
An O(M(n) log n) algorithm for the
Jacobi symbol

Richard P. Brent, ANU

Paul Zimmermann, INRIA, Nancy

6 December 2010

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Definitions

The Legendre symbol (a|p) is defined for a,p ∈ Z, where p is
an odd prime.

(a|p) =

0 if a = 0 mod p, else
+1 if a is a quadratic residue (mod p),
−1 otherwise.

By Euler’s criterion, (a|p) = a(p−1)/2 mod p.

The Jacobi symbol (a|n) is a generalisation where n does not
have to be prime (but must still be odd and positive):

(a|pα1
1 · · · p

αk
k) = (a|p1)

α1 · · · (a|pk)αk

This talk is about an algorithm for computing (a|n) quickly,
without needing to factor n.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Connection with the GCD

The greatest common divisor (GCD) of two integers b,a
(not both zero) can be computed by (many different variants of)
the Euclidean algorithm, using the facts that:

gcd(b,a) = gcd(b mod a,a),

gcd(b,a) = gcd(a,b), gcd(a,0) = a.

Identities satisfied by the Jacobi symbol (b |a) are similar:

(b |a) = (b mod a |a),

(b |a) = (a |b)(−1)(a−1)(b−1)/4 for b odd positive,

(−1 |a) = (−1)(a−1)/2, (2 |a) = (−1)(a
2−1)/8,

(b |a) = 0 if gcd(a,b) 6= 1.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Computing the Jacobi symbol

The similarity of the identities satisfied by gcd(b,a) and the
Jacobi symbol (b |a) suggest that we could compute (b |a)
while computing gcd(b,a), just keeping track of the sign
changes and making sure that everything is well-defined.
This is true, if the GCD is computed via the classical Euclidean
algorithm (or via the binary Euclidean algorithm), and leads to a
quadratic algorithm for computing the Jacobi symbol.
For large inputs, the GCD can be computed even faster, as first
shown by Knuth (1970) and Schönhage (1971). Can we speed
up computation of the Jacobi symbol as well?

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Complexity of algorithms

Assume the inputs are n-bit integers.

A cubic algorithm runs in time O(n3).

A quadratic algorithm runs in time O(n2).

A subquadratic algorithm runs in time o(n2).

All subquadratic algorithms considered in this talk run in time
O(M(n) log n), where

M(n) = O(n log n log log n)

is the time required to multiply n-bit integers.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Motivation

From: Steven Galbraith
Date: 17 April 2009
To: Paul Zimmermann, ...

Hi Paul, ...

The usual algorithm to compute the Legendre (or Jacobi) symbol
is closely related to Euclid’s algorithm. There are variants of
Euclid for n-bit integers which run in O(M(n) log(n)) bit operations.
Hence it is natural to expect a O(M(n) log(n)) algorithm for
Legendre symbols.

I don’t see this statement anywhere in the literature. Is this:

(a) in the literature somewhere
(b) so obvious no-one ever wrote it down
(c) false due to some subtle reason.

Thanks for your help.

Regards
Steven

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Answer: (b) so obvious no-one ever wrote it down (?)

This is what we first thought.

However we soon realized it was not so easy...

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Potential difficulty

Known fast (subquadratic) GCD algorithms work in the
following way. A recursive procedure halfGCD(a,b) returns a
matrix R such that, if (

a′

b′

)
= R

(
a
b

)
,

where max(|a′|, |b′|) is significantly smaller than max(|a|, |b|),
but the GCD is preserved, i.e. gcd(a′,b′) = gcd(a,b).
In halfGCD(a,b) we (usually) work with the most significant
bits of a and b. This means that we might not have all the
information required to update the Jacobi symbol, which
depends on the least significant bits.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Examples on some computer algebra systems

Magma V2.16-10 on 2.83Ghz Core 2:
> a:=3ˆ209590; b:=5ˆ143067;
> time c := Gcd(a,b);
Time: 0.080
> time d := JacobiSymbol(a,b);
Time: 2.390

Sage 4.4.4 on 2.83Ghz Core 2:
sage: a=3ˆ209590; b=5ˆ143067
sage: a.ndigits(), b.ndigits()
(100000, 100000)
sage: %timeit a.gcd(b)
5 loops, best of 3: 49.9 ms per loop
sage: %timeit a.jacobi(b)
5 loops, best of 3: 2.04 s per loop

GMP 5.0.1 and GP/PARI 2.4.3 give similar results.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Answer: (a) in the literature somewhere (?)

Yes and no. The literature is incomplete and confusing.
There are two MSB (most significant bits first) algorithms:

Bach and Shallit, “Algorithmic Number Theory” (1996),
solution of Exercise 5.52 [sketch only, attributed to
Gauss (1817/18), Bachmann (1902), Schönhage (1971)],
also mentioned briefly in Bach (1990);
a different algorithm mentioned by Schönhage in his
“Turing machine” book (1994), but without details.
This algorithm does not use the identity of Gauss.

As far as we know, no subquadratic implementation exists,
except that of Schönhage in the TP language, which shows
how to implement it on a multi-tape Turing machine, but is not
immediately relevant to Maple, Magma, Sage, etc.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Answer: (c) false due to some subtle reason (?)

No, it is possible, although nontrivial.
It can be done using a fast version of either:

a “most significant bit first” (MSB) Euclidean algorithm,
e.g. Schönhage/Möller,
or a “least significant bit first” (LSB) algorithm,
e.g. Stehlé and Zimmermann (2004).

The LSB algorithm is simpler and easier to justify.
It does not seem possible to adapt Shallit and Sorenson’s
quadratic “binary” algorithm (1993) to give a subquadratic
Jacobi algorithm.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Outline of remainder of the talk

Binary (MSB and LSB) division for GCD computation
A cubic (quadratic?) LSB algorithm for the Jacobi symbol
A provably quadratic LSB algorithm
A subquadratic LSB algorithm (details omitted)
Implementation and timings
Annotated list of references

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

LSB algorithms

We propose an LSB (least significant bit) algorithm, that can be
implemented with time bound O(M(n) log n) by modifying an
LSB gcd algorithm.

We assume a is odd positive, b is even positive.

• if b is negative, use (b|a) = (−1)(a−1)/2(−b|a).
• if b is odd, use (b|a) = (b + a|a).

For a ∈ Z, the notation ν(a) denotes the 2-adic valuation ν2(a)
of a, that is the maximum k such that 2k |a, or +∞ if a = 0.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

(LSB) Binary division

a = 935 = (1110100111)2

b = 714 = (1011001010)2

divide b by the largest possible power of two:

b/2 = 357 = (101100101)2

now choose in [a + b/2,a− b/2] the number a + qb/2 with
most trailing zeros:

a + b/2 = 1292 = (10100001100)2

a− b/2 = 578 = (1001000010)2

Reference: Stehlé and Zimmermann, A binary recursive gcd
algorithm, Proc. ANTS VI, 2004.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

(LSB) Binary division: another example

a = 935 = (1110100111)2

b = 716 = (1011001100)2

a + b/4 = 1114 = (10001011010)2

a− b/4 = 756 = (1011110100)2

a + 3b/4 = 1472 = (10111000000)2

a− 3b/4 = 398 = (110001110)2

Here we choose a + 3b/4 as next term.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Theory of LSB binary division

Suppose a,b ∈ Z with j := ν(b)− ν(a) > 0.

There is a unique q ∈ (−2j ,2j) such that

r = a + qb/2j and ν(r) > ν(b).

q is the binary quotient of a by b.
r is the binary remainder of a by b.

Rationale: if a,b each have n bits, b′ = b/2j has n − j bits, and
qb′ has about n bits, thus r has about the same bit-size as a,
but at least j + 1 more zeros in the LSBs.

Also, gcd(b, r) = gcd(a,b) (as for MSB binary division).

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Computation

j = ν(b)− ν(a) > 0

b′ = b/2j

q ≡ −a/b′ mod 2j+1 (centered)

Iterating, we get a binary remainder sequence a,b, r , . . . with

ν(a) < ν(b) < ν(r) < · · ·

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Using binary (LSB) division for GCD computation

Binary (LSB) division forces 0’s in the LSBs:

935 1110100111
714 1011001010

935 + 714/2 = 1292 10100001100
714 + 2× 1292/22 = 1360 10101010000

1292 + 4× 1360/24 = 1632 11001100000
1360 + 16× 1632/25 = 2176 100010000000
1632− 96× 2176/27 = 0 000000000000

Conclusion: gcd(935,714) = (10001)2 = 17 = 2176/27

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Comparison – using MSB division

Classical (MSB) division forces zeros in the MSBs:

decimal binary
935 1110100111
714 1011001010

835− 714 = 221 0011011101
714− 3× 221 = 51 0000110011

221− 4× 51 = 17 0000010001
51− 3× 17 = 0 0000000000

Conclusion: gcd(935,714) = (10001)2 = 17

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Advantages of LSB binary division

⊕ simpler to compute, at least in software
(division mod 2j+1 instead of MSB division);

⊕ no “repair step” in the subquadratic GCD;
⊕ an average reduction of two LSB bits per iteration;
	 an average increase of 0.05 MSB bit per iteration

(analyzed precisely by Daireaux, Maume-Deschamps and
Vallée, DMTCS, 2005).

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Using binary (LSB) division for the Jacobi symbol (?)

It seems easy, using b′ = b/2j odd, via the identities:

(b|a) = (−1)j(a2−1)/8(b′|a)

(b′|a) = (−1)(a−1)(b′−1)/4(a|b′)

(a|b′) = (a + qb′|b′) = (r |b′)

(r |b′) = (−1)j(b′2−1)/8(r/2j |b′)

However r can be negative!
Example: 935, 738, 1304,−240,1184,−832,768,−1024,0.

This is incompatible with the definition of the Jacobi symbol,
which requires a odd positive.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Binary (LSB) division with positive quotient

Solution: use positive instead of centred quotient – instead of
taking q = a/(b/2j) mod 2j+1 in (−2j ,2j), take it in (0,2j+1).

Since q > 0, if a,b > 0, then r = a + qb/2j > 0, so all terms in
the binary remainder sequence are non-negative.

Stopping GCD criterion: a/2ν(a) = b/2ν(b).

Notation: (q, r) = BinaryDividePos(a,b).

Example: 935, 714 = 357 · 2, 1292 = 323 · 22, 1360 = 85 · 24,
1632 = 51 · 25, 2176 = 17 · 27, 4352 = 17 · 28.

Disadvantage: Slower convergence, compared to using the
centred quotient.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

A cubic (quadratic?) LSB algorithm

Algorithm CubicBinaryJacobi.
Input: a,b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)

1: s ← 0
2: j ← ν(b)
3: while 2ja 6= b do
4: b′ ← b/2j

5: (q, r)← BinaryDividePos(a,b)

6: s ← (s + j(a2−1)
8 + (a−1)(b′−1)

4 + j(b′2−1)
8) mod 2

7: (a,b)← (b′, r/2j)
8: j ← ν(b)

9: if a = 1 then return (−1)s else return 0
(lines in red are added to the LSB GCD-algorithm)

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Cost of the cubic (quadratic?) algorithm

Let n be the bit-size of the inputs a,b.

Each iteration costs O(n).

The number of iterations is O(n2) (conjectured to be O(n)).

Thus the total cost is O(n3) (conjectured to be O(n2)).

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

A provably quadratic LSB algorithm

Lemma
The quantity a + 2b is non-increasing in CubicBinaryJacobi.

Proof. At each iteration, a + 2b becomes:

2a
2j +

(
1 +

2q
2j

)
b
2j .

If j ≥ 2, a + 2b is multiplied by a factor at most 9/16:
call this a good iteration.
If j = 1 and q = 1, a + 2b decreases, but with a factor that can
be arbitrarily close to 1: bad iteration.
If j = 1 and q = 3, a + 2b remains unchanged: ugly iteration.
(Ugly iterations never occur with centred LSB division.)

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Examples

Good iteration: a = 9,b = 4 gives j = 2,q = 7, b′ = 1, r/2j = 4,
a + 2b = 17 becomes 9.

Bad iteration: a = 9,b = 6 gives b′ = 3, r/2j = 6, a + 2b = 21
becomes 15.

Ugly iteration: a = 9,b = 10 gives b′ = 5, r/2j = 12,
a + 2b = 29 remains 29.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Sequences of ugly iterations

Lemma
If µ = ν(a− b/2), there are exactly bµ/2c ugly iterations
starting from (a,b), followed by a good iteration if µ is even,
otherwise by a bad iteration.

Example 1: a− b/2 = 64 = 26

(85,42) →︸︷︷︸
ugly

(21,74) →︸︷︷︸
ugly

(37,66) →︸︷︷︸
ugly

(33,68) →︸︷︷︸
good

(34,38) · · ·

Example 2: a− b/2 = 128 = 27

(149,42) →︸︷︷︸
ugly

(21,106) →︸︷︷︸
ugly

(53,90) →︸︷︷︸
ugly

(45,94) →︸︷︷︸
bad

(47,46) · · ·

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Corollary and conjecture

Corollary
The worst-case running time of Algorithm CubicBinaryJacobi
for n-bit inputs is O(n3).

Conjecture.
The worst-case running time of Algorithm CubicBinaryJacobi
on n-bit inputs is O(n2).
Evidence.
The worst-case number of iterations for Algorithm
CubicBinaryJacobi on n-bit inputs is as follows:

n 5 10 15 20 25 26
iterations 6 19 34 48 62 64

This seems to be linear in n (implying quadratic running time).

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

The evidence – max iterations vs bit-size

0 5 10 15 20 25

0

20

40

60

x x x x x x
x

x
x x x

x x x
x

x
x x x

x
x x x

x
x x

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

A quadratic LSB algorithm

Main idea: from the 2-valuation of a− b/2, compute the
number m > 0 of consecutive ugly iterations, and apply them all
at once: call this a harmless iteration.

The Jacobi symbol can be updated efficiently for a harmless
iteration (details omitted).

Now we have only good (G), bad (B), or harmless (H) iterations,
where HH is forbidden.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Algorithm QuadraticBinaryJacobi

Algorithm QuadraticBinaryJacobi
1: s ← 0, j ← ν(b), b′ ← b/2j

2: while a 6= b′ do
3: s ← (s + j(a2 − 1)/8) mod 2
4: (q, r)← BinaryDividePos(a,b)
5: if (j ,q) = (1,3) then . harmless iteration
6: d ← a− b′

7: m← ν(d) div 2
8: c ← (d − (−1)md/4m)/5
9: s ← (s + m(a− 1)/2) mod 2

10: (a,b)← (a− 4c,b + 2c)
11: else . good or bad iteration
12: s ← (s + (a− 1)(b′ − 1)/4) mod 2
13: (a,b)← (b′, r/2j)

14: s ← (s + j(a2 − 1)/8) mod 2, j ← ν(b), b′ ← b/2j

15: if a = 1 then return (−1)s else return 0

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Analysis of the quadratic algorithm

Lemma
Algorithm QuadraticBinaryJacobi needs O(n) iterations.

Proof.
Consider a block of three iterations (G, B, or H):

G multiplies a + 2b by at most 9/16 < 5/8;
HH is forbidden, thus we have either HB = UmB or BB;
UB multiplies a + 2b by at most 5/8, and Um−1 leaves it
unchanged;
BB multiplies a + 2b by at most 1/2 < 5/8.

Thus each three iterations multiply a + 2b by at most 5/8, thus
the number of iterations if cn + O(1), where
c = 3/ log2(8/5) ≈ 4.4243.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

A subquadratic LSB algorithm for the Jacobi symbol

We can modify Algorithm QuadraticBinaryJacobi to get a
subquadratic algorithm for the Jacobi symbol, following the
general ideas of the subquadratic LSB GCD algorithm of
Stehlé and Zimmermann.
Details are given in Brent and Zimmermann, Proc. ANTS-IX
(Nancy, July 2010) – preprint available from my website.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Computational results for large inputs

Timings on a 2.83Ghz Core 2 with GMP 4.3.1, with inputs of
one million 64-bit words.

GMP’s fast gcd takes 45.8s.

An implementation of the (fast) binary gcd takes 48.3s.

Our implementation FastBinaryJacobi takes 83.1s.

Our implementation is faster than GMP’s O(n2) code from
about 535 words (about 10,000 decimal digits).

See the following graph (note the log-log scale).

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Comparison with GMP 4.3.1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000

mpz_jacobi
FastBinaryJacobi

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Summary

We have given:

the first LSB algorithms for the Jacobi symbol;
the first complete (description + code) subquadratic
Jacobi algorithm;
we do not need to compute the (LSB or MSB) quotient or
remainder sequences;
we introduced “harmless” iterations to circumvent the
problem of “ugly” iterations, but conjecture that this trick is
not necessary.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

Acknowledgements

Thanks to:
Steven Galbraith for asking the original question;
Damien Stehlé for suggesting use of an LSB algorithm;
Arnold Schönhage for his comments and pointers to
earlier work;
The ARC and the ANC Équipe Associée (INRIA) for
their support.

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

References

Eric Bach, A note on square roots in finite fields, IEEE
Trans. on Information Theory, 36, 6 (1990), 1494–1498.
[First known mention in print of a subquadratic algorithm
for the Jacobi symbol.]
Eric Bach and Jeffrey O. Shallit, Algorithmic Number
Theory, Volume 1: Efficient Algorithms, MIT Press, 1996.
Solution to problem 5.52. [Sketches a subquadratic
algorithm attributed to Schönhage.]
Richard P. Brent and Paul Zimmermann,
An O(M(n) log n) algorithm for the Jacobi symbol,
Proc. ANTS-IX, LNCS 6197 (2010), 83–95.
[Fills the gaps in this talk.]

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

References continued

Richard P. Brent and Paul Zimmermann,
Modern Computer Arithmetic, Cambridge University Press,
2010, §1.6.3. [For discussion of subquadratic algorithms.]
Benoı̂t Daireaux, Véronique Maume-Deschamps and
Brigitte Vallée, The Lyapunov tortoise and the dyadic hare,
Proc. 2005 Internat. Conf. on Analysis of Algorithms,
DMTCS Proc. AD (2005), 71–94. [For rigorous
average-case analysis of some relevant GCD algorithms.]
C. F. Gauss, Theorematis fundamentalis in doctrina de
residuis quadraticis, demonstrationes et ampliatones
novæ, Comm. Soc. Reg. Sci. Gottingensis Rec. 4, 1818.
[Gives an identity necessary in Bach and Shallit’s
subquadratic Jacobi algorithm.]

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

References continued

Donald E. Knuth, The analysis of algorithms, in Actes du
Congrès International des Mathématiciens de 1970, vol. 3,
Gauthiers-Villars, Paris, 269–274. [The first subquadratic
GCD algorithm, but with a sub-optimal time bound.]
Niels Möller, On Schönhage’s algorithm and subquadratic
integer GCD computation, Math. Comp. 77, 261 (2008),
589–607. [Shows how to avoid “fixup” steps in fast MSB
GCD algorithms.]
Arnold Schönhage, Schnelle Berechnung von
Kettenbruchentwicklungen, Acta Informatica 1 (1971),
139–144. [The first subquadratic (MSB) GCD algorithm
with sharp time bound.]
Arnold Schönhage, personal communication Dec. 2009.
[Describes a subquadratic (MSB) Jacobi algorithm that
does not use the identity of Gauss.]

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

References continued

Arnold Schönhage, Andreas F. W. Grotefeld and Ekkehart
Vetter, Fast Algorithms: A Multitape Turing Machine
Implementation, BI-W, Mannheim, 1994. [Mentions,
without details, a subquadratic (MSB) Jacobi algorithm.]
Jeffrey Shallit and Jonathan Sorenson, A binary algorithm
for the Jacobi symbol, ACM SIGSAM Bulletin 27, 1
(January 1993), 4–11. [Adapts the binary GCD algorithm
to give a quadratic algorithm for the Jacobi symbol.]
Damien Stehlé and Paul Zimmermann, A binary recursive
gcd algorithm, Proc. ANTS-VI, LNCS 3076 (2004),
411–425. [The first subquadratic (LSB) GCD algorithm.
We adapted it to give a subquadratic Jacobi algorithm.]

Richard Brent and Paul Zimmermann An algorithm for the Jacobi symbol

