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Introduction – the Hadamard bound and conjecture

I D(n) := denote the maximum determinant attainable by an
n × n {±1}-matrix.

I Hadamard proved the upper bound D(n) ≤ nn/2.

I A Hadamard matrix of order n is an n × n {±1}-matrix A
with det(A) = ±nn/2.

I If a Hadamard matrix of order n exists, then n = 1, 2, or a
multiple of 4.

I The Hadamard conjecture is that Hadamard matrices exist
for every positive multiple of 4.

I This talk is about lower bounds on D(n).
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Notation

I H is the set of all possible orders of Hadamard matrices.

I R(n) := D(n)/nn/2.
The Hadamard bound is R(n) ≤ 1.
We are interested in lower bounds on R(n).

I d := n −max{h ∈ H |h ≤ n}.
In other words, n = h + d , d ≥ 0, and h ∈ H is maximal.

I To avoid trivial cases, assume that n ≥ h ≥ 4.

I We’ll use Vinogradov’s notation:
f � g means f = O(g) and f � g means g = O(f ).

I f = Od(g) or f �d g means that the implied “constant”
depends on d (so it is only constant if d is fixed).
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Previous results
For those of you who attended my AustMS talk in Ballarat –
the problem is the same, but the results are generally better!
In all previous papers that we are aware of (including our own),
general lower bounds on R(n) tend to zero as n→∞, unless
n ∈ H or n − 1 ∈ H.
For example, de Launey and Levin (2009) showed that

R(n) ≥ 21/2e
n

(
1 + O

(
1
n

))
if n ≡ 2 (mod 4), assuming the Hadamard conjecture.
Under the same assumption, our new result is

R(n) >
2
πe
≈ 0.2342
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Previous approaches

The most successful previous approaches to obtaining general
lower bounds (as opposed to bounds for specific small values
of n) used either bordering or minors.

I bordering: choose a Hadamard matrix H of order h < n,
and add a border of n − h rows and columns to H.

I minors: choose a Hadamard matrix H of order h > n, and
consider some n × n submatrix of H.

The best lower bound obtained via bordering or minors was

R(n)� n−δ/2 where δ = |n − h|

[Koukovinos, Mitrouli and Seberry; de Launey and Levin;
Brent and Osborn] with one exception (next slide).
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Improved bound for bordering if n = h + 1

For n − h = 1, the lower bound can be improved to

R(n) ≥ constant

by using a probabilistic method due to Brown and Spencer
(1971), Erdős and Spencer (1974), and Best (1977).
The idea is to add a border of one row and column to a
Hadamard matrix in a (semi-)probabilistic manner that
gives a large determinant (on average).
Curiously, none of these authors seems to have considered
adding a larger border.
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Our approach

We generalise the probabilistic bordering method by taking a
Hadamard matrix of order h < n and adding a border of
d = n − h rows and columns in a (semi-) probabilistic manner.
This enables us to obtain lower bounds of the form

R(n) ≥ κd > 0,

where κd depends only on d .
For example,

R(n) ≥ 0.07 (0.352)d > 3−(d+3).
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The Schur complement

Let

Ã =

[
A B
C D

]
be an n × n matrix written in block form, where A is h × h,
and n = h + d > h.
The Schur complement of A in Ã is the d × d matrix

D − CA−1B.

The Schur complement is relevant to our problem because

det(Ã) = det(A) det(D − CA−1B).

The Schur complement is not in general a {±1}-matrix.
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The block matrix Ã and Schur complement

det(Ã) = det(A) det(D − CA−1B).
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Application of the Schur complement
Take A to be an h × h Hadamard matrix that is a principal
submatrix of an n × n matrix, n = h + d .

Ã =

[
A B
C D

]
.

I Since A is Hadamard, AAT = hI and det(A) = hh/2, so

det(Ã) = hh/2 det(D − h−1CAT B) .

I The problem is to maximise the order d determinant

|det(D − h−1CAT B)| .

Richard Brent Application of the Schur complement



Using the probabilistic method

Choose the h × d {±1}-matrix B uniformly at random.
We would like to choose C and D (depending on B) to
maximise the expected value

E(|det(D − h−1CAT B)|).

Approximate this by choosing C = (cij), where

cij = sgn(AT B)ji for 1 ≤ i ≤ d , 1 ≤ j ≤ h

so there is no cancellation in the inner products defining the
diagonal elements of C · AT B.
For d = 1 this is the same as the choice made by Best, Brown,
Erdős and Spencer.
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Entries in the Schur complement
Write F = h−1CAT B, so the Schur complement is D − F .
The choice of D is not important (at least as h→∞), so
for simplicity we’ll ignore D and concentrate on F .

I Diagonal elements. By a counting argument [Best et al]

E(fii) = 2−h
h∑

k=0

|h − 2k |
(

h
k

)
=

h
2h

(
h

h/2

)
∼
(

2h
π

)1/2

.

I Off-diagonal elements. If i 6= j , then

E(fij) = 0 and E(f 2
ij ) = 1.

I All elements. |fij | ≤ h1/2 .
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The contribution of the off-diagonal elements

We want to approximate the determinant of the Schur
complement by the product of its diagonal elements.
One way of showing that the contribution from the off-diagonal
elements is (usually) small is to use the Cauchy-Schwarz
inequality:

E(|fij fk`|) ≤
√

E(f 2
ij )E(f 2

k`) = 1.

We can not assume that fij and fk` are independent, even if
i 6= j and k 6= `. For example, f12 and f21 are dependent.
Exercise. Show that fij depends only on columns i and j of B.
Deduce that fij and fk` are independent iff {i , j} ∩ {k , `} = ∅.
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Using Cauchy-Schwartz to estimate det(F )

We want a lower bound on E(det(F )) for fixed d and large h.
For example, if d = 3,

det(F ) = det

f11 f12 f13
f21 f22 f23
f31 f32 f33

 = f11f22f33 + other terms,

and a typical “other term” has expectation O(h1/2) as

|E(f12f21f33)| ≤ E(|f12f21|) max(|f33|) ≤ h1/2.

Thus, using independence of f11, f22 and f33,

E(det(F )) = E(f11f22f33) + Od(h1/2) =

(
2h
π

)3/2

+ Od(h1/2).
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First result

Theorem. If d ≥ 1, h ∈ H, n = h + d , and h ≥ h0(d), then

R(n) >

(
2
πe

)d/2

.

The constant 2/(πe) appearing here is nice, but probably not
best possible, since our proof uses expectations, not maxima.
From the Barba and Ehlich-Wojtas upper bounds, we know that

lim sup
H3h→∞

R(h + d) ≤
(

2
e

)d/2

for d ≤ 2.
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Small d

For 0 ≤ d ≤ 3, our theorem implies, after considering
the cases with h < h0(3) separately, that

R(n) ≥
(

2
πe

)d/2

.

Numerically,(
2
πe

)1/2

> 0.4839 so R(n) ≥ (0.4839)d .

If the Hadamard conjecture is true, then every positive integer
divisible by 4 is a Hadamard order, so 0 ≤ d ≤ 3, and the
inequality always holds.
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Ameliorating the cutoff h0(d)

If the Hadamard conjecture is false, we have to consider d ≥ 4.
Our theorem required h ≥ h0(d), where h0(d) grows too fast for
comfort, roughly as

(d/2)2d .

We can reduce (and even eliminate) the cutoff h0(d) by using a
different way to bound the effect of off-diagonal elements in the
Schur complement.
The idea is to use a Chernoff/Hoeffding tail inequality,
combined with a lower bound on the determinant of a
diagonally dominant matrix.
There is a price to pay – the proof is more complicated, and the
final inequality that we get is slightly weaker.
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Using Hoeffding’s tail inequality

I Let X1, . . . ,Xh be independent random variables with
sum Y , where Xi ∈ [ai ,bi ]. Then, for all t > 0,

Pr (|Y − E [Y ]| ≥ t) ≤ 2 exp

(
−2t2∑h

i=1(bi − ai)2

)
.

I This can be applied with Y = fij , which can be written
as a sum of h bounded, independent random variables.

I If the off-diagonal elements of the Schur complement are
usually small and the diagonal elements are often large,
then with positive probability we can use a lower bound on
the determinant of a diagonally dominant matrix.
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Second result

We can remove the restriction on h at the cost of reducing the
constant from

( 2
πe

)1/2 ≈ 0.484 to 0.352 > 1/3.

Theorem. If d ≥ 0, h ∈ H, and n = h + d , then

R(n) > 3−(d+3).

Comparison: the bound of Clements and Lindström (1965) is

R(n) > (3/4)n/2.

Our bound is much sharper since d � n1/6 [Livinskyi 2012].
It is sharper than the bounds of Koukouvinos, Mitrouli and
Seberry (also de Launey and Levin, Brent and Osborn) if d > 0
is fixed and n→∞; all these bounds are at best R(n)� n−1/2.
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Ingredients in the proof

The proof uses

I Hoeffding’s tail inequality for a sum of bounded
independent random variables,

I a new (best possible) lower bound on the determinant of
a diagonally dominant matrix, improving on what can be
obtained from Gerschgorin’s theorem,

I various known constructions for Hadamard matrices,
I results of Livinskyi (2012) on the asymptotic density of

Hadamard matrices, and
I a computer-aided analysis of a set of 32 exceptional

cases with n < 60480.

For the details, see arXiv:1211.3248.
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Conjecture

We conjecture that

R(n) ≥
(

2
πe

)d/2

.

Evidence. The conjecture holds for:
I for 0 ≤ d ≤ 3 (implied by the Hadamard conjecture),
I for all d ≥ 0 if n ≥ n0(d) is sufficiently large,
I for all n ≤ 120 (in fact R(n) > 1/2 for n ≤ 120),
I for many larger values of n for which we have computed a

lower bound on R(n) using a probabilistic algorithm based
on our construction.
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