Lower bounds on maximal determinants via the probabilistic method

Richard P. Brent ANU

4 December 2012

joint work with

Warren Smith and Judy-anne Osborn

Presented at CARMA, University of Newcastle

Abstract

The Hadamard maximal determinant problem is to find the maximal determinant D(n) of a square $\{\pm 1\}$ -matrix of given order n. Hadamard proved the upper bound $D(n) \le n^{n/2}$. This talk is concerned with lower bounds on $\mathcal{R}(n) := D(n)/n^{n/2}$.

Define d := n - h, where h is the maximal order of a Hadamard matrix no larger than n. Using the probabilistic method, we can show that $\mathcal{R}(n) \ge \kappa_d > 0$, where κ_d depends only on d. Previous lower bounds depend on both d and n. Our bounds are improvements for d > 1 and all sufficiently large n.

This talk will outline the main results and methods used to obtain them. For technical details, see the preprint at http://arxiv.org/abs/1211.3248.

Introduction – the Hadamard bound and conjecture

- ▶ D(n) := denote the maximum determinant attainable by an $n \times n$ {±1}-matrix.
- ▶ Hadamard proved the upper bound $D(n) \le n^{n/2}$.
- ► A Hadamard matrix is an $n \times n \pm 1$ matrix A with $det(A) = \pm n^{n/2}$.
- If a Hadamard matrix of order n exists, then n = 1, 2, or a multiple of 4. We'll ignore the cases n ∈ {1,2}.
- ► The Hadamard conjecture is that Hadamard matrices exist for every positive multiple of 4.
- ▶ This talk is about lower bounds on D(n).

Notation

- $ightharpoonup \mathcal{H}$ is the set of all possible orders of Hadamard matrices.
- ▶ $\mathcal{R}(n) := D(n)/n^{n/2}$. The Hadamard bound is $\mathcal{R}(n) \le 1$. We are interested in lower bounds on $\mathcal{R}(n)$.
- d := n max{h ∈ H | h ≤ n}.
 In other words, n = h + d, d ≥ 0, and h ∈ H is maximal.
 To avoid trivial cases, assume that n ≥ h ≥ 4.
- ▶ $f \ll g$ means f = O(g) and $f \gg g$ means g = O(f).

Previous results

For those of you who attended my AustMS talk in Ballarat – the problem is the same, but the results are better!

In all previous papers that we are aware of (including our own), general lower bounds on $\mathcal{R}(n)$ tend to zero as $n \to \infty$, unless $n \in \mathcal{H}$ or $n-1 \in \mathcal{H}$.

For example, de Launey and Levin (2009) showed that

$$\mathcal{R}(n) \geq \frac{2^{1/2}e}{n}\left(1+O\left(\frac{1}{n}\right)\right)$$

if $n \equiv 2 \pmod{4}$, assuming the Hadamard conjecture. Under the same assumption, our new result

$$\mathcal{R}(\textit{n}) > \frac{2}{\pi \textit{e}} \approx 0.2342$$

is sharper for all $n \ge 18$.

Previous approaches

The most successful previous approaches to obtaining general lower bounds (as opposed to bounds for specific small values of n) used either bordering or minors.

- ▶ bordering: choose a Hadamard matrix of order h < n, and add a border of n h rows and columns.
- ▶ minors: choose a Hadamard matrix H of order h > n, and consider an $n \times n$ submatrix of H.

The best lower bound obtained via bordering or minors is

$$\mathcal{R}(n)\gg n^{-\delta/2}$$
 where $\delta=|n-h|$

[Koukovinos, Mitrouli and Seberry; de Launey and Levin] with one exception (next slide).

Improved bound for bordering if $\delta = 1$

For $\delta := n - h = 1$, the lower bound can be improved to

$$\mathcal{R}(n) \geq \text{constant}$$

by using a probabilistic method due to Brown and Spencer (1971), Erdős and Spencer (1974), and Best (1977).

The idea is to add a border of one row and column to a Hadamard matrix in a (semi-)probabilistic manner that gives a large determinant (on average).

The new approach

Our idea is to generalise the bordering method of Best by taking a Hadamard matrix of order h < n and adding a border of d = n - h rows and columns in a (semi-) probabilistic manner.

This enables us to obtain lower bounds of the form

$$\mathcal{R}(n) \geq \kappa_d > 0,$$

where κ_d depends only on d.

For example,

$$\mathcal{R}(n) \geq 0.07 (0.352)^d$$
.

The Schur complement

Let

$$\widetilde{A} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

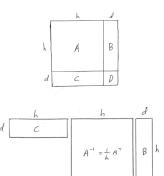
be an $n \times n$ matrix written in block form, where A is $h \times h$, and n = h + d > h. The *Schur complement* of A in \widetilde{A} is the $d \times d$ matrix

$$D - CA^{-1}B$$
.

The Schur complement is relevant to our problem because

$$\det(\widetilde{A}) = \det(A)\det(D - CA^{-1}B).$$

The block matrix A and Schur complement



Recall that

$$\det(\widetilde{A}) = \det(A)\det(D - CA^{-1}B).$$

Application of the Schur complement

Take A to be an $h \times h$ Hadamard matrix that is a principal submatrix of an $n \times n$ matrix

$$\widetilde{A} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
.

Then $det(A) = h^{h/2}$ and $A^{-1} = h^{-1}A^{T}$, so

$$\det(\widetilde{A}) = h^{h/2} \det(D - h^{-1} CA^T B)$$

Thus, the problem is to maximise $|\det(D - h^{-1}CA^TB)|$.

Application of the probabilistic method

Choose the $h \times d$ matrix B uniformly at random from the 2^{hd} possibilities.

We would like to choose C and D (deterministically, but depending on B) to maximise the expected value

$$E(|\det(D-h^{-1}CA^TB)|).$$

We don't know how to do this, but we approximate it by choosing $C = (c_{ij})$,

$$c_{ij} = \operatorname{sgn}(A^T B)_{ji}$$
 for $1 \le i \le d$, $1 \le j \le h$

so that there is no cancellation in the inner products defining the diagonal elements of $C \cdot A^T B$.

In the case d = 1 this is the same as Best's choice.

Entries in the Schur complement

Write $F = h^{-1}CA^TB$, so the Schur complement is D - F.

The choice of D is not important (at least as $h \to \infty$), so for simplicity we'll ignore D and concentrate on F.

Best, using a counting argument, showed that

$$E(f_{ii}) = 2^{-h} \sum_{k=0}^{h} |h - 2k| {h \choose k} = \frac{h}{2^h} {h \choose h/2} \sim \left(\frac{2h}{\pi}\right)^{1/2}.$$

Also, we can show that, if $i \neq j$, then $E(f_{ij}) = 0$ and $E(f_{ij}^2) = 1$. Exercise. Show that $|f_{ij}| \leq h^{1/2}$.

Making it rigorous – the off-diagonal elements

We want to approximate the determinant of the Schur complement by the product of its diagonal elements.

One way of showing that the contribution from the off-diagonal elements is (usually) small is to use the Cauchy-Schwarz inequality:

$$E(|f_{ij}f_{k\ell}|) \leq \sqrt{E(f_{ij}^2)E(f_{k\ell}^2)} = 1.$$

NB We can not assume that f_{ij} and $f_{k\ell}$ are independent, even if $i \neq j$ and $k \neq \ell$. For example, f_{12} and f_{21} are dependent.

Exercise. Show that f_{ij} depends only on columns i and j of B. Deduce that f_{ij} and $f_{k\ell}$ are independent iff $\{i,j\} \cap \{k,\ell\} = \emptyset$.

Using Cauchy-Schwartz

Consider estimating $E(\det(F))$ for fixed d and large h. For example, if d = 3,

$$\det(F) = \det\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} = f_{11}f_{22}f_{33} + \text{ other terms,}$$

and a typical "off-diagonal" term has expectation $O(h^{1/2})$ as

$$|E(f_{12}f_{21}f_{33})| \le E(|f_{12}f_{21}|) \max(|f_{33}|) \le h^{1/2}.$$

Thus, using independence of f_{11} , f_{22} and f_{33} ,

$$E(\det(F)) = E(f_{11}f_{22}f_{33}) + O_d(h^{1/2}) = \left(\frac{2h}{\pi}\right)^{3/2} + O_d(h^{1/2}).$$

Results

Theorem. If $d \ge 1$, $h \in \mathcal{H}$, $h \ge 4$, n = h + d, and

$$h \ge h_0(d) := \left(e(\pi/2)^{d/2}(d-1)! + d\right)^2,$$

then

$$\mathcal{R}(n) > \left(\frac{2}{\pi e}\right)^{d/2}.$$

The constant $2/\pi e$ appearing here is nice (though probably not best possible).

We would like to reduce the cutoff $h_0(d)$ which grows faster than exponentially in d. This can be done (see later) using a tail inequality, at the expense of a slightly weaker bound. However, the theorem as it stands is useful for small d.

The case of small d

If $0 \le d \le 3$ then the previous theorem implies (after considering some small cases separately) that

$$\mathcal{R}(n) \geq \left(\frac{2}{\pi e}\right)^{d/2}.$$

$$\left(\frac{2}{\pi e}\right)^{1/2} > 0.4839 \text{ so } \mathcal{R}(n) \ge (0.4839)^d.$$

If the Hadamard conjecture is true, then every positive integer divisible by 4 is a Hadamard order, and we can assume that $0 \le d \le 3$, so the inequality always holds.

Less restrictive result

The following theorem removes the restriction on h at the cost of reducing the constant from $\left(\frac{2}{\pi e}\right)^{1/2} \approx 0.4839$ to 1/3.

Theorem. If $d \ge 0$, $h \in \mathcal{H}$, and n = h + d, then

$$\mathcal{R}(n) > 3^{-(d+3)}$$
.

Comparison: the bound of Clements and Lindström (1965) is

$$\mathcal{R}(n) > (3/4)^{n/2}$$
.

Our bound is much sharper since $d \ll n^{1/6}$ [Livinskyi 2012]. It is also sharper than the bounds of Koukouvinos, Mitrouli and Seberry (also de Launey and Levin, Brent and Osborn) if d > 0 is fixed and $n \to \infty$; all these bounds are at best $\mathcal{R}(n) \gg n^{-1/2}$.

Comments on the proof

The proof uses

- Hoeffding's tail inequality for a sum of bounded independent random variables,
- a new (best possible) lower bound on the determinant of a diagonally dominant matrix, improving on what can be obtained from Gerschgorin's theorem,
- various known constructions for Hadamard matrices,
- results of Livinskyi (2012) on the asymptotic density of Hadamard matrices, and
- a computer-aided analysis of a set of 32 exceptional cases with n < 60480.</p>

If you are interested, see our preprint arXiv:1211.3248.

Conjecture

We conjecture that

$$\mathcal{R}(n) \geq \left(\frac{2}{\pi e}\right)^{d/2}.$$

Evidence. The conjecture holds for:

- ▶ for $0 \le d \le 3$ (implied by the Hadamard conjecture),
- ▶ for all $d \ge 0$ if $n \ge n_0(d)$ is sufficiently large,
- ▶ for all $n \le 120$ (in fact $\mathcal{R}(n) > 1/2$ for $n \le 120$),
- for many larger values of n for which we have computed a lower bound on $\mathcal{R}(n)$ using a probabilistic algorithm based on our construction.

Acknowledgements

Thanks to

- Dragomir Djoković and Ilias Kotsireas for sharing their list of known Hadamard orders;
- Robert Craigen for informing us of the work of his student Ivan Livinskyi; and
- Will Orrick for his comments.

References

- M. R. Best, The excess of a Hadamard matrix, *Indag. Math.* **39** (1977), 357–361.
- R. P. Brent and J. H. Osborn, General lower bounds on maximal determinants of binary matrices, submitted. Also arXiv:1208.1805v3, 4 Sept. 2012.
- R. P. Brent, J. H. Osborn and W. D. Smith, Lower bounds on maximal determinants of ± 1 matrices via the probabilistic method. arXiv:1211.3248v2, 3 Dec. 2012.
- T. A. Brown and J. H. Spencer, Minimization of ± 1 matrices under line shifts, *Colloq. Math.* (Poland) **23** (1971), 165–171. Erratum *ibid* pg. 177.

References continued

- G. F. Clements and B. Lindström, A sequence of (± 1) -determinants with large values, *Proc. Amer. Math. Soc.* **16** (1965), 548–550.
- P. Erdős and J. Spencer, *Probabilistic Methods in Combinatorics*, Akadémiai Kiadó, Budapest, 1974. Also published by Academic Press, New York, 1974.
- J. Hadamard, Résolution d'une question relative aux déterminants, *Bull. des Sci. Math.* **17** (1893), 240–246.
- C. Koukouvinos, M. Mitrouli and J. Seberry, Bounds on the maximum determinant for (1, -1) matrices, *Bull. Institute of Combinatorics and its Applications* **29** (2000), 39–48.

References continued

- W. de Launey and D. A. Levin, (1, -1)-matrices with near-extremal properties, *SIAM J. Discrete Math.* **23** (2009), 1422–1440.
- I. Livinskyi, Asymptotic existence of Hadamard matrices, M.Sc. thesis, University of Manitoba, 2012.

http://hdl.handle.net/1993/8915

- R. S. Varga, *Geršgorin and His Circles*, Springer Series in Computational Mathematics, Vol. 36, 2004.
- J. Seberry Wallis, On the existence of Hadamard matrices,
- J. Comb. Theory 21 (1976), 188–195.