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The Hadamard maximal determinant problem

The Hadamard maxdet problem asks: what is the maximum
determinant D(n) of a {±1} matrix of given order n?
Hadamard showed that D(n) ≤ nn/2, and this bound is
attainable only for n = 1, 2 and n ≡ 0 mod 4.
It is conjectured to be attainable for all n ≡ 0 mod 4 – this is the
“Hadamard conjecture”. However, in this talk we are concerned
with D(n) in the “non-Hadamard” cases n 6≡ 0 mod 4.
If we know (or conjecture) D(n), we can ask for all (equivalence
classes) of {±1} matrices with determinant ±D(n).
In collaboration with Will Orrick (Indiana) and Paul
Zimmermann (Nancy), we recently settled the smallest
unresolved case (n = 19). We are now investigating other
“small” unresolved cases, e.g. n = 22, 23, 27, 29, 31, 33.
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Upper bounds

A bound which holds for all odd orders, and which is known to
be sharp for an infinite sequence of orders ≡ 1 (mod 4), is

D(n) ≤
√

(n − 1)n−1(2n − 1),

due independently to Barba and Ehlich. (We call it the Barba
bound.)
A smaller (and more complicated) upper bound, due to Ehlich,
applies only in the case n ≡ 3 (mod 4). Another bound, due to
Ehlich and Wojtas, applies in the case n ≡ 2 (mod 4).
Brouwer showed that the Barba bound is sharp if
n = q2 + (q + 1)2 for q an odd prime power. The bound is also
sharp in some other cases, e.g. q = 2 and q = 4. It is not
achievable unless n is the sum of two consecutive squares.

Richard Brent The Hadamard maxdet problem



Gram matrices

If R is a square {±1} matrix then the symmetric matrix
G = RRT is called a Gram matrix. We may also consider the
dual Gram matrix H = RT R.
Since det(G) = det(R)2, the bounds on det(R) are equivalent
to bounds on det(G) (just square the bound for det(R)).
Given a symmetric matrix G with suitable determinant, we say
G is a candidate Gram matrix. It will be a Gram matrix if and
only if it decomposes into a product of the form G = RRT ,
where R is a square {±1} matrix.
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Hadamard and extended Hadamard equivalence

We say that two n × n {±1} matrices A and B are
Hadamard-equivalent (abbreviated H-equivalent) if B can be
obtained from A by a signed permutation of rows and/or
columns.
If A is H-equivalent to B or to BT then we say that A and B are
extended Hadamard-equivalent (abbreviated HT-equivalent).
Note that, if A is HT-equivalent to B, then |det(A)| = |det(B)|.
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A strategy for resolving small non-Hadamard cases

Consider n > 1, n ≡ ±1 mod 4. The Hadamard bound nn/2 is
not attainable, but the Barba bound may be attainable.

I Find candidate Gram matrices with large determinant
(how to do this is the topic of another talk).

I Decompose one or more of the candidate Gram matrices,
and show that none with larger determinant are
decomposable.

I Find all (or as many as possible) inequivalent solutions
having maximal determinant.
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Summary of today’s talk (if I had enough time!)

We concentrate on two aspects of the maxdet problem today –
decomposing Gram matrices, and exploring and visualising the
resulting space of solutions. In particular, we consider graphs in
which a vertex represents an equivalence class of {±1}
matrices, and an edge connects vertices u, v if we can get from
u to v by a “switching operation” (to be defined later).

I Randomised decomposition of Gram matrices
I Generating more solutions by switching
I Graphs of equivalence classes generated by switching
I Examples for orders 24, 26, 27, 33
I Estimating the size of the giant component for order 33
I Some new results for orders 29, 30, 31 and 37 (if time)
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Decomposing G – using single-Gram constraints

Suppose that G = RRT and

RT = [r1|r2| · · · |rn],

i.e. the rows of R are rT
1 , . . . , rT

n . Then

rT
i rj = gi,j , 1 ≤ i , j ≤ n.

If we already know the first k rows, then we get k single-Gram
constraints involving row k + 1:

rT
i rk+1 = gi,k+1 for 1 ≤ i ≤ k .

These are linear constraints in the unknowns rk+1.
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Pruning the search space

We can permute columns of R without changing G = RRT .

When finding row k + 1 we can permute columns to obtain the
lexicographically least solution, subject to the constraint that
rows 1, . . . , k are unchanged.
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Example

For example, writing “−” for −1, “+” for +1, “|” to show a block
boundary, and taking n = 7, we might consider a first row

−−−|+ + + +

then a second row

−− |+ | − −|+ +

then a third row
−|+ | − | − |+ | − |+ |

The blocks form a tree: row k contains at most 2k blocks, and
each block at row k splits into at most two blocks at row k + 1
(until eventually each block is a singleton and can not be
divided further).
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Using the block structure

Suppose we have a block of size m at row k + 1. In general
there are 2m possible ways of filling the block with elements of
{±1}. However, we only need to distinguish m + 1 ways,
corresponding to say x entries +1 and m − x entries −1.
Suppose there are m blocks, with corresponding “x” values
x1, . . . , xm. We can express the k single-Gram constraints as
an underdetermined system of k linear equations in the m
variables x1, . . . , xm. Of course, the xi have to be nonnegative
integers satisfying certain upper bounds (the corresponding
block sizes).
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Solving the linear equations

We have k linear equations in m > k variables. The
corresponding matrix has full rank (i.e. rank k ) because G is
positive definite.
Using Gaussian elimination with column pivoting, we can
assume that the leading k × k matrix is nonsingular. This
corresponds to k “basic” variables xi , i ∈ B.
The remaining m − k “non-basic” variables xi , i ∈ B can be
regarded as parameters. We enumerate the non-basic
variables exhaustively, and obtain the basic variables by a
matrix-vector multiplication, since the single-Gram constraints
imply that the basic variables are an affine function of the
non-basic variables.
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Checking constraints

If the basic variables thus obtained are not integral or lie
outside their bounds, there is no solution corresponding to the
given set of non-basic variables.
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Gram-pair constraints

How can we take advantage of the constraint RT R = H? One
way would be to build up columns of R at the same time as we
build rows of R using the constraint RRT = G. It is easier (and
probably faster) to build rows of R, but prune the search tree
using the information provided by H.
We have the relations

Gq+1 = RHqRT , q ∈ Z

(at most n such are linearly independent, by the
Cayley-Hamilton theorem). We can use these relations to
prune the search when generating R by rows. If q > 0 we call
such relations Gram-pair constraints. They are quadratic in the
unknowns.
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Randomised search

In cases where G is decomposable but it is difficult to find a
decomposition using a deterministic search, we can often do
better with a randomised search.
The search can be regarded as searching a (large) tree, where
there are n levels (each level corresponds to a row in R). A
deterministic search typically searches the tree in depth-first
fashion – at each node, recursively search the subtrees defined
by the children of that node.
In the randomised search, at each node we randomly choose
one or two children (empirically, an average of 1.3 children per
node works well), and recursively search the subtrees defined
by these children.
If the solution space is very large and a deterministic search to
find all solutions would take too long, we can sample the
solution space by using a randomised search.
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Example: n = 27

For example, in the case n = 27, there is a known Gram matrix
G which decomposes into RRT , giving a {±1} matrix R of
determinant 546× 611 × 226 which is conjectured to be
maximal [Tamura, 2005].
A deterministic search fails to decompose Tamura’s G in 24
hours (exploring over 108 nodes but reaching only depth 17 in
the search tree). The tree size is probably greater than 4×109.
On the other hand, our randomised search routinely finds a
decomposition of G in about 90 seconds. In this way we have
found over 106 distinct solutions R (often, but not always, in
different H-classes).
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Switching

Switching is an operation on {±1} matrices which preserves
|det(R)| but does not generally preserve Hadamard
equivalence or extended Hadamard equivalence.
Thus, switching can be used to generate many inequivalent
maxdet solutions from one solution. This idea was introduced
by Denniston (for designs) and Orrick (for maxdet matrices).
We only consider switching a closed quadruple. There are
other possibilities, e.g. switching Hall sets.
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Switching a closed quadruple of rows
Suppose that a {±1} matrix R is H-equivalent to a matrix
having a “closed quadruple” of rows, i.e. four rows of the form
(here and elsewhere we write “+” for +1 and “−” for −1):

+ · · ·+ − · · ·− − · · · − + · · ·+
+ · · ·+ − · · ·− + · · ·+ − · · ·−
+ · · ·+ + · · ·+ − · · ·− − · · · −
+ · · ·+ + · · ·+ + · · ·+ + · · ·+


Then row switching flips the sign of the leftmost block, giving

− · · ·− − · · · − − · · · − + · · ·+
− · · ·− − · · · − + · · ·+ − · · ·−
− · · · − + · · ·+ − · · ·− − · · · −
− · · · − + · · ·+ + · · ·+ + · · ·+


Equivalently, flip the signs of all but the leftmost block (this has
a nicer interpretation in terms of switching edges in the
corresponding bipartite graph).
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Row switching continued

It is easy to see that row switching preserves the inner products
of each pair of columns of R, so preserves the (dual) Gram
matrix RT R, and hence preserves |det(R)|. However, it does
not generally preserve HT-equivalence.
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Column switching

Column switching is dual to row switching – instead of a closed
quadruple of four rows, it requires a closed quadruple of four
columns.
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Observation

Switching a closed quadruple of rows/columns may work if

n mod 8 ∈ {0, 1, 2, 3}.

It does not work in the other cases.
Orrick (2005) says: “Curiously, we have never found a
D-optimal matrix whose order is congruent to 5, 6, or 7 mod 8
to which switching can be applied”.
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Equivalence classes generated by switching

Two matrices A and B are in the same ST-equivalence class
(abbreviated ST-class) if a matrix HT-equivalent to B can be
obtained from A by a sequence of row switches, column
switches and/or transpositions.
It is convenient to consider the elements of an ST-class to be
HT-classes of matrices, rather than matrices themselves.
This is consistent because two matrices that are HT-equivalent
must be in the same ST-class.
Similarly, we could define S-equivalence using H-equivalence,
disallowing transposition. (Orrick calls this Q-equivalence.)
The size ||C|| of an ST-class C is the number of HT-classes that
it contains.
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Example: Hadamard order 24

Consider Hadamard matrices of order 24.
There are 36 HT-classes (60 H-classes) with maximal
determinant 2412, lying in two ST-classes C1 and C2.
The graph of C1 is a single vertex (corresponding to the Paley
matrix which has no closed quadruples).
The other class C2 contains 35 HT-classes (59 H-classes).
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The class C2 (size 35) for order 24
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Order 26

The maximal determinant is

D(26) = 150× 611 × 225

(meeting the Ehlich/Wojtas bound).
Orrick [2005] found 5026 HT-classes (9884 H-classes) by a
combination of hill-climbing and switching. He did not claim to
have found all the H-classes.
By more extensive searching, we recently found 23 more
HT-classes. In total, we have found 5049 HT-classes (9923
H-classes), and conjecture that this is all.
The 5049 HT-classes lie in 18 ST-classes.
There is one “giant” ST-class G with ||G|| = 4323.
There is another “large” ST-class E with ||E|| = 686.
The other 16 ST-classes have sizes 11, 5, 4(2), 3(2), 1(10).
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The large class E of size 686
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Why the large class E? Who ordered that?

If our graphs can be approximated by random graphs, we
expect one “giant” class (connected component) and some
small classes. We do not expect a large class like E .
It turns out that there are two types of maxdet matrices of order
n = 26, related to the two ways that 2n − 2 = 50 can be written
as a sum of squares:

50 = 72 + 12 = 52 + 52.

They are called “type (7, 1)” and “type (5, 5)”.
The type is preserved by switching. All the matrices in E have
type (7, 1), while all the matrices in G have type (5, 5). A better
model is the union of two random graphs, one for each type.
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Some small components for order 26

The components C with 3 ≤ ||C|| ≤ 11
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Order 27
It is known that the maximal determinant D(27) satisfies

546 ≤ D(27)

611 × 226 < 565,

and it is plausible to conjecture that the lower bound
546× 611 × 226 is maximal. Tamura found a {±1} matrix with
this determinant, and Orrick showed that Tamura’s matrix
generates an ST-class T with ||T || = 33.
Using randomised decomposition of Tamura’s (conjectured
maximal) Gram matrix, followed by switching, we have found a
total of 6489 HT-classes (12911 H-classes) lying in 204
ST-classes. This is probably (but not provably) all.
The ST-classes have sizes 5765, 36, 33, 28, 21, 18(2), 14(2),
12(4), 11(1), 9(2), 8(3), 7(7), 6(12), 5(11), 4(12), 3(18), 2(38),
1(87). Thus, there is one “giant” G and (at least) 203 “dwarfs”.
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The “Tamura” ST-class T of size 33
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The largest “dwarf” ST-class (size 36)
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Order 33

We know 441 ≤ D(33)/274 < 470.
Although we don’t know the maximal determinant, it may well
be the largest found so far, 441× 814 × 232 [Solomon, 2002].
Starting from the Gram matrix G = RT R = RRT corresponding
to Solomon’s {±1} matrix R, our randomised tree search
algorithm can find many solutions with the same determinant.
Then, using switching, we can find a huge number of
inequivalent solutions. For example, starting from R and
iterating the operation of row switching only, we found
37030740 H-classes in 11 iterations before stopping our
program because it was using too much memory.
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Exploring the graph for order 33

Clearly a new strategy taking less time and memory is needed.
Given two solutions A0 and B0, we can generate two random
walks (A0, A1, A2, . . .) and (B0, B1, B2, . . .). Each vertex on a
walk is connected by a sequence of switching operations and
transpositions to its successor.
If A0 and B0 are in the same connected component, of size s
say, then we expect them to intersect eventually, and probably
after O(

√
s) steps unless the “mixing time” of the walks is too

long (this depends on the geometry of the component).
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Some details

Our implementation uses self-avoiding random walks. Each
walk is stored in a hash table so we can quickly check if a new
vertex has already been encountered in the same walk
(in which case we try one of its neighbours) or in the other walk
(in which case we have found an intersection).
We fix A0 = R and choose B0 randomly. Usually (about 90% of
the time) R and B0 are in the same connected component (the
“giant” component G). Otherwise, B0 is in a “small” component
(of size say s) and we discover this by being unable to continue
the (self-avoiding) walk from B0 past Bs−1.
In this way we find many members of G and also many “small”
ST-classes.
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Gathering statistics

We can gather statistics from the random walks. For example,
we would like to estimate ||G||, the total number of HT-classes,
the number of ST-classes, the mean degree, etc.
If implemented as described above, the random walks are not
uniform over the vertices of the connected components
containing their starting points. They are approximately uniform
over edges, so the probability of hitting a vertex v depends on
the degree deg(v).
We can either take this into account when gathering statistics,
or avoid the problem by accepting a candidate vertex v with
probability 1/ deg(d). In this way the vertices are sampled
uniformly (at least if the walks are long enough).

Richard Brent The Hadamard maxdet problem



Results

We estimate that the overall size of the graph is about 3.1× 109

measured, as usual, in HT-classes. (In terms of H-classes the
numbers are roughly doubled.)
The giant component G has size ||G|| ≈ (2.83± 0.08)× 109.
In G the mean degree of each vertex is about 20, so there are
about 2.83× 1010 edges.
We also estimate that there are about 5.7× 107 small
ST-classes, with mean size about 5. Of these we found about
8× 104 so far, with the largest having size 2136.
The sizes of the larger classes are shown in the following Table,
which also gives the number of times that we found the same
class (interesting because it indicates how well we have
sampled the search space).
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Sizes of some components for order 33
In addition to the giant component of size about 2.83× 109,
we found the following twenty components of size ≥ 900.
Classes marked “(a)” and “(b)” are different.

size times found size times found
2136 2 1100 1
1300 4 1069 2
1276 2 1011 1
1246 1 1008 1
1205 4 999 1(a)
1188 4 999 2(b)
1187 1 993 2
1148 2 958 2
1134 2 918 3
1104 2 909 3
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Some components of size 10 . . . 19

One example of each size 10, . . . , 19.
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A component of size 100
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A component of size 1187
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A component of size 1188
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The largest known “small” (size 2136) component
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Orders where switching is inapplicable

For orders such as 29, 30, 31 and 37, switching does not work,
but we have conjectured optimal (for n = 29, 31) and known
optimal (for n = 30, 37) Gram matrices G.
We can generate “random” solutions R of G = RRT and test
them for Hadamard equivalence, although we can not generate
further solutions by switching.
In the next few slides we briefly mention some new results for
these orders.
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Order 29

We have found 4918 H-classes with determinant
320× 712 × 228 (86.5% of the Barba bound) for order 29.
Previously only one solution was known [Solomon, 2002].
It is not known if this determinant is maximal – the best known
upper bound is 329× 712 × 228 [Brent, Orrick, Osborn and
Zimmermann].
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Order 30

There are as least 16142 H-classes with determinant
203× 713 × 229 (equal to the Barba bound, hence optimal)
for order 30.
The search is incomplete – we estimate that there are about
46000 H-classes in all.
Previously only three H-classes, all based on circulant block
forms, were known [Ehlich; Yang; Kounias, Koukouvinos,
Nicolaou and Kakos].
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Order 31

This is a difficult case (n ≡ 3 mod 4). There is a known matrix
with determinant 784× 713 × 230 (95.6% of the Barba bound)
that may well be optimal, due to Tamura (2005). The
corresponding Gram matrix G has block form with the
structure (9, 9, 9, 4); all other block forms have been ruled out.
Tamura’s solution R is self-dual and has a non-trivial
automorphism group (group order divisible by 3).
We found 482 additional H-classes of solutions by
decomposing G with our randomised decomposition program.
None of our solutions are self-dual (so each gives two
H-classes), and they all have trivial automorphism group.
From the number of times that the same H-class was found, we
estimate that there are at least 104 H-classes with the same
determinant.
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Order 37

There are at least 176 H-classes with determinant
72× 917 × 236 (93.6% of the Barba bound) for order 37.
This determinant was recently shown to be optimal
[Brent, Orrick, Osborn and Zimmermann].
We estimate that the number of H-classes is much larger than
176, since the random decomposition algorithm has never
found the same H-class twice. It takes on average about one
week to find each solution (which typically gives two H-classes).
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