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Abstract

A pseudo-random number generator (RNG)
might be used to generate w-bit random
samples in d dimensions if the number of state
bits is at least dw. Some RNGs perform better
than others and the concept of equidistribution
has been introduced in the literature in order to
rank different RNGs.

In this talk I shall define what it means for a
RNG to be (d, w)-equidistributed, and then
argue that (d, w)-equidistribution is not
necessarily a desirable property.
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Motivation

There is no such thing as a random

number – there are only methods to

produce random numbers, and a

strict arithmetic procedure of course

is not such a method.

John von Neumann

Suppose we are performing a simulation in d
dimensions. For simplicity let the region of
interest be the unit hypercube H = [0, 1)d.

For the simulation we may need a sequence
y0, y1, . . . of points uniformly and independently
distributed in H. A pseudo-random number
generator gives us a sequence x0, x1, . . . of
points in [0, 1). Thus, it is natural to group
these points in blocks of d, that is

yj = (xjd, xjd+1, . . . , xjd+d−1) .

If our pseudo-random number generator is good
and d is not too large, we expect the yj to
behave like uniformly and independently
distributed points in H.

3

Pseudo-random vs quasi-random

We are considering applications where the
(pseudo-)random number generator should, as
far as possible, be indistinguishable from a
perfectly random source. In some applications,
e.g. Monte Carlo quadrature, it is better to use
quasi-random numbers which are intended for
that application and give an estimate with
smaller variance than we could expect with a
perfectly random source.

For example, when estimating a contour
integral of an analytic function, we might
transform the contour to a circle and use
equally spaced points on the circle.

However, when simulating Canberra’s future
climate and water supply, it would not be a
good idea to assume that exceptionally dry
years were equally spaced!
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Goodness of fit

If we use the χ2 test to test the hypothesis that
a set of data is a random sample from some
distribution, then we typically reject the
hypothesis if the χ2 statistic is too large.

However, we should equally reject the
hypothesis if χ2 is too small (because in this
case the fit is too good).
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Linear congruential generators

In the “old days” people often followed
Lehmer’s suggestion and used linear
congruential random number generators of the
form

zn+1 = azn + b mod m .

This gives an integer in [0, m) so needs to be
scaled:

xn = zn/m .

Typically m is a power of two such as 232 or
264, or a prime close to such a power of two.

Unfortunately, all such linear congruential
generators perform badly in high dimensions, as
shown in Marsaglia’s famous paper Random

numbers fall mainly in the planes (1968).
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RANDU

Some linear congruential generators perform
disastrously. For example, consider the
infamous RANDU:

zn+1 = 65539zn mod 231

(with z0 odd). These points satisfy

zn+2 − 6zn+1 + 9zn = 0 mod 231

so in dimension d = 3 the resulting points yj all
lie on a small number of planes, in fact 15 planes
separated by distance 1/

√
12 + 62 + 92 ≈ 0.092

In general, such behaviour is detected by the
spectral test.

Even the best linear congruential generators
perform badly because they have period at most
m, so the average distance between points yj is
of order

1

m1/d

(so the set of points closest to any one yj has
volume of order 1/m).
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Modern generators

Nowadays, linear congruential generators are
rarely used in high-dimensional simulations.
Instead, generators with much longer periods
are used. A popular class is those given by a
linear recurrence over F2. These take the form

ui = Aui−1 mod 2

vi = Bui mod 2

xi =

w∑

j=1

vi,j2
−j

where ui is an n-bit state vector, vi is a w-bit
output vector which may be regarded as a
fixed-point number xi, and the linear algebra is
performed over the field F2 = GF(2) of two
elements {0, 1}. Here A is an n × n matrix and
B is a w × n matrix (both over F2). Usually A
is sparse (so the matrix-vector multiplication
can be performed quickly) and often B is a
projection.
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The period

Provided the characteristic polynomial of A is
primitive over F2, and B 6= 0, the period of such
a generator is 2n − 1. This can be very large,
e.g. n = 4096 for xorgens [3] and n = 19937 for
the Mersenne Twister [8]. For details we refer
to L’Ecuyer’s papers [5, 11].
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Equidistribution

Various definitions of (d, w)-equidistribution can
be found in the literature. We follow Panneton
and L’Ecuyer [11] without attempting to be too
general.

Consider w-bit fixed-point numbers. There are
2w such numbers in [0, 1). Each such number
can be regarded as representing a small interval
of length 2−w.

Similarly, in d dimensions, we can consider
small hypercubes whose sides have length 2−w.
Each small hypercube has volume 2−dw and
there are 2dw of them in the unit hypercube
[0, 1)d. A small hypercube can be specified by a
d-dimensional vector of w-bit numbers (a total
of dw bits).
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Definition

Consider a random number generator with
period 2n. (A slight change in the definition can
be made to accomodate generators with period
2n − 1.)

If the generator is run for a complete period to
generate 2n pseudo-random points in [0, 1)d, we
say that the generator is (d, w)-equidistributed
if the same number of points fall in each small
hypercube.

The condition n ≥ dw is necessary. The number
of points in each small hypercube is 2n−dw.

RANDU (with n = 29) is not

(d, w)-equidistributed for any d ≥ 3, w ≥ 4.
However, most good long-period generators are

(d, w)-equidistributed for dw ≪ n.
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Figures of merit

The maximum w for which a generator can be
(d, w)-equidistributed is w∗

d = ⌊n/d⌋. If a
generator is actually (d, w)-equidistributed for
w ≤ wd then

δd = w∗
d − wd

is sometimes called the “resolution gap” [5] and

∆ = max
d≤n

δd

is taken as a figure-of-merit (small ∆ is
desirable). However, this only makes sense when
comparing generators with the same period.
When comparing generators with different
periods, it makes more sense to consider

W =
∑

d≤n

wd

as a figure of merit (a large value is desirable).
An upper bound is W ≤ ∑

d w∗
d ∼ n lnn.
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A problem with equidistribution

A test for randomness should (usually) be
passed by a perfectly random source.

(d, w)-equidistribution applies only to a periodic
sequence: we need to know the period N = 2n

(or N = 2n − 1). A perfectly random source is
not periodic, but we can get a periodic sequence
by taking the first N elements (y0, y1, . . . , yN−1)
and then repeating them (yi+N = yi). However,
this sequence is unlikely to be (d, w)-equi-
distributed unless d and w are very small.

Consider the simplest case dw = n. There are
N = 2n small hypercubes and N ! ways in which
each of these can be hit by exactly one of
(y0, . . . , yN−1) out of NN possibilities. Thus the
probability of equidistribution is

N !

NN
∼

√
2πN

exp(N)
.

Recall that N = 2n is typically very large
(for example 24096) so exp(N) is gigantic.
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Another problem with equidistribution

(d, w)-equidistribution is independent of the
ordering of y0, . . . , yN−1.

Given a (d, w)-equidistributed sequence, we can
reorder it in any manner and the new sequence
will still be (d, w)-equidistributed.

For example, yj = j mod 2n gives a
(1, n)-equidistributed sequence.

A common argument

It is often argued that, when n is large, we will
not use the full sequence of length N = 2n, but
just some initial segment of length M ≪ N . If
M ≪

√
N then the initial segment may behave

like the initial segment of a random sequence.
However, if this is true, what is the benefit of
(d, w)-equidistribution?
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Why consider equidistribution?

The main argument in favour of considering
equidistribution seems to be that, for several
popular classes of pseudo-random number
generators, we can test if the sequence is
(d, w)-equidistributed without actually
generating a complete cycle of length N .

For generators given by a linear recurrence over
F2, (d, w)-equidistribution is equivalent to a
certain matrix over F2 having full rank.
However, the fact that a property is easily
checked does not mean that it is relevant. We
actually need something weaker (but harder to
check).

Conclusion

When comparing modern long-period
pseudo-random number generators,
(d, w)-equidistribution is irrelevant,
because it is neither necessary nor sufficient for
a good generator.
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