han-
dler when a message arrives, whereas the message-passing paradigm requires the user
to explicitly receive the message in the thread that needs it. Interestingly though,
either model can be implemented in terms of the other.

The primary use case for message-driven programming is a service handler:

(c1?v1 → P1(v1) | c2?v2 → P2(v2) | · · · | cn?vn → Pn(vn))

Each channel represents a separate process that will be invoked upon message re-
ceipt. This fits naturally within the framework of a process algebra, which as men-
tioned above is simply a labeled transition system. The state transitions are easily
represented by the receiving channel.

To perform service handling within the context of a procedural message-passing
model, we will need a look-up table to map a given channel to the desired process.

table.register(c1, P1); table.register(c2, P2); · · · ; table.register(cn, Pn)

With the table ready, we can perpetually invoke the correct process when a message
arrives. We will use the blocking receive with a wild card:

c :=↓ v;P := table.lookup(c);P (v)

This method of implementing message-driven in terms of message-passing is straight-
forward. The converse, however, is much more difficult because message-driven han-
dlers are assumed to be non-blocking. In a single-threaded dispatch like above, block-
ing on one handler will cause the entire system to become unresponsive. (The dispatch
could be multi-threaded, though that is unlikely in practice because the number of
threads is unbounded.)

The technique for absorbing the blocking process is via stack ripping [1]. The user
must establish a continuation to store his state before invoking an asynchronous
wrapper to an otherwise blocking routine. Upon completion of the routine, the user’s
state will continue. Thus, the handler is split into two or more sub-handlers that
must reference a global state.

27



Given that either model can be implemented in terms of the other, the message-
passing and message-driven models are equivalent in capability. Expressiveness within
a programming language is a different issue.

3.4 Example: Scientific Computing

Given the two existing semantics for messaging systems, we will now investigate how
common coding problems are expressed in each model. Consider the example of
parallelising a loop in a scientific program. Many technical codes feature a loop that
iterates over a load of work. The load may be a matrix whose elements are needed for
arithmetic, or a graph whose edges are traversed. In general, such a loop resembles:

main loop:

perform unit of work from load

Here we assume that there is a “main loop” for the program, and that the load
contains divisible units of work that each require the same amount of time to compute.
All units are independent and may be executed in any order.

If an even division of the work load is possible, then this loop may be run on multiple
processors simply by using static distributions of the load as inputs. This straight-
forward parallelisation technique—using different units from the load as inputs for
different processors—is quite effective for classes of regularly divisible problems.

On the other hand, if the problem to be executed is “irregular”, meaning that the
work load cannot be evenly divided, then the software must feature dynamic load
balancing. When one processor’s load runs low, it must ask another processor for
a portion of its load [123]. (This assumes that all tasks are independent and may
be executed on any processor in any sequence.) The intended result is that over
the course of the software’s execution, the loads will eventually become equal. This
scheme is entirely decentralized and does not depend on the topology of the network;
it is portable, scalable and fault-tolerant, not to mention simple.

Beyond load balancing, a second and more serious issue is failure within the system.
A quick running program (where the result is available before the mean-time between
component failure) might run as-is. But if the software is to run for much longer,
then there must be some coordinating communication among the processors. In a
fault-tolerant system, there may be no central server; thus it is reasonable to assume
that all processing nodes are peers. Therefore, the coordinating communication must
take place between two processors [36].

In summary, dynamic load balancing and fault-tolerance are required to achieve scal-
ability and reliability. The remainder of this chapter considers how message-passing
and message-driven approaches attempt to achieve these goals.
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3.4.1 Message-Passing Approach

With a message-passing library like MPI, the user can simply send a request for more
work to a randomly selected peer. A processor then needs to poll the network to
check for such a request from other nodes. If such a request has come through, then
the processor must respond with a portion of its own work load. And finally, upon
receiving a response with more work, a node must incorporate the data into its own
load. A sketch of the algorithm appears as follows:

main loop:

2perform unit of work from load (if any)

4if load size is below a threshold:

loop until request ack has been received:

6randomly select a node

send a request for more work to node

8
if there is a request for more work on network:

10send a response with portion from load

if response ack has been received:

12discard portion

14if there is a response with more work on network:

incorporate work into load

When a processor is ready to request more work, it must make sure that the randomly
selected peer is still alive. Hence, the processor must send requests to different peers
until one replies with an acknowledgment (line number 5 above). The acknowledg-
ment is different from the response with more work; it is merely a receipt that the
message had been received by the remote NIC. Many modern networks with indepen-
dent progress are able to send the acknowledgment automatically. Because the user
need not worry about sending an acknowledgment, that step is not in the algorithm.

An acknowledgment is also needed before a portion of work may be discarded (line
number 11). When a node is ready to respond with a portion from its load, it must
make sure that the originally requesting node has not crashed. Thus, the portion will
only be deleted if an acknowledgment comes through.

It is also worth noting that a requested node may respond with an empty portion of
work. Because incorporating an empty portion does nothing to change the load (line
number 15), the load size will still be under threshold and thus the processor will
continue to make requests. Also, because a processor must incorporate any portion
received, an erroneous response—an unrequested portion of work—will not lead to a
loss of work.
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While the message-passing approach is able to provide fault tolerance, it lacks scala-
bility. The delay in waiting for acknowledgments prevents a processor from carrying
out other tasks. Furthermore, the processor will be unable to handle arriving mes-
sages when it is performing its own work (line number 2). The lack of “as-needed”
responsiveness greatly increases the latency between recognizing that the load is too
small, and obtaining a portion to incorporate into the load.

3.4.2 Message-Driven Approach

In message-driven systems like Charm++, the user specifies handling of messages
prior to their arrival. Rather than polling the network for messages explicitly, a
processor expects to be alerted so that it may respond to communication “as needed”.
The algorithm follows:

1upon receipt of request message:

send a response with portion from load

3if response ack has been received:

discard portion

5
upon receipt of response message:

7incorporate work into load

9main loop:

perform unit of work from load (if any)

11
if load size is below a threshold:

13loop until request ack has been received:

randomly select a node

15send a request for more work to node

Here, the processor will perform its own work and only handle requests or responses
when needed. The result is greater scalability than the message-passing approach.
However, it still suffers from the delay in waiting for acknowledgments, and thus does
not provide optimum performance.

3.5 Example: Order Manager

Financial services companies such as stock-brokerage firms require an order manager
to route customer purchases to the stock exchange. This software must be able to
send orders and receive acknowledgments or execution reports. It also must have a
mechanism for noticing that an outstanding order message has not been acknowledged
so that the trader can take necessary action. All of this order management must take
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place concurrently with other data that might be coming in. For example, the order
manager might have to keep track of stock prices that are streaming alongside the
execution reports.4

Consider this message-passing implementation:

1main loop:

if there is a new price on the network:

3incorporate the new datum

5if ready to send new order:

send order

7
if there is an acknowledgment or execution report:

9clear outstanding order

11if an order is pending for too long:

cancel the order and handle error

This involves a lot of polling, so a message-driven approach may be more attractive:

upon acknowledgment or execution report:

2clear outstanding order

4main loop:

if there is a new price on the network:

6incorporate the new datum

8if ready to send new order:

send order

10
if an order is pending for too long:

12cancel the order and handle error

While this absolves explicitly checking for the order report, the user must still check
for the latent (unacknowledged) orders.

3.6 Summary

This chapter described the two existing messaging frameworks in greater detail. The
message-passing model uses explicit send and receive operations to handle commu-

4This is not merely theoretical; in practice, traditional order managers receive streaming market
updates via UDP and simultaneously communicate their orders with the exchange via the FIX
Protocol [52], which is based on TCP.

31



nication, whereas the message-driven model relies on callbacks to handle message
receipt. This chapter presented message-driven semantics as a subset of CSP and
message-passing semantics as an algebra for the Cypher-Leu model.

This chapter also presented two example applications, namely work-stealing in sci-
entific loops and a financial order manager. The message-driven approach presented
here improved upon the message-passing model when computing irregular problems
in an unreliable environment. Both however suffered a delay when handling acknowl-
edgments. Some users have circumvented this latency by employing threads, but such
practice is non-standard as general-purpose intraprocess concurrency is not provided
by these models.

The ideal communication primitives would therefore provide explicit support for con-
currency. This implies that the send-side semantics must be non-blocking. (The re-
ceiving side is already non-blocking in the message-driven paradigm since the action
is triggered by message arrival.) Further, we can mirror the message-driven model
by stating that the sending side is alerted when the message successfully arrives at
its destination. But we can take this a step forward still to say that the sending
side is also alerted in the event of an unrecoverable failure. In fact, the sending and
receiving sides both can be alerted anytime the progress of the message has changed.
This notion is the basis of the Progressive Messages model, which will be presented
in the next chapter.
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Chapter 4

Tracking Message Progress

From the previous chapter, we saw the opportunity for a new communication paradigm
that relies on event-driven progress monitoring. The rationale behind this philoso-
phy stems from many motivating factors. The first is performance gained through
entirely asynchronous communication, which makes it possible to completely overlap
communication and computation. Another benefit is portability, since user-managed
buffers are essential to many modern high-performance networks. A third is ease of
use, which improves programmer productivity for large-scale applications.

Event-driven programming has been available in GUI APIs for a long time for similar
reasons.1 Indeed, this thesis takes the stance that increasing application complexity
in the high-performance computing domain mirrors the rise of GUIs. If the message-
passing paradigm is analogous to command-line interfaces (linear train of though),
then an event-driven model of communication is similar to graphical user interfaces.

This chapter presents the Progressive Messages model of communication, which alerts
the user’s application of changes in message progress. Section 4.1 provides the algebra
as an extension of the message-driven model with status notification. The benefits of
this deceptively simple construct are demonstrated in Section 4.2, which recodes the
examples from the previous chapter in a more evented notification scheme. Section 4.3
presents the AJAX web programming paradigm, which is a widely used model that
is very similar to Progress Messages.

4.1 Progressive Messages

We begin with two simple primitives:

send (message, destination, function)

1Example: Update the menu when a particular button is pressed.
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recv (buffer, source, function)

The message is the actual data to send; the buffer is where to store this data upon
receipt. The destination / source references the remote process, such as IP address
and port, or MPI node and tag. The function is the action to invoke when there is a
change in progress, and can be a callback handle or a lambda definition.

These primitives are non-blocking; they merely schedule the communication on the
underlying infrastructure. The function is invoked when the communication’s state
changes, particularly success, failure, “ready”2 and timeout.

At first glance, the event-driven nature of this paradigm has some similarities with
the message-driven model. Recall the algebra for receiving data in the message-driven
semantics:

c?v → P (v)

This makes the implicit assumption that the message was received correctly; it has
no expression for error handling. Instead, the Progressive Messages model generalizes
the state transition to include message progress:

(c?v
success−−−−→ P (v) | c?v failure−−−−→ Q)

Likewise, sending data has progress monitoring as well. For example:

(c!v
ready−−−→ P | c!v timeout−−−−→ Q)

Thus, the CSP prefix notation is extended to include auxiliary state-change informa-
tion that is specific to the desired event.

a
σ−→ P

Conceivably any sequence of state change can be captured, though this thesis is only
concerned with communication routines.

4.1.1 Syntax and Semantics

The terms of Progressive Messages in Backus-Naur Form is:

2Within the context of send-side messaging, “ready” occurs when the buffer is safe to reuse. This
state is always complimentary with success, failure and timeout; however, it is an independent state
on networks that copy the user-level data to another location before actually sending.
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P := X | P ;P | P ′ | SKIP | STOP

P ′ := a
σ−→ P | P ′|P ′

We are only concerned with communication, and not any features that may be present
in other process algebra. We now present operational semantics [105].

Sequential Composition

In a composite process P ;Q, P is run to completion, at which point Q is run to
completion. Note that P can still succeed even if its trigger represents failure in
communication; this is intentional since P may be the failure handler!

P ⇒ P ′

P ;Q⇒ Q
[P completes]

P ⇒ P ′

P ;Q⇒ P ′;Q
[P does not complete]

Prefixing

The process a
σ−→ P will maintain its state if there is no change in message progress.

a
σ−→ P ⇒ a

σ−→ P
[σ has not triggered]

Once the communication event has triggered, the process will behave as P .

a
σ−→ P ⇒ P

[σ has triggered]

An event is triggered by communication progress.

Choice

Unlike full CSP, Progressive Messages only considers alternative (“guarded”) com-
mands. There are no other choice operators.

(a
σ−→ P ) | (a σ′

−→ Q)⇒ P
[σ has triggered]

(a
σ−→ P ) | (a σ′

−→ Q)⇒ Q
[σ′ has triggered]
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Given a choice of processes following communication progress, the triggered event
determines which process will proceed.

Successful Termination

SKIP is effectively a no-op; its process terminates immediately.

SKIP ;P ⇒ P

Deadlock

STOP is a process that will not transition to any other state (ie, it does not termi-
nate).

STOP ⇒ STOP

4.1.2 Axioms

Choice is commutative.

P | Q ≡ Q | P

Choice is associative.

P | (Q | R) ≡ (P | Q) | R

Choice is idempotent.

P | P ≡ P

Choice is right-distributive over sequential composition.

(P | Q);R ≡ P ;R | Q;R

Sequential composition is associative.

(P ;Q);R ≡ P ; (Q;R)
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4.2 Examples

Formally comparing expressiveness between Progressive Messages and message-driven
semantics is almost impossible because the set of observable events is different [99].
Intuitively though, Progressive Messages provides extra capabilities because it can
natively encode unsuccessful communication. Consider the examples from Chapter 3.
Recall that the first goal was to build a fault-tolerant load-balancing loop that is free
of delayed responses.

As in the message-driven approach (Section 3.4.2), the processor should respond
immediately to a request for more work. The improvement that the Progressive
Messages approach provides is that it does not wait for an acknowledgment. Instead,
a completion event for the response triggers the portion to be discarded.

upon receipt of request message:

2send a response with portion from load

4upon receipt of response acknowledgment:

discard portion

6
upon receipt of response message:

8incorporate work into load

10main loop:

perform unit of work from load (if any)

12
if load size is below a threshold:

14randomly select a node

send a request for more work to node

16
upon receipt of request failure:

18randomly select a node

send a request for more work to node

The Progressive Messages approach also takes advantage of the failure event to move
secondary work requests out of the main loop (line 17). This means that communi-
cation and computation can completely overlap, while providing the fault tolerance
and load balancing that had been our original goal.

The second example from Chapter 3 was an order manager (Section 3.5). We will
modify the message-driven approach to add a handler for latent orders:

1upon acknowledgment or execution report:

clear outstanding order

3
main loop:
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5if there is a new price on the network:

incorporate the new datum

7
if ready to send new order:

9send order

11upon timeout of outstanding order:

cancel the order and handle error

Again, by moving the latency check out of the main loop, we provide fault tolerance
without the need for a CPU poll.

4.3 Real-World Progressive Messages: AJAX

As mentioned in Section 2.5.3, AJAX is a programming model based on the XML-
HttpRequest API. It is often used to create a dynamic look-and-feel to a website,
such as autocomplete forms or page refreshes without full reloading. The concepts in
this thesis were developed independently and for a different domain (low latency ap-
plications), but it useful to see a widely used implementation of event-driven message
handling.

Consider this JavaScript snippet, which presents an alert box containing any contents
from a requested URL:

function loadDoc (url)

{

// set callback to alertXml ()

xmlhttp = new XMLHttpRequest ();

xmlhttp.onreadystatechange = alertXml;

// GET the url asynchronously

xmlhttp.open ("GET", url , true);

xmlhttp.send (null);

// handler

function alertXml ()

{

if (xmlhttp.readyState == 4 && xmlhttp.status == 200)

{

alert (xmlhttp.responseText);

}

}

}
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The “status” is merely the HTTP return status, like 404 for file not found, or 200 for
OK. The possible values for the “readyState” are

0 Uninitialized
1 Set-up
2 Sent
3 Receiving
4 Complete

This asynchronous communication prevents the client from locking up should the
server not respond. It is also possible to build ad-hoc fault tolerance for the particular
application. XMLHttpRequest has too high latency to be useful for high-performance
computing applications because each communication in HTTP requires a disconnect.
That means every message requires a new TCP handshake.

4.4 Summary

This chapter presented the Progressive Messages model, which uses a callback for
progress monitoring. User applications can declare how to handle message state
changes, which in theory leads to more expressiveness. The algebra presented here is
an extension to message-driven semantics.

This chapter then provided solutions to some examples that message-passing and
message-driven paradigms had trouble with. By associating a callback for timeouts
or failures, the user can declare error-handling routines asynchronously. This should
help with unreliable environments and irregular applications. This chapter closed
with an overview of AJAX, a web programming paradigm that is very similar to
Progressive Messages. The popularity of AJAX demonstrates a growing movement
towards event-driven communication handling.

Just as event-driven programming has made intricate GUIs feasible, progress monitor-
ing in Progressive Messages provides support for more sophisticated communication
applications. User productivity and communication / computation overlap are en-
hanced directly by the simple concept of event notification. The remainder of this
thesis explores the implementation of a library that supports Progressive Messages.
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Chapter 5

Design and Implementation

The Progressive Messages model presented in the previous chapter provides a new
framework for reasoning about communication. Because existing programming tools
do not support this paradigm directly on high-performance networks, this thesis in-
troduces MATE (Message Alerts Through Events), a library based directly on Pro-
gressive Messages. MATE was implemented twice, once using MPI and once using
InfiniBand’s OpenFabrics API directly. The implementations detailed in this chapter
serve as a proof-of-concept for event-driven message notification.

Section 5.1 presents MATE’s specification. Because this library was programmed
more than once, it was helpful to know exactly what each implementation would need
to do. Section 5.2 explains MATE’s MPI implementation while Section 5.3 details
the OpenFabrics implementation. The MPI version was much easier because of the
higher-level routines. Indeed, the OpenFabrics version ran into a few difficulties, as
detailed in the next chapter.

5.1 MATE Specification

The specification is primarily broken down into event handling, process management,
communication routines, and message progress. The types, functions and constants
are listed in Table 5.1.

5.1.1 Events, Handles and Schedules

MATE, intended for distributed-memory multiprocessor machines, generates an event
whenever a message enters a new state of progress1. The user may choose to observe

1While Progressive Messages was conceived for monitoring termination, MATE was implemented
with the view more progress notification is possible.
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mate_schedule_t mate_startup() MATE_ANYTAG

mate_receipt_t mate_shutdown() MATE_ANYSRC

mate_errcode_t mate_mypid() MATE_PROCMAX

mate_pid_t mate_numprocs() MATE_TAGMAX

mate_tag_t mate_put() MATE_SUCCESS

mate_callback_t mate_get() MATE_ERROR

mate_send()

mate_recv()

mate_progress()

Table 5.1: Types, functions and constants for library

the events by whatever means are best suited for his application. Events within
MATE represent completion, submission, timeout and failure.

Message “completion” occurs when the acknowledgment is received by the origin
process; the user is guaranteed that delivery has occurred with this event. Specifically
it means that the message has arrived at the remote node; it does not necessarily mean
that the data is visible at the user level on the remote node. (There is also no further
event if the remote node suddenly crashes after acknowledging receipt.)

A “submission” event indicates that the buffer on the origin process may be reused.
As such, it is only valid for sending data; this event does not occur when receiving
data. Submission does not indicate that the message has been received by the remote
node. MATE guarantees delivery of a message if such is possible, so the underlying
system must check for acknowledgments even after alerting the user that the buffer
is reusable.

A “timeout” event means that an acknowledgment has not been received within a
fixed amount of time after a message has been submitted (usually one second); it does
not necessarily mean though that the message has failed to arrive at its destination. A
timeout will cause the communication request to cancel on the local node. Even if the
data subsequently reaches the remote node following a timeout alert, the completion
alert will not be activated. Note that if the data has already been submitted, then
there will be no way to stop it; the local node may record a timeout even if the remote
node has received the data. If the user chooses not to handle a timeout, then the
communication will only expire if it completes or fails. As with the submission event,
the underlying system must check for acknowledgments even if the user chooses to
ignore timeouts.

A “failure” occurs when it is known that the message will never reach its destination.
Examples include inability to allocate resources during transmission and uncondi-
tional refusal to accept the message by the remote node.

These four events are matched against a callback function and a data buffer via a
“schedule”. Each communication requires a schedule, though any or all of the fields
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may be blank if the user chooses to ignore a particular event. A schedule may be
unique for a given instance of communication, or it may be shared among multiple
communications. The schedule is of type mate_schedule_t and the callback function
is of type mate_callback_t:

typedef void (mate_callback_t) ( mate_receipt_t *receipt ,

void *data );

typedef struct { mate_callback_t *completion_handle;

void *completion_data;

mate_callback_t *submission_handle;

void *submission_data;

mate_callback_t *timeout_handle;

void *timeout_data;

mate_callback_t *failure_handle;

void *failure_data; } mate_schedule_t;

The callback function will be invoked when the associated event is triggered for that
particular message. The listed data buffer will be passed to this function, along with
a receipt that contains information about the message. This receipt may also hold
implementation-specific data. These receipts are of type mate_receipt_t:

typedef struct { mate_tag_t tag;

size_t length;

mate_pid_t local_pid;

mate_pid_t remote_pid;

void *local_address;

void *remote_address;

...} mate_receipt_t;

The user may directly read the fields of a receipt to determine the message’s tag,
length, local and remote process id, and the local and remote buffer address. The
user may not, however, overwrite the values in these fields.

5.1.2 Process Management

There are necessarily a few features within MATE to manage the computing resources.
To launch the communications environment, the user must call mate_startup().
The processing nodes are specified via a separate interface such as an environment
variable, system file, or command line option (the details of this interface can be
found in the implementation’s documentation). The mate_startup() function must
be called exactly once and from the main thread before any other MATE functions
may be invoked.
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mate_errcode_t mate_startup ( int *argc , char *** argv );

To gracefully exit the communications environment, the user must call mate_

shutdown() from the main thread exactly once. This function acts immediately;
all outstanding communication is cancelled and any pending handlers may be lost.
No other MATE functions may be invoked after this.

mate_errcode_t mate_shutdown ();

Both mate_startup() and mate_shutdown(), as with most functions in MATE, re-
turn an error code. The user may check this code to debug his program. The code,
of type mate_errcode_t, represents incorrect parameters; system faults during com-
munication usually trigger the failure event rather than pass back error codes.

typedef enum {MATE_SUCCESS ,

MATE_ERROR} mate_errcode_t;

The only functions that do not return an error code are for querying system state.
For example, to determine the size of the computing environment user may request
the number of processes with mate_numprocs(). The total number of processes will
not be greater than MATE_PROCMAX. The type size_t is defined in <stddef.h>.

size_t mate_numprocs ();

#define MATE_PROCMAX (( size_t) ...)

Individual processes within the system are logically represented by a unique integer
in the range

[0,mate numprocs()− 1].

This representative integer is of type mate_pid_t. The user may query a process for
its id via mate_mypid().

typedef unsigned long mate_pid_t;

mate_pid_t mate_mypid ();

5.1.3 Communication

Beyond MATE’s use of schedules, the message interface is fairly standard. All com-
munication is point-to-point between two peers. The routines transfer contiguous
data between two processes (which are allowed to be the same). A message is sent
even if the specified buffer length is zero. A schedule must be specified, though any
of the handlers may in fact be blank. The functions return “immediately” after the
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user-specified receipt has been filled. It is not safe to reuse the buffers until an event
has occurred.

The one-sided message functions transfer data without explicit involvement of the
remote process. The user needs to only specify the virtual address on the remote
node; the implementation will handle pinning and permissions independently of user
involvement if such direction is required. Within the C language, the address may be
represented in the array-offset format &base[index].

The mate_put() function places data from a local buffer into a remote address space.

mate_errcode_t mate_put ( void *buffer ,

size_t length ,

mate_pid_t destination ,

void *address ,

mate_schedule_t *schedule );

The mate_get() function extracts data from a remote address space.

mate_errcode_t mate_get ( void *buffer ,

size_t length ,

mate_pid_t source ,

void *address ,

mate_schedule_t *schedule );

The two-sided message functions require some degree of synchronization between two
processes. Rather than specify the remote address, the user lists a unique tag that is
matched between both nodes. The tag is an integer of type mate_tag_t and may be
any non-negative value not greater than MATE_TAGMAX.

typedef unsigned long mate_tag_t;

#define MATE_TAGMAX (( mate_tag_t) ...)

The mate_send() function submits data to a remote node.

mate_errcode_t mate_send ( void *buffer ,

size_t length ,

mate_pid_t destination ,

mate_tag_t tag ,

mate_schedule_t *schedule );

The mate_recv() function matches the tag against a submission from the remote
node. Note however that the user may specify a wildcard by listing MATE_ANYSRC or
MATE_ANYTAG. Upon completion, the wildcards will be filled with their true values,
accessible in the receipt.
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#define MATE_ANYSRC (( mate_pid_t) ...)

#define MATE_ANYTAG (( mate_tag_t) ...)

mate_errcode_t mate_recv ( void *buffer ,

size_t maxlength ,

mate_pid_t source ,

mate_tag_t tag ,

mate_schedule_t *schedule );

5.1.4 Progress

Communication functions in MATE initiate a message and then return without wait-
ing for completion (or any other event). Thus, message progress occurs concurrently
with the user’s application. The order of progress among multiple messages is not
guaranteed, and thus communication to and from overlapping buffers without some
form of synchronization may produce unintended results.

Handlers are executed “eventually” after an event, not necessarily “immediately”.
The reason is that handlers are atomic with respect to each other and thus must
be queued if more than one exists at a given time. The order of execution is not
guaranteed. Handlers are not atomic with respect to the application; therefore, the
user must be wary of race conditions. Handlers may not block or busy wait, and must
run to completion. Handlers are intended to be small maintenance functions.

Message progress that occurs independently in the background frees the user from
resource management. While this scenario is ideal, it is not always feasible as some
network interfaces present no means for user-level interrupt handling. For these net-
works, MATE must poll for progress. A single-threaded implementation will require
that the user call the library to progress further.

If the user does not need to call a particular function from the library, then he may
invoke mate_progress(). This may be a no-op on systems with independent progress.

mate_errcode_t mate_progress ();

This function always returns MATE_SUCCESS. Any trouble encountered during a mes-
sage’s progress will invoke the failure handler, if provided.

5.1.5 Miscellaneous

The buffer—supplied as the first parameter to the communication functions—must
remain “alive” until submission (mate_put() and mate_send()) or completion (mate_

45



get() and mate_recv()). Buffers in static or heap space are usually fine; buffers in
stack space (local variables) can be troublesome if the function that initiated the
message returns before the event has been triggered.

Another issue is thread safety, which varies for the communication functions by im-
plementation (details in the implementation’s documentation). The mate_startup()
and mate_shutdown() functions may only be called from the main thread, whereas
mate_mypid() and mate_numprocs() are inherently thread-safe.

MATE is a small library, and as such does not have any function that can be easily
built from another. It does not marshal data, thereby providing no direct support
for heterogeneous environments or noncontiguous data. It does not have collective
communication, which means it is impossible to take advantage of a particular net-
work’s capabilities for such. It does not present more than one private context for
tags, and therefore cannot be used by libraries. MATE is merely a tool that supports
the Progressive Messages model of communication, and as such provides unrestricted
message semantics.

5.2 MPI Implementation

Because MATE (and indeed Progressive Messages) is so general, it can be imple-
mented on a variety of systems. As a demonstration, MATE was built for the
Message-Passing Interface. MPI guarantees completion of communication and ac-
cepts unexpected messages, greatly easing development. It does not, however, allow
for user-level interrupt handling. Furthermore, many implementations of MPI are
not thread safe, nor are they able to progress independently of user direction. These
limitations require MATE to poll for progress.

An earlier attempt at building MATE over MPI was multithreaded; all calls to MPI
were in a unique thread, separate from the user’s code. While this appeared to
function correctly, the performance was unacceptably poor. MATE was polling and
thread-switching. Now MATE is single threaded.

MPI has non-blocking two-sided communication functions, MPI_Isend() and MPI_

Irecv(), which return a “request” variable. MPI_Test() queries this variable and
returns a boolean value of whether the communication has completed by that point.
MATE essentially performs all communication using these functions. MATE’s two-
sided communication functions call their corresponding functions in MPI. They then
pack the request variable, a copy of the user’s schedule, a receipt of the communi-
cation, and a timestamp of the communication (from MPI_Wtime()) into a list of
“pending communication”.

Calls to mate_progress() check this list by querying the request variables and check-
ing the timestamps against the current time. If a message has completed, then the
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corresponding handler is invoked (if available). If an incomplete message is more than
a second old, then it is cancelled (with MPI_Cancel()) and the timeout handler is
invoked. If there is any trouble during mate_progress(), such as an MPI function’s
returning an error code, then the failure handler is invoked.

The MATE wild cards (MATE_ANYSRC and MATE_ANYTAG) are replaced by the MPI
wild cards (MPI_ANY_SOURCE and MPI_ANY_TAG) in mate_recv(); they are switched
back in mate_progress(). Differentiation between submission and completion in
mate_send() is a little tricky since MPI requires the user to pick one or the other,
not both. The equivalent of submission is a “buffered” send in MPI, whereas the
equivalent of completion is a “synchronous” send. By default, MATE chooses the
synchronous one through MPI_Issend(). If, however, the user does not specify a
completion and timeout handler, then MATE invokes MPI’s default send in the hopes
that this may be optimised for buffered use. The reason the timeout handle must
be blank for this substitution is that a buffered send is “completed” in MPI when
the buffer is reusable, not necessarily when the other side has received it. If the user
specifies both a completion and submission handler, then the latter is called only
when the former is ready.

5.2.1 One-sided Communication

The Progressive Messages model does not natively incorporate one-sided communica-
tion because of the lack of progress notification. However, MATE includes this feature
as a proof-of-concept. The semantic goals are similar for two-sided communication in
that a user-defined schedule specifies when to perform what action.

MATE’s one-sided communication is by far the most difficult feature to implement
with MPI. Version 2 of the standard presents one-sided functions, but many im-
plementations of MPI actually lack them, or only provide partial support. For this
reason, MATE’s one-sided functions are implemented entirely via the two-sided func-
tions.

All of the functionality starts with a set of pre-posted internal mate_recv()’s against
unique dedicated tags. The completion handlers associated with these mate_recv()’s
perform the remote node’s functionality.

For example, a mate_get() essentially requests the remote node to send back the
required data. Therefore, the completion handler for a mate_recv() against the
internal MATE_GET_TAG merely sends back the requested data and then reposts the
mate_recv(). The local node, after having requested the remote node for the data,
posts its own mate_recv() in anticipation.

To prevent conflict in the event of multiple simultaneous one-sided messages, the local
node generates a unique tag for each message that is passed to the remote node; this
tag essentially functions as a private channel with no fear of clashes.
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As for mate_put(), the easiest approach is to send the data directly and have the
remote node’s completion handler copy it to its intended destination. This technique,
known as an “eager” protocol [87], is used for small messages. Large messages—
greater than one kilobyte in size—suffer greatly in performance from the intermediary
copying. They instead require a “rendezvous” protocol.

For large messages, the local node first alerts the remote node of an impending mes-
sage and then calls mate_recv(). The remote node responds with a newly generated
unique tag along with all of the information from the local node, and then calls
mate_recv() against the desired location using the unique tag. The local node, upon
receiving the response, sends the actual data using the unique tag, thus completing
a transfer with no intermediary copying. The reason the remote node responds with
all of the local node’s information is so that the local node may remain nearly state-
less; if the response never comes through, then the local node holds minimal unused
resources (though it will call the timeout handle).

One final item worth noting: MPI has “communicators” that act as private contexts
for communication, just as virtual memory provides a private context for the address
space. MPI programs are allowed more than one communicator. MATE uses its own
to prevent clashes in case the user’s application calls MPI directly.

5.2.2 A Note About Multiplexing

There have been previous attempts to bring event-driven communication to MPI
via select() constructs for TCP [89]. That work used a separate thread to handle
message progress independently of the user’s main thread. The results from That work
showed that the point-to-point performance was indeed slightly worse for bandwidth,
latency and utilisation because of the thread-switching overhead. However, the user’s
overall performance was better because of reduced message waiting time.

That particular article did not address high-performance networks covered in Sec-
tion 2.2 because InfiniBand and similar systems do not expose a simple file descriptor,
and thus require more detailed (and non-portable) work to achieve effects equivalent
to select(). As a result, the cited work relied on copying and kernel intervention
to realise its goals, which this thesis specifically sought to avoid by means of user-
managed buffers.

5.3 OpenFabrics Implementation

This implementation uses a fully connected topology; that is, each node is connected
to each other node during startup using the “reliable connected” (RC) communication
service [87]. Ideally a connection would only be established when one is necessary, but
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this is not possible when one-sided messages are permitted as the remote node will not
know that a message is incomming. While it is possible to use a “reliable datagram”
(RD) communication service in InfiniBand, this construct is not available on other
networks. As one of the design considerations for MATE was that the architecture
should easily port to iWARP, among others, we are left with RC.

Because there is a connection between each pair of nodes, each node allocates a queue
pair (QP) for each other node. There is also a shared receive queue (SRQ) among
all QPs to facilitate message receipt. Furthermore, there are two completion queues
(CQs), one for sent data and one for received.

InfiniBand has end-to-end flow control for channel semantics in hardware, which is
necessary for reliability. If the receiver is not ready yet—no descriptor posted—the
sender will slow down and retry. This mechanism makes a “miss” fairly expensive, so
it would be better to pre-post a sufficient number of descriptors [85]. During startup,
the receiver posts a number of descriptors for each node in the network. The sender
maintains a count of “credits” for each destination; the count decreases when a send
descriptor is posted, and increases when the descriptor is acknowledged. Should the
count fall below a threshold, the sender alerts the receiver via a piggy-backed signal
in a message’s metadata; at this point the receiver posts more descriptors and the
sender increments the credit count.

5.3.1 Receiving Data

There are three tables on each node, two for pending messages (outgoing and incom-
ing) and one for unexpected messages (incoming). Entries in the pending message
tables contain the local receipt, schedule, and timestamp of the message, along with
a pointer to the transmitted message structure. This transmitted message structure,
which constitutes the entries of the unexpected message table, contains the remote
receipt, type of message, and a pointer to the InfiniBand memory registration for
itself. The transmitted message structure also contains the data that is communi-
cated during two-sided operations, and as such contains a field of raw data for eager
protocol messages.

These tables are traversed by the host node CPU. Some high-performance networks
contain a programmable NIC that can perform the work, thus offloading the respon-
sibility from the CPU. Because taking advantage of this feature, however, limits the
portability of the software architecture, MATE uses the host CPU. There is one
optimisation here of note: the number of entries in the table that must be traversed
greatly affects the latency [120]. Therefore, the table is not a flat list, but rather a
hash table where the message tag is the key. The entries are also stored as a queue
in order of message posting; the reason for this is explained in Section 5.3.4.

When a user posts a receive request via mate_recv(), the implementation first checks
the table of unexpected messages to determine if the desired message has already
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arrived. If present, the entry is removed and the completion handle (if any) is invoked.
MATE also checks to see if the sending node has requested more receive descriptors—
the credit count has fallen below the threshold—and complies as needed.

If the user’s requested message is not in the unexpected message table, then MATE
fills out a pending message entry and stores it in the incoming table.

5.3.2 Sending Data

When the user requests to send data via mate_send(), MATE checks the size of the
message before acting. Small messages are transmitted via an eager protocol; MATE
fills out a transmitted message structure such that the raw data field is a copy of
the user’s data. Large messages are communicated via a rendezvous protocol [118] in
which the local node alerts the remote node of the local address. The remote node
then uses an RDMA “read” to obtain the data and, upon completion, responds with
a signal to alert the originating node that the communication has finished.

Regardless of protocol, the buffer used for communication must be pinned. As pinning
is so expensive, it is desirable to avoid this step when possible. For a transmitted
message structure, this implies a pool of pre-pinned buffers. Buffers other than the
transmitted message structure are not as static. Luckily though, the principle of
locality implies caching [119]; when the user requires that a buffer be pinned, MATE
pins the whole set of pages containing the buffer and then stores the registration key
in a table. Future pinning requirements consult this table for the key. Entries are
maintained in a least-frequently-used manner to facilitate unpinning when too many
buffers are registered.

One-sided operations—mate_put() and mate_get()—use an algorithm similar to
the one found in [11]. If the local node has the key required to perform one-sided
communication, then the operation simply proceeds via RDMA. If, however, the local
node does not have the key, then it requests it from the remote node via two-sided
communication. The remote node looks for the key in a table of pinned buffers (the
buffer is pinned automatically if the search fails) and responds to the originating node
with the key.

5.3.3 Progress Thread

The implementation is multithreaded to meet MATE’s goal of independent progress.
A progress thread is spawned at startup and blocks until the one of the completion
queues (CQs) signals completion of a descriptor. (While it is possible for the thread
to poll for completion, such a design is not particularly desirable for performance
reasons [72].)
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If the completed communication was a send operation, then the corresponding entry
in the pending message table is removed and the completion handle invoked.

If the completed communication was a two-sided receive operation, then the pending
message table is checked to see if the user has already requested this item. If so,
then the completion handle is called; otherwise, an entry is stored in the unexpected
message table. In either case, the descriptor is reposted to the receive queue.

For a request for a pinned buffer key—required in one-sided communication, as ex-
plained in the previous section—the node sends back the key.

If anything should go wrong during the execution, such as inability to allocate re-
sources, then a failure handler is invoked where possible.

5.3.4 Timeout Thread

Timeouts are treated via a special thread that is spawned at startup. This thread
sleeps for a fixed amount of time, one second by default. Upon waking, it scans the
pending message tables for any entries that are older than the fixed amount of time.
For each such entry that lists a timeout handle, the entry is removed and the handle
invoked.

As mentioned earlier, all of the entries in the pending message tables are added in
FIFO order. The reason is that scanning may stop immediately if an entry (for
that particular hash key) is not older than the fixed amount of time. All remaining
entries will be younger and thus are known not to have timed out. This scheme was
introduced for better scalability with regard to the number of outstanding messages.

5.4 Summary

This chapter presented MATE (Message Alerts Through Events), a library that sup-
ports Progressive Messages communication on high-performance networks. We began
with the specification to give an idea of how such a platform would actually look.
MATE is intended to be a simple and small library, and only provides the features it
must have.

With the specification, this chapter then covered implementation details for MPI and
OpenFabrics. The MPI version was pretty straightforward, though it unfortunately
needed polling because of MPI’s progress dependencies. With notification solved, the
implementation simply used MPI’s non-blocking routines.

The OpenFabrics implementation was much more involved. We must pre-post receive
descriptors and ensure that the sending process knows when the descriptors will be
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exhausted. The recipient must be mindful of expected and unexpected messages and
must segregate them accordingly. Further, the sender must cache the memory pinning
to avoid expensive calls to the kernel. Altogether, the numerous “moving parts” of
the OpenFabrics implementation made it a far more complicated product.

The next chapter will explore scalability simulations for Progressive Messages and
performance results for MATE.
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Chapter 6

Performance Results

The implementations of MATE described in the previous chapter demonstrate the
portability of the Progressive Messages model. This chapter investigates the model’s
performance. Given that performance is a primary motivator for this thesis, we
will consider very carefully what the impact is of event-driven communication. In
particular, we want to know if software applications can scale because of the wait-free
policy that anchors Progressive Messages.

Section 6.1 investigates the scalability through a simulation. It assesses wall-clock
costs for messaging frameworks that require waiting. Our contention is that asyn-
chronous communication leads to better scalability, among other benefits.

Section 6.2 presents some network metrics that may be of interest. In particular, it
tests MATE’s latency and bandwidth over an InfiniBand-compatible network. Im-
proving these “unit tests” is not a primary goal of this thesis, though it is always
desirable to have fast communication. This section explains some issues encountered
with the experimental testbed we used.

6.1 Simulating Scalability

Chapter 3 presented a common example problem of work stealing in a scientific loop.
The three messaging frameworks described in this thesis handle the communication
in very different ways. The message-passing model must explicitly check for progress
after completing an atomic unit of work. The message-driven model can handle
incoming requests and responses concurrently with a work unit, but must wait for
sent data to be acknowledged by the network for reliability. The Progressive Messages
model does not wait for anything provided it can still perform some unit of work.

It is fruitful to see what effect the delay scenarios have on scalability in really large
systems. Because we do not have access to a machine with 16K processors, we must
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simulate the impact. The workload in this simulation is a randomly generated list
of 128K positive integers that is right-tail normally distributed. (The non-uniform
distribution reflects extreme cases where one work unit may take far longer than
average.) The workload is initially split among the processes in the system.

Consider a single step in our simulation1, where a step represent all processes’ com-
pletion of a single work unit:

// simulate a step for a given model

simstep :{[ balance] // "balance" parameter is a higher -

// order function for which messaging

// framework is being tested

// take a step of progress and increment the clocks

// by the size of waiting process , if one exists;

// remove the finished process from the process

// queue

clocks +:0f^first each procs; ‘procs set 1_’procs;

// generate list of procs with workloads below

// the threshold; these are "sources"

sources:where threshold >sum each procs;

// for each source , randomly select "targets"

// for rebalancing

targets :( count sources)?numprocs;

// balance any (source ,target) pairs with the

// higher -order function

if[not all null targets; (balance .) each

sources ,’targets ];

}

There are two globals variables in the above function: clocks is an array that rep-
resents the elapsed wall-clock times for each process, and procs represents each pro-
cess’s assigned work units in time required to complete the task. The procs variable
is an arrays of arrays in which the first index represents the process id and the second
index corresponds to a specific task in the queue.

The above function progresses every process through one work unit and records the
impact to the wall clock. It then determines which processes have work sizes that
are below the threshold (“sources”) and randomly chooses other processes to request
work from (“targets”). Note that targets are not exclusive; it is possible for multiple
sources to pick the same target, which is expected in a real-world scenario.

1All code in this chapter is written with q/kdb+, a proprietary programming language used in the
financial industry for analyzing time-series data. It is very similar in ideology to array programming
languages APL and J.
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6.1.1 Message-Passing Scalability

The balance parameter from above is a higher-order function for the particular mes-
saging framework that will be simulated in balancing the load between a source and
target. We will look at the message-passing version first since it is the most compli-
cated to simulate:

// balance with message passing

balancemp :{ // x and y are implicit parameters:

// x is a single source

// y is the paired target

// don ’t trade with self: return false if process

// has selected itself

if[x=y;:0b];

// temporary placeholders for the target

// and source process queues

py:procs y;

px:procs x;

// target can only handle request after

// a work unit is complete

while[( clocks[x]>clocks y)and 0<count py;

clocks[y]+: first py; py:1_py];

// source must wait for target to receive request;

// this prevents look -ahead corruption too

newclock:max clocks x,y;

// source can only handle reponse after

// a work unit is complete

while[(newclock >clocks x)and 0<count px; clocks[x]+: first

px; px:1_px];

// account for network latency on both target and source

clocks[x,y]+: latency;

// prevent thrashing by checking that target will

// have enough to do

if[(3* threshold)<sum py; :0b];

// target keeps second half

procs[y]:last p:(0 ,(1+ count py)div 2)cut py;

// source gets target ’s first half

procs[x]:px ,first p;

// return true

1b

}
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The first issue to be mindful of in the message-passing model is that the target can
only handle requests after a work unit has completed; furthermore, the source can
only handle responses after a work unit has completed (if there is any work left to
do). Thus, the clocks of both processes must advance to represent a completed work
unit. The message-passing model additionally suffers from the network latency of
waiting for acknowledgements.

The code then will perform a sanity check so that the source will remain reasonably
above the threshold after splitting its workload. (The very first attempt at coding
this simulation did not include a thrashing check, so the model did not scale at all
beyond a handful of processes.) If the sanity check is satisfied, then the balancer
partitions the workload and returns true (1b).

At this point it may be fruitful to ask what a reasonable threshold and latency might
be for the simulation. Obviously, more latency simply leads to worse results for all
models. We also want the latency to be significantly less than the average time
to complete a single work unit, otherwise load balancing would be pointless. The
randomly generated workload was the same for all simulation runs and had a median
of six. (The normally-distributed random numbers were multiplied by ten so that they
could be rounded down to integer values for readability while testing the software.)
Because the median was six, the latency was simply set to 0.5.

As for the threshold, the simulation runs tried a few different values. The lower the
threshold, the better the scalability is for every communication model simply because
the processes are not trying to request work far in advance of when they actually
need it. That is, a high threshold contributed to more thrashing.

6.1.2 Event-Driven Scalability

We now turn our attention to event-driven simulations. Processes with event-driven
communication do not need to complete a workload before handling a request or
response.

In message-driven communication, a process must still wait for acknowledgements
when sending a message.

// balance with message driven

balancemd :{ // x and y are implicit parameters:

// x is a single source

// y is the paired target

// don ’t trade with self: return false if process

// has selected itself

if[x=y;:0b];

// temporary placeholders for the target

// and source process queues
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py:procs y;

px:procs x;

// account for network latency on both target and source

clocks[x,y]+: latency;

// prevent thrashing by checking that target will

// have enough to do

if[(3* threshold)<sum py; :0b];

// target keeps second half

procs[y]:last p:(0 ,(1+ count py)div 2)cut py;

// source gets target ’s first half

procs[x]:px ,first p;

// return true

1b

}

The final simulation is for Progressive Messages. Unlike with the message-driven
model, processes with Progressive Messages do not wait for network acknowledge-
ments when sending a message. That means the process is always computing.

// balance with progressive messages

balancepm :{ // x and y are implicit parameters:

// x is a single source

// y is the paired target

// don ’t trade with self: return false if process

// has selected itself

if[x=y;:0b];

// temporary placeholders for the target

// and source process queues

py:procs y;

px:procs x;

// prevent thrashing by checking that target will

// have enough to do

if[(3* threshold)<sum py; :0b];

// target keeps second half

procs[y]:last p:(0 ,(1+ count py)div 2)cut py;

// source gets target ’s first half

procs[x]:px ,first p;

// return true

1b

}
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Figure 6.1: Speed-ups for when load-balancing threshold is 10

6.1.3 Results

The simulation was run across the three messaging models for the varying threshold
levels. Each run used the same set of randomly generated data that fit a right-tail
normal distribution (all numbers were positive). As described above, a wall clock was
incremented according to the implications of a model—message-passing waits for a
work unit to complete before handling requests and responses, whereas event-driven
models can overlap their computation and communication.

Figures 6.1–6.3 present the scalability graphs. While linear scalability is always the
goal, it is in practice often unrealizable for large sets of processes. That is, the
efficiency drops as the universe of compute nodes increases. The reason is that there is
extra overhead from state synchronization in the system, plus there is the possibility
of thrashing. Indeed, larger threshold values lead to less scalability because the
processes are requesting work too soon, leading to unnecessary communication and
state changes.
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Figure 6.2: Speed-ups for when load-balancing threshold is 100

6.2 Network Metrics

Beyond scalability, the high-performance computing industry uses a number of stan-
dard metrics to describe the communications system itself. By far the most common
is bandwidth, the amount of information that can be transfered in a given time.
Another metric is latency, the amount of time required for a message to reach its
destination. A third and less reported number is utilization, the percentage of time
the software requires the CPU. This section gives an overview of these metrics.

6.2.1 Bandwidth

Bandwidth, the rate of data movement, is usually measured as the number of bits
per second. It is not constant; it grows as the message size increases, up to a point.
The maximum bit rate is the figure usually quoted in the literature, though not all
applications realize this much because bandwidth is lower for small messages [66]. A
typical bandwidth plot vs packet size is demonstrated in Figure 6.4.

To assess how much lower the bandwidth is for smaller messages, we can investigate
how quickly the bandwidth rises. A faster-rising bandwidth means faster transfers
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Figure 6.3: Speed-ups for when load-balancing threshold is 1000

for the same message size. A simple metric that captures this acceleration is the
“half-power point”, designated by n1/2, which is the message size at which half of
the maximum bandwidth becomes available. A lower number means a faster rising
bandwidth. See Figure 6.5 for an example.

6.2.2 Latency

Latency is a measure of delay, expressed as a unit of time. While bandwidth can be
increased by adding multiple lines of communication, latency is fundamentally limited
by the underlying system. Its main components are (see Figure 6.6):

1. the software running on the host CPU,

2. the bus that must be traversed to reach the NIC,

3. the NIC itself,

4. the cable connecting the NIC to the switch,

5. the switch itself.
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Figure 6.4: Typical bandwidth plot resembles a sigmoid curve

The switch traditionally is not an issue. And beyond shortening the length, there
is not much improvement available for the cable. However, it is possible to remove
the switch and one of the cables if the network’s topology is such that nodes are
connected directly to each other. This is an additional argument in favour of a torus
topology (see the fault tolerance argument in Section 2.2.3).

The software can be speeded up by having a faster CPU and by bypassing the kernel—
that is why high-performance networks operate at the user level. Furthermore, RDMA
removes the need for copying; see Section 2.2.2.

As for the bus, one suggestion is to remove it altogether and plug the NIC directly
into the CPU (see Section 2.2.4). This design has the added benefit of using the host
node’s CPU instead of requiring an ASIC on the NIC, thereby making the network
faster and cheaper. This design however, increases the CPU utilization.

6.2.3 CPU Utilization

CPU utilization traditionally has not been quoted much, though it is growing in
importance as offloading becomes more common (see Section 2.2.1). This metric
represents the percentage of time the process requires the CPU. A lower number
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Figure 6.5: The bandwidth of Network 4 rises faster than the bandwidth of Network 1,
even though the maximum bandwidth is the same

CPU NIC

Bus

Cable
Switch

Figure 6.6: A message travels through the bus, NIC, cable, and switch
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indicates that the CPU is free to do more work, which increases the amount of com-
munication that may be overlapped with computing work. Overlapping has the effect
of diminishing (hiding) the consequences of latency in the application. Thus, the
“effective latency”, particularly for large messages, will be much lower.

CPU utilization is essentially the usage figure obtained from the POSIX top com-
mand. This can be computed by comparing iterative calls to getrusage() and
gettimeofday(). Note that utilization is only valid for that process on that core; it
does not consider the presence of other cores, particularly in regards to multi-threaded
applications.

6.2.4 Ping Tests

To test the effectiveness of MATE, we use a series of ping tests based on the stan-
dard Intel MPI Benchmarks [69] and NetPIPE [112]. These tests are point-to-point
between a pair of processes; they measure bandwidth, latency, and utilization. Most
of the tests have the option of waiting for either submission or completion.

The most common benchmark test is a “ping pong”, in which node 0 sends a message
to node 1, and then node 1 responds with a message back to node 0; the figure quoted
is one-half the time required for this trip (see Figure 6.7). This test gives a sense of
unidirectional communication.

Another popular test, “ping ping”, sees both nodes simultaneously sending a message
to each other. The objective here is to determine how well the network responds to
an incoming message.

The “ping put” test measures one-sided push, whereas the “ping get” measures one-
sided pull. The latter does not have a “ready” event as buffer resuse exists only for
sending data.

6.2.5 Other Tests

While the ping tests are common, they do not reflect the effects of communica-
tion on the wider system. Other benchmarks, such as NAS [9] and HPC Challenge
(HPCC) [88], investigate how “balanced” the whole computing environment is, partic-
ularly for parallel applications. Much of these tests involve “kernels” which are com-
mon computing tasks for technical codes, like computational fluid dynamics. These
benchmarks have been ported to multiple platforms, so it feasible that MATE could
target these in the future.
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Ping Ping
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Figure 6.7: Conceptual message paths during the ping tests

6.2.6 Results

We performed ping tests on the MATE / MPI and MATE / IB2 implementations
described in Chapter 5. The testbed was an InfiniPath cluster (see Section 2.2.4)
featuring dual-core 2.2 GHz Opterons. Note that InfiniPath has no offloading; its
CPU utilization is 100%, as confirmed by the tests. This characteristic significantly
hampers MATE’s performance because of the requisite polling.

Figures 6.8–6.11 show the results of ping pong and ping ping for both native MPI
and MATE / MPI. The polling damages MATE’s latency, though the maximum
bandwidth is not affected. However, the native MPI does rise faster; its n1/2 is 4KB
versus 8KB for MATE / MPI. One peculiarity is that InfiniPath’s 1.5µsec latency
only exists for regular MPI sends, which return as soon as the buffer is reusable. Tests
with “synchronous” sends (which wait until the data has been received) took around
12µsec.

InfiniPath’s MPI has no one-sided message capability, so the ping put and the ping
get have only been tested with MATE / MPI. The put test (Figures 6.12 and 6.13)
features better latency than the ping ping because it invokes MPI’s send via the
eager protocol and takes advantage of the peculiar performance skew noted in the
last paragraph. The get test (Figures 6.14 and 6.15) closer resembles the ping pong
since it sends the request and receives the result.

The final set of tests is on MATE / IB (Figures 6.16 and 6.17). InfiniPath has verbs

2The implementation was created when OpenFabrics was known as OpenIB, hence the name
“MATE / IB”.
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Figure 6.8: Ping pong latency between two nodes

API of its own; the only available stack is an early beta emulation released before
OpenFabrics was fully codified.3 The stack implementation had a bug that prevented
proper reuse of pinned buffers. This means that MATE / IB’s rendezvous and one-
sided communication could not handle more than a few iterations during the ping
test (the test requires at least a thousand iterations to amortize the startup costs).
Thus, only the eager protocol communication results are available, and even then
their actual potential cannot be fully realized on the testbed cluster.

6.3 Summary

This chapter presented some performance results for the Progressive Messages model.
We began by comparing the scalability of each of the three models presented in this
thesis over a work-stealing simulation. The message-passing model must wait for a
work unit to complete before handling any communication, which leads to signifi-
cant delays in responding to work requests; both event-driven models do not have
this problem. However, the message-driven model must wait for network acknowl-
edgements when sending a message, which causes some delay before the process can

3InfiniPath’s vendor was bought-out shortly after releasing the early beta.
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Figure 6.9: Ping pong bandwidth between two nodes

return to computing a work unit. Only the Progressive Messages model is free from
both types of delays; it can fully overlap communication and computation, which
leads to better scalability.

The other major result in this chapter is the “unit tests” of common network metrics
using MATE. While not the primary focus of this thesis, lower latency and faster-
rising bandwidth (lower n1/2) are always desirable properties to have. The results do
indicate worse latency, though it is difficult to tell whether how much of that impact
comes from the peculiarities of the testbed network. In either case, applications that
require scaling to over many processes will often sacrifice latency for the goal of more
efficiency.
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Figure 6.10: Ping ping latency between two nodes
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Figure 6.11: Ping ping bandwidth between two nodes
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Figure 6.12: Put latency between two nodes (OpenFabrics)
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Figure 6.13: Put bandwidth between two nodes (OpenFabrics)
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Figure 6.14: Get latency between two nodes (OpenFabrics)
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Figure 6.15: Get bandwidth between two nodes (OpenFabrics)
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Figure 6.16: Ping pong latency between two nodes using OpenFabrics IB stack
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Figure 6.17: Ping ping latency between two nodes using OpenFabrics IB stack
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Chapter 7

Conclusion

This thesis introduced the Progressive Messages model of communication. It is an
event-driven framework that allows user applications to observe message termination.
The semantics are an extension to the message-driven model that alerts the applica-
tion about changes in the message progress. Both of these event-driven models can
be contrasted to the message-passing model, which has no event notification.

This research was motivated by the trouble in parallelising a time-consuming loop.
The message-passing approach requires that the dynamic load-balancing logic execute
within the main loop. That design takes time away from the computation, which
affects scalability. The message-driven approach improves the design by handling
new messages only on arrival. But it must at least wait for acknowledgements when
sending data. The solution is to employ concurrent and as-needed processing of
messages. The message-driven model has this for successful receives. This thesis
went a step further to use alerts on all types of message progress.

We simulated the scalability of all three models in a dynamic load-blanacing applica-
tion. Progressive Messages was found to be more efficient than either message-passing
or message-driven because the software can respond to work requests at anytime.
That means the communication and computation phases are overlapped, which leads
to greater efficiency.

Because the literature does not define the precise semantics of message-passing or
message-driven models, we identified them as Cypher-Leu (formal MPI) and a subset
of CSP, respectively. We then covered how applications are programmed with these
models and hopefully demonstrated the expressiveness of Progressive Messages.

To develop software with the Progressive Messages model, we implemented the MATE
library with both MPI and OpenFabrics. This API specifies an action through a
schedule that maps events and callbacks. The “unit test” performance metrics for
MATE indicate some added latency, though it is difficult to tell how much of this
overhead comes from the software and how much comes from the hardware or device
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drivers.

7.1 Future Work

The research in this thesis targets high-performance computing, hence the emphasis
on networks like InfiniBand. However, given the generic semantics of Progressive
Messages, event notification should be applicable to web services. Indeed, AJAX
shares some similar properties in its client-server communication. On the server-server
front, it is quite likely that an HTTP-based protocol could replace REST and SOAP
with message tracking. Any overhead of a MATE-like API would be unnoticeable
because of the existing high latency of the Internet.1

One immediate application given the ability to track messages is fault-tolerance. It
is conceivable that an application could build error-handling routines that respond
to unexpected message events. This is analogous to exception handling in many
programming languages. The user would simply annotate his software with callbacks
to handle edge cases in communication.

Another obvious direction for further research is in hardware. The profuse require-
ment for design patterns in InfiniBand demonstrates the lack of support for common
communication needs in VIA-inspired networks. It is possible that a new network
could drop RDMA and instead focus on event notification at the user level. This is
similar in spirit to the design philosophy of InfiniPath, which was created explicitly
for MPI.

A fourth potential area of investigation is direct support for message tracking in a
domain-specific programming language. Just as the object-oriented paradigm led to
languages with abstract data types and the functional paradigm gave way to languages
with higher-order functions, perhaps the Progressive Messages model could inspire
a language with event-based communication.2 This can work well if the intended
domain is technical computing or even web development.

7.2 Final Thoughts

Just as in the package-delivery industry, progress monitoring through event notifica-
tion allows users to develop applications that know their messages’ states. Specifi-
cally geared towards parallel and distributed computing applications, the Progressive
Messages model provides notification of message state changes. The application can
reserve a callback for each state-change possibility, which leads to greater scalability

1This is why web developers can get away with scripting languages.
2This is similar to how Go is derived from CSP, or how Erlang follows the Actor model.

76



since the communication is overlapped with the computation.
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Appendix A

Dynamic Typing in Remote
Memory Access

This thesis was inspired by an earlier attempt to bring dynamic typing to remote
memory access. The immediate results of this initial study were made available
by expanding the MPI-1 bindings [97] for the Ruby programming language [91] to
include the RMA1 features of MPI-2 [5]. The goal here was the same as for Progressive
Messages—to make it easier to take advantage of modern network features.

Dynamic typing is common in very high-level programming languages. Users can
quickly and easily create new programs as well as modify existing ones, albeit by
sacrificing some performance and potential safety. Dynamic typing is already common
in distributed systems programming, such as with Erlang [4] and other message-driven
platforms.

This appendix presents the only known MPI-2 RMA bindings for a scripting language.
The work was not pursued beyond implementation as RMA is not believed to be a
sufficient programming model for either performance or ease of use. As mentioned
above, Progressive Messages came from the experience in creating these bindings.

A.1 The Ruby Bindings of MPI-2

Communication and synchronization in MPI-2’s RMA are separate. Therefore, the
user calls communication routines in MPI Ruby during “epochs” defined by syn-
chronizations. All communication is guaranteed to have finished by the end of the
epoch, but not any time earlier. During an epoch, the user may issue any number of
communications.

1MPI-2 refers to put and get routines as Remote Memory Access.
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In MPI-2, communication is to contiguous memory and mimics accesses to a remote
array. Therefore, the target memory in the Ruby bindings is an array. When com-
municating data, the user specifies the index of the array where the results will be
written to or read from. Because arrays in Ruby are dynamic and heterogeneous,
communication is not restricted by size or type. Also, any process may usually per-
form communication at any time to any index, although there are some restrictions
as explained in section A.1.2. The complete bindings appear in Figures A.1 and A.2.

A.1.1 Window Creation

A “window” must be created before any communication may take place. This window
is the logical representation for the remote array. Window creation is collective; all
processes must call the function. It takes as parameters an object (representing the
initial array) and an MPI communicator. The array may be empty as represented
by []. The effects of all remote memory operations are realized through this array,
either fetching or storing data at a specific index. The user must begin an epoch
before issuing any communications through the window as the window is not active
until synchronization.

win = MPI::Win.create(ary , comm)

# ary is of type Array

# comm is of type MPI::Comm

# win is of type MPI::Win

A.1.2 One-sided Communication

MPI Ruby’s remote memory access occurs through one-sided communication between
two processes. The semantics for the Ruby bindings differ from traditional MPI in
that all access is based on a logical array—initialized through MPI::Win.create()—
rather than a buffer. All accesses, whether to read or write data, occur through
specific indices of the array. Thus to the user, all RMA actions appear like operations
on a remote array.

The semantics for the MPI functions mimic those of regular Ruby arrays. Because
Ruby arrays are dynamic and heterogeneous, there is no restriction on what the size
or type of the data must be, or where data may be stored. If the index provided by
the user is greater than the index of the final element in the array, then the array
will expand to accommodate the data. The user may also employ negative indices to
count backwards from the end of the array. Furthermore, the user may provide data
of differing types to different elements of the array.

To place data in a remote array, the user calls put() as a member function of a window
object. The parameters of this method are the data to be placed, the destination’s
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MPI::Win.create ( ary, comm )

Creates and returns a window of type MPI::Win based on an initial object of type
Array and a communicator of type MPI::Comm.

MPI::Win#put( obj, dest, index )

Begins one-sided communication to the index at the destination. Returns true on
success.

MPI::Win#get( src, index )

Begins one-sided communication from the index at the source. Returns an object of
type MPI::Getrequest.

MPI::Win#accumulate( obj, dest, index, op )

Accumulates data at the index of destination using the given MPI operation. Returns
true on success.

MPI::Getrequest#object()

Returns the object of a “get request”. Valid only after synchronization.

MPI::Win#object()

Returns the array represented by the window. Valid only after synchronization.

MPI::Win#set_attr( keyval, obj )

Establishes an attribute for key value (of type MPI::Keyval) and returns true on
success.

MPI::Win#get_attr( keyval )

Returns attribute based on key value if exists; returns nil otherwise.

MPI::Win#delete_attr( keyval )

Deletes the (key value, attribute) pair and returns true on success.

Figure A.1: MPI Ruby RMA bindings for communication
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MPI::Win#fence()

Barrier synchronization for the window. All remote operations are guaranteed to
have completed afterwards. Returns true on success.

MPI::Win#group()

Returns communicator’s group (of type MPI::Group) used to create the window.

MPI::Win#start( to_group )

Starts access epoch (active target synchronization) and returns true on success.

MPI::Win#complete()

Completes access epoch (active target synchronization) and returns true on success.

MPI::Win#post( from_group )

Begins exposure epoch and returns true on success.

MPI::Win#wait()

Ends exposure epoch and returns true on success.

MPI::Win#test()

Checks exposure epoch and returns true if completed, false otherwise.

MPI::Win#lock( lock_type, rank )

Starts access epoch (passive target synchronization) on process’s window. Returns
true on success.

MPI::Win#unlock( rank )

Completes access epoch (passive target synchronization) on process’s window.
Returns true on success.

Figure A.2: MPI Ruby RMA bindings for synchronization
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process id, and the index of the destination’s logical array. Any valid Ruby index is
permissible, data of any type or size is allowed, and any valid MPI destination rank
is legal.

MPI::Win#put(obj , dest , index) # Fixnum dest and index

To extract data from a remote array, the user calls get(). The arguments are simply
the remote process’s id and the index of the array. Again, any index valid in Ruby
is valid for MPI Ruby, and the get() method follows the Ruby semantics for arrays.
This function, however, returns a “request” object rather than the actual value. The
reason is that the results of get() might not have finished until after the synchro-
nization. Once the user has signalled the end of the “epoch” with a synchronization,
the data may be retrieved from the “request” object.

req = MPI::Win#get(src , index) # Fixnum src and index

obj = req.object () # MPI:: Getrequest req

Because put() merely places the data, there is another function used to perform a
remote computation. This function, called accumulate(), is similar to put() except
that an MPI operation is also provided in the argument list. As with the tradi-
tional MPI semantics, any of the standard operators may be used; however, only the
standard-defined operators are allowed. No user-defined operators may be used with
accumulate(). However, some user-defined types with overloaded operators may be
used.

MPI::Win#accumulate(obj , dest , index , op)

# Fixnum dest and index

# MPI::Op op

It is important to note that, as with the traditional MPI semantics, using the same
index more than once during an epoch leads to a race condition. The only exception
is accumulate(), in which the operations are guaranteed to be atomic. The only
guarantee in the order of completion for communication is that all get() operations
will finish before any put() or accumulate() calls. (There are some cases when
the user would like to read an element whose index is determined relative to the
target array’s boundaries. Writing to the array may expand the boundaries, which
could result in unintended values from get()’s. So get() will finish before put().)
However, there is no order within a set of get() or put() operations.

A.1.3 Attribute Caching

There may be a case in which the user would like to associate data with a window and
recall it in the future. MPI allows for this “attached” data, known as an attribute.
Attributes are uniquely identified by a key value. To cache an attribute, the user
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creates a new key value with MPI::Keyval.create() and then calls the manipulation
functions as appropriate.

# MPI:: Keyval keyval

MPI::Win#set_attr( keyval , obj )

MPI::Win#get_attr( keyval )

MPI::Win#delete_attr( keyval )

A.1.4 Synchronization

Synchronization in MPI identifies epochs and guarantees that window creation and
one-sided communication have completed. There are three different types of synchro-
nization in MPI. The first is a collective barrier in which no process is allowed to
continue until all communication has completed. This represented by the function
fence().

MPI::Win#fence()

A more scalable method of synchronization is one in which a process establishes a
list of hosts and clients against a window with which to communicate. This is a more
general form of synchronization and is useful for cases when communication is fairly
static and limited. A host declares an “exposure” epoch against a group of processes
that may perform remote operations, whereas a client declares an “access” epoch
against a group of processes that may be the target of remote operations. One-sided
communication is guaranteed to have completed by the end of the epoch.

# designate exposure epoch from an MPI::Group

MPI::Win#post(from_group)

MPI::Win#wait()

# designate access epoch to an MPI:: Group

MPI::Win#start(to_group)

MPI::Win#complete ()

It is important to note that post() does not block; however, start() may block.
Therefore, when two processes must open both access and exposure epochs against
each other, post() must be called before start().

A third method, known as “passive target synchronization”, relaxes the need for the
target process to identify an exposure epoch. The client process identifies the access
epoch with the functions lock() and unlock(). These names are misleading in
that they do not provide a means for handling critical sections as in shared-memory
programming. The lock() function, for example, is not required to block.
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However, the user may request a lock type of MPI::Win::EXCLUSIVE (as opposed to
MPI::Win::SHARED) to indicate that the RMA operations are to be atomic among
the client processes. As with all other one-sided communication, though, there is no
guarantee as to which process performs communication first, nor is there an order
for the completion of operations with a process’s access epoch. One may place each
operation within its own access epoch to force order within a process, but MPI has
no mechanism to order operations among different processes.

MPI::Win#lock(lock_type , rank)

MPI::Win#unlock(rank)

After a synchronization, the array represented by the window will have been changed
to reflect the put() and accumulate() operations. The new array may be retrieved
by calling the object() method.

obj = MPI::Win#object ()

A.2 Design and Implementation

Arrays in Ruby are dynamic and heterogeneous, but the traditional MPI specification
only allows for statically sized buffers with fixed displacement units. The traditional
semantics also do not include a facility for resizing the memory window. Therefore,
MPI Ruby cannot simply be a set of wrappers over the C functions. Auxiliary infor-
mation must be sent in advance to the target so that the appropriately sized buffers
may be allocated to receive the incoming data.

Ruby provides a C API that may be used to embed the interpreter in other appli-
cations. For our library, the Ruby interpreter has been extended using this API.
Thus, the implementation is written in C and uses the existing MPI functions for
communication.

In MPI Ruby, each process maintains a table of the auxiliary information for all
incoming messages. As will be explained momentarily, this table must be statically
sized. Because the number of processes within a communicator is fixed, the table is
indexed by process id. Therefore, this table lists, per each process,

• the index of the array whose element is the subject of the communication,

• the size of the data to be placed (or a negative value to request a get()), and

• the accumulate() operation to be performed (REPLACE in the case of put()).

Here is an example of the table that each process maintains:

84



process 0 index 1, size 512, op REPLACE index 17, size 1024, op SUM
process 1
process 2 index 0, size −1, -
...
process n-1 index 3, size 20, op REPLACE

Of course, the target must be alerted that it has incoming data so that it may perform
the necessary network communications to receive the appropriate messages. To both
accomplish this alert and fill the table of outstanding messages, MPI Ruby uses the C
MPI_Put() function with the table as a memory window. Because a memory window
in C must be statically sized, the table must be statically sized, as mentioned above.

During synchronization, a process checks its table for non-zero size entries. For posi-
tive entries (indicating put() or accumulate()), the process allocates a buffer of the
appropriate size and then attempts to receive the data; for negative entries (indicat-
ing get()), the process sends to the requester both the size of the array element and
the actual data. Once all data has been transferred, a process packs the buffers into
the array at the indicated index using the appropriate operator.

Here is an outline of accumulate(), which is simply a generalized put():

1. Pack (index, size, op) tuple into temporary buffer array.

2. Call MPI_Put() to remotely place the buffer into the target’s table of outstand-
ing messages.

3. Call MPI_Isend() to schedule the object’s data disbursement.

The get() command is as follows:

1. Pack (index, −1, -) tuple into temporary buffer array.

2. Call MPI_Put() to remotely place the buffer into the target’s table of outstand-
ing messages.

3. Call MPI_Irecv() to obtain the data’s size.

4. Return a Getrequest object to encapsulate the data to be retrieved later.

The receipt of the actual data for a “get request” is performed during synchronization.
The fence() function is as follows:

1. Call MPI_Win_fence() to ensure outstanding message table is complete.

85



2. For each put() request, allocate enough space and call MPI_Irecv().

3. For each get() request, transmit size of data element with MPI_Isend().

4. Wait until all new outstanding messages, both outgoing and incoming, are done.

5. Send actual data of get() requests with MPI_Isend().

6. Obtain data to fulfill get() with MPI_Irecv() and pack into array of
Getrequest object.

7. Using data resulting from accumulate() / put() requests, apply appropriate
operation and store result into array.

With multiple MPI_Send()’s and MPI_Recv()’s, it is possible that there could be a
conflict among the tags used in MPI Ruby. There is a simple solution to address this
issue. Because multiple accesses to an index within an epoch is illegal, according to
our specification, the index may be used as the tag. To further ensure that there
is no conflict between the tags used in MPI Ruby and the tags used by the user, a
duplicate communicator is employed rather than the original. Thus, as long as there
is no violation of the requirements, there will be no conflict in tag use.

When MPI Ruby was created, neither of the major open-source implementations of
MPI-2 (Open MPI and MPICH2) had completed passive synchronization. Therefore,
the lock() and unlock() functions were never implemented.

A.3 Examples

Because Ruby is a very expressive language, its MPI bindings allow for many of the
high-level features present in arrays. For example, if one were to write to an out-
of-bound index, the array would expand to accept the element. Also, one may read
from negative indices to wrap around the end of the array. Furthermore, practically
any data is allowed at any element in the array. The MPI bindings were created with
these novelties in mind. Here is a demonstration:

world = MPI::Comm::WORLD

pid = world.rank

win = MPI::Win.create ([1, "Text", {"hash"=>5}], world)

win.fence

root = 0

case pid

when 0

win.put([1, 2, 3], root , 4)

86



when 1

req = win.get(root , -1)

when 2

win.put(2, root , 1)

when 3

win.accumulate (1, root , 0, MPI::Op::SUM)

end

win.fence

# win.object on the root is now:

# [2, 2, {"hash"=>5}, nil , [1, 2, 3]]

# req.object on process 1 is now:

# {"hash "=>5}

A nice feature in RMA is that there is no risk of deadlock should two processes com-
municate with each other simultaneously. In addition, the scalable synchronization
of MPI-2 may be used when communication does not involve all processes. Here is
an example to illustrate both of these features:

# "data" has been computed and now must be

# traded between processes 0 and 1

if ( pid <= 1 )

target = 1 - pid

group = win.group.incl([ target ])

win.post(group)

win.start(group)

win.put(data , target , 0)

win.complete

win.wait

end

A.4 Comparing RMA Speeds of Ruby and C

The remote memory access functions of Ruby may be easier to use than those of C,
but the Ruby bindings’ implementation will be slower because it introduces overhead
on top of the C library. This section examines the performance differences between
the Ruby and C versions.

Ultimately, we will examine the amount of time for two processes to swap data of
varying sizes to determine the effects of Ruby relative to the time for communication.
The easiest means for testing is to time a loop calling put() and then to calculate the
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average. However, because communication is separate from synchronization in RMA,
the message-passing must be completed with a call to fence() in each iteration.
Thus, the test merely appears as

start = MPI.wtime

for i in 1.. max do

win.put(data , target , 0)

win.fence

end

finish = MPI.wtime

time = finish - start

average = time/max

The calls to fence() incur their own overhead. So before this test was run (on a
shared memory machine), the call to put was commented out to determine the time
for synchronization. This value (0.596 ms for C and 1.369 ms for Ruby) was then
subtracted from all measured timings of the communication. The results of both
C’s and Ruby’s communication appear in Table A.1. Note that there are no times
in Ruby for messages of size greater than or equal to 128 KB. The reason is that
the program crashed, possibly because of either Ruby’s or MPI Ruby’s method of
handling buffers for the dynamic types.

Message size (KB) C time (ms) Ruby time (ms)
1 0.574 2.900
2 0.612 3.654
4 0.773 3.740
8 0.906 4.217

16 1.525 7.143
32 2.913 10.779
64 5.476 14.254

128 9.113 N/A
256 17.283 N/A

Table A.1: Communication times for MPI_Put() in Ruby and C

Figure A.3 shows a plot of this data. It is interesting to note that the growth of the
C version is linear, whereas the Ruby version’s growth is much less. As the message
size increases, the overhead effects of Ruby diminish compared to the time required to
communicate the message. Had the Ruby version not crashed, it is possible that the
performance difference between Ruby and C would be negligible for megabyte-size
messages.
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Harold Trease, and Edoardo Aprà. Advances, Applications and Performance of
the Global Arrays Shared Memory Programming Toolkit. International Journal
on High Performance Computing Applications, 20(2):203–231, 2006.

[97] Emil Ong. MPI Ruby: Scripting in a Parallel Environment. Computing in
Science and Engineering, 4(4):78–82, 2002.

97



[98] Oracle Corporation. Oracle9i Real Application Clusters: Cache Fusion Delivers
Scalability. An Oracle White Paper, 2002.

[99] Joachim Parrow. Expressiveness of Process Algebras. Electronic Notes in The-
oretical Computer Science, 209:173—186, April 2008.

[100] David A. Patterson. Latency Lags Bandwidth. Communications of the ACM,
47(10):71–75, October 2004.

[101] Kevin Pedretti and Ron Brightwell. A NIC-Offload Implementation of Portals
for Quadrics QsNet. In Fifth LCI International Conference on Linux Clusters,
2004.

[102] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-
enberg. The Quadrics Network: High-Performance Clustering Technology.
IEEE Micro, 22:46–57, 2002.

[103] Khoi Anh Phan, Zahir Tari, and Peter Bertok. A Benchmark on SOAP’s Trans-
port Protocols Performance for Mobile Applications. In SAC ’06: Proceedings
of the 2006 ACM Symposium on Applied Computing, pages 1139–1144, 2006.

[104] C. Phillips and Ronald H. Perrott. Problems with Data Parallelism. Parallel
Processing Letters, 11(1):77–94, 2001.

[105] Gordon Plotkin. A structural approach to operational semantics. Technical
report, University of Aarhus, Denmark, 1981.

[106] Renato John Recio. Server I/O Networks Past, Present, and Future. In NICELI
’03: Proceedings of the ACM SIGCOMM Workshop on Network-I/O Conver-
gence, pages 163–178, 2003.

[107] RMDA Consortium. Architectural Specifications for RDMA over TCP/IP.
http://www.rdmaconsortium.org/.

[108] RNIC Programming Interface Working Group. RNIC Programming Interface
Specification. http://www.opengroup.org/icsc/rnicpi/.

[109] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[110] Duncan Roweth and Ashley Pittman. Optimised Global Reduction on QsNet
II. In HOTI ’05: Proceedings of the 13th Symposium on High Performance
Interconnects, pages 23–28. IEEE Computer Society, 2005.

[111] Tom Shanley. InfiniBand Network Architecture. Addison-Wesley, 2002.

[112] Quinn O. Snell, Armin R. Mikler, and John L. Gustafson. NetPIPE: A Net-
work Protocol Independent Performace Evaluator. In IASTED International
Conference on Intelligent Information Management and Systems, 1996.

98



[113] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Don-
garra. MPI–The Complete Reference: Volume 1, The MPI Core. MIT Press,
1998.

[114] Lawrence Snyder. Programming Guide to ZPL. MIT Press, 1999.

[115] Sockets API Extensions Working Group. Extended Sockets API Specification.
http://www.opengroup.org/icsc/sockets/.

[116] Shinji Sumimoto, Hiroshi Tezuka, Atsushi Hori, Hiroshi Harada, Toshiyuki
Takahashi, and Yutaka Ishikawa. The Design and Evaluation of High Per-
formance Communication Using a Gigabit Ethernet. In ICS ’99: Proceedings
of the 13th International Conference on Supercomputing, pages 260–267, 1999.

[117] Sun Microsystems. Internet Engineering Task Force, RFC 1094: NFS: Network
File System Protocol Specification, March 1989.

[118] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. RDMA
Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives
and Benefits. In Symposium on Principles and Practice of Parallel Programming
(PPOPP’06), 2006.

[119] Hiroshi Tezuka, Francis O’Carroll, Atsushi Hori, and Yutaka Ishikawa. Pin-
down Cache: A Virtual Memory Management Technique for Zero-copy Commu-
nication. In Proceedings of 12th International Parallel Processing Symposium,
pages 308–314. IEEE Computer Society, 1998.

[120] Keith D. Underwood and Ron Brightwell. The Impact of MPI Queue Usage
on Message Latency. In Proceedings of the 2004 International Conference on
Parallel Processing (ICPP 2004), pages 152–160. IEEE Computer Society, 2004.

[121] Steven P. VanderWiel, Daphna Nathanson, and David J. Lilja. Complexity and
Performance in Parallel Programming Languages. In Proceedings of the 1997
Workshop on High-Level Programming Models and Supportive Environments
(HIPS ’97). IEEE Computer Society, 1997.

[122] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: A Mechanism for Integrated Communication and
Computation. In Proceedings of the 19th annual international symposium on
Computer architecture, pages 256–266. ACM Press, 1992.

[123] Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies for Dynamic
Load Balancing on Highly Parallel Computers. IEEE Transactions on Parallel
and Distributed Systems, 4(9):979–993, 1993.

[124] Weikuan Yu, Ranjit Noronha, Shuang Liang, and Dhabaleswar K. Panda. Ben-
efits of High Speed Interconnects to Cluster File Systems: A Case Study with
Lustre. In 20th International Parallel and Distributed Processing Symposium
(IPDPS), 2006.

99


