
Jonathan Borwein, Pi and the AGM

Richard P. Brent

Australian National University, Canberra
and CARMA, University of Newcastle

26 Sept 2017

In fond memory of Jon Borwein 1951–2016

210eπ days was not enough

Copyright c© 2017, R. P. Brent

Richard Brent Jon Borwein, π and the AGM

Abstract

We consider some of Jon Borwein’s contributions to the
high-precision computation of π and the elementary functions,
with particular reference to the fascinating book Pi and the
AGM (Wiley, 1987) by Jon and his brother Peter Borwein.
Here “AGM” is the arithmetic-geometric mean, first studied by
Euler, Gauss and Legendre. Because the AGM has
second-order convergence, it can be combined with fast
multiplication algorithms to give fast algorithms for the n-bit
computation of π, and more generally the elementary functions.
These algorithms run in “almost linear” time O(M(n) log n),
where M(n) is the time for n-bit multiplication.
The talk will survey some of the results and algorithms, from the
time of Archimedes to the present day, that were of interest to
Jon. In several cases they were discovered or improved by him.

Jon Borwein, π and the AGM Abstract

A message from Peter Borwein

Peter Borwein writes:

“I would’ve loved to attend. But unfortunately I have
multiple sclerosis. It makes it impossible to travel. If you
could pass on my regards and best wishes to everyone
I would greatly appreciate it. Thank you”

Jon Borwein, π and the AGM A message from Peter

Why π?

Why was Jon interested in π?
Perhaps because it is transcendental but appears in many
mathematical formulas. For example, here are some that I like:

eiπ = −1, (Euler),
π
4 = arctan(1) = 1− 1

3 + 1
5 − · · · (Gregory/Leibnitz),

= arctan(1
2) + arctan(1

3) (Euler),

= 4 arctan(1
5)− arctan(1

239) (Machin),
√
π = Γ(1

2), where Γ(s) :=
∫∞

0 xs−1e−x dx ,

ζ(2n) = (−1)n+1 B2n(2π)2n

2(2n)!
for non-negative integers n.

The Bernoulli numbers B2n ∈ Q (B0 = 1, B2 = 1
6 , B4 = − 1

30 , · · ·)
have a simple exponential generating function x/(ex −1)− x/2.

Jon Borwein, π and the AGM Why π?

Generalisations
eiπ = −1 is a special case of eiθ = cos θ + i sin θ.
√
π = Γ(1

2) is a special case of
√
π = 22s−1 Γ(s)Γ(s+ 1

2)

Γ(2s)
.

Euler’s formula for ζ(2n) follows from the Hadamard product

sinπz
πz

=
∞∏

n=1

(
1− z2

n2

)
.

There are infinite families of arctan formulas for π whose proofs
are based on the identity

arctan u + arctan v = arctan

(
u + v
1− uv

)
.

This may be more familiar in the form

tan(α + β) =
tanα + tanβ

1− tanα tanβ
.

We’ll later see examples involving elliptic integrals, theta
functions, etc. Thus, a formula for π is usually just the tip of a
large iceberg!

Jon Borwein, π and the AGM Why π?

Why so many digits?

To compute the circumference of the planet Earth to an
accuracy of 1mm from the formula 2πr , we only need π to 11
decimal digits.
The circumference of the observable universe can be
computed to within one Planck length (1.6× 10−35 metres) if
we know π to about 62 decimal digits, assuming that
space-time is flat and we know the radius.
Hence, why would anyone ever be interested in computing π to
more than 100 decimal digits?

Jon Borwein, π and the AGM Why do we want π to high precision?

Some answers

One possible answer: because e is too easy, and γ is too hard!
More seriously, as we saw already, π is just the tip of several
icebergs, and we want to see what is underwater.
To find identities using the PSLQ algorithm (Ferguson and
Bailey) or to numerically verify conjectured identities, we need
to be able to compute the relevant terms to high precision.
Thus, we want to be able to compute many constants to high
precision, for example ζ(3), γ, exp(π

√
163), Γ(p/q) for rational

p/q, . . .
To implement arbitrary-precision software such as MPFR, we
need algorithms for the computation of elementary and special
functions to arbitrary precision.

Jon Borwein, π and the AGM Why do we want π to high precision?

Another answer

As in mountain-climbing, “because it is there!”
Of course, a mountain has a finite height, so in principle we can
get to the top. π = 3.14159265 · · · has a nonterminating (and
non-periodic) decimal (or binary) expansion, so we can never
compute all of it.
For this reason, I prefer to work on algorithms for computing π
than on programs to approximate it to a large (but finite) number
of digits. I suspect that Jon Borwein had the same view.
The “game” is to find an algorithm with the least possible
asymptotic time complexity (usually ignoring constant factors).
It will not necessarily be the most practical algorithm for
computing π, because of constant factors, implementation
difficulties, memory requirements, etc.

Jon Borwein, π and the AGM Why do we want π to high precision?

Some means
To refresh your memory, the arithmetic mean of a,b ∈ R is

AM(a,b) :=
a + b

2
.

The geometric mean is

GM(a,b) :=
√

ab,

and the harmonic mean (for ab 6= 0) is

HM(a,b) := AM(a−1,b−1)−1 =
2ab

a + b
.

Assuming that a and b are positive, we have the inequalities

HM(a,b) ≤ GM(a,b) ≤ AM(a,b).

Later we may have a,b ∈ C. To resolve the ambiguity in
the square root we assume that <(GM(a,b)) ≥ 0, and
=(GM(a,b)) ≥ 0 if <(GM(a,b)) = 0.

Jon Borwein, π and the AGM Arithmetic, geometric and harmonic means

The arithmetic-geometric mean

Given two positive reals a0,b0, we can iterate the arithmetic
and geometric means by defining, for n ≥ 0,

an+1 = AM(an,bn)

bn+1 = GM(an,bn).

The sequences (an) and (bn) converge to a common limit
called the arithmetic-geometric mean (AGM) of a0 and b0.
We denote it by AGM(a0,b0).

Jon Borwein, π and the AGM The AGM

The harmonic-geometric mean

We could define an iteration

an+1 = HM(an,bn)

bn+1 = GM(an,bn).

However, we see that

a−1
n+1 = AM(a−1

n ,b−1
n)

b−1
n+1 = GM(a−1

n ,b−1
n).

Thus, the common limit is just AGM(a−1
0 ,b−1

0)−1.
Replacing the arithmetic mean by the harmonic mean in the
definition of the AGM does not give anything essentially new.

Jon Borwein, π and the AGM The HGM

Another mean

Note that AGM(a0,b0) = AGM(b0,a0) is symmetric in a0,b0.
This is not true if we use a slightly different iteration

an+1 = AM(an,bn)

bn+1 = GM(an+1,bn)

which converges to a limit which we denote by ARM(a0,b0)
(“AR” for “Archimedes”, as we’ll explain shortly).
The ARM is slightly easier to implement in a program than the
AGM, as we can just drop the subscripts and iterate
{a := AM(a,b); b := GM(a,b)}, avoiding the use of a
temporary variable.

Jon Borwein, π and the AGM The mean of Archimedes

Archimedes
Archimedes (c.287–c.212 BC) gave perhaps the first iterative
algorithm for computing π to arbitrary precision, and used the
first few iterations to show that

3.1408 ≈ 310
71 < π < 31

7 ≈ 3.1429 .

Many people believe that π = 31
7 . Archimedes knew better.

Digression: a more recent proof that π < 31
7 is

0 <
∫ 1

0

x4(1− x)4

1 + x2 dx =
22
7
− π.

To evaluate the integral, write the integrand as

x6 − 4x5 + 5x4 − 4x2 + 4− 4
1 + x2

and integrate term by term, using∫ 1

0

dx
1 + x2 = arctan(1) =

π

4
.

Jon Borwein, π and the AGM Archimedes

Inscribed and circumscribed polygons
Archimedes’ key idea is to use the perimeters of inscribed and
circumscribed polygons in a circle of radius 1/2 to give lower
and upper bounds on π. We start with hexagons and keep
bisecting angles to get polygons with 6 · 2n sides.
Let An denote the perimeter of a circumscribed regular
6 · 2n-gon, and Bn ditto for the inscribed regular 6 · 2n-gon.
Writing `n := 6 · 2n, θn := π

`n
, we see that

Bn = `n sin θn < π < An = `n tan θn.

The initial values are `0 = 6, θ0 = π/6,A0 = 2
√

3,B0 = 3.
Using “half-angle” formulas we can verify that

An+1 = HM(An,Bn),

Bn+1 = GM(An+1,Bn).

Jon Borwein, π and the AGM Archimedes

Archimedes continued
Recall that

An+1 = HM(An,Bn),

Bn+1 = GM(An+1,Bn).

To avoid the harmonic mean, define an := 1/An, bn := 1/Bn.
Then

an+1 = AM(an,bn),

bn+1 = GM(an+1,bn).

This is just an instance of the “Archimedes mean” ARM defined
previously, so we see that

ARM

(√
3

6
,
1
3

)
=

1
π
.

Similar methods give

ARM(cos θ,1) =
sin θ

θ
, ARM(cosh θ,1) =

sinh θ

θ
.

Jon Borwein, π and the AGM Archimedes

Upper and lower bounds via Archimedes
Using Archimedes’ method gives (correct digits in blue):

iteration 0 : 3.0000000 < π < 3.4641017
iteration 1 : 3.1058285 < π < 3.2153904
iteration 2 : 3.1326286 < π < 3.1596600
iteration 3 : 3.1393502 < π < 3.1460863 < 3.1464
iteration 4 : 3.1410319 < π < 3.1427146 < 3.1435
iteration 5 : 3.1414524 < π < 3.1418731
iteration 6 : 3.1415576 < π < 3.1416628
iteration 7 : 3.1415838 < π < 3.1416102
iteration 8 : 3.1415904 < π < 3.1415971

The bounds satisfy

An − Bn = π

(
tan θn − sin θn

θn

)
< 2−2n−1.

We get two bits of accuracy per iteration (linear convergence).
Jon Borwein, π and the AGM Archimedes

Implications of Archimedes’ method

David Bailey has observed that there are at least eight
recent papers in the “refereed” literature claiming that
π = (14−

√
2)/4 = 3.1464 · · · , and another three claiming that

π = 17− 8
√

3 = 3.1435 · · · .
These claims must be incorrect, due to Lindemann’s 1882
theorem that π is transcendental, but we can give a more
elementary disproof of the claims for anyone who does not
understand Lindemann’s proof.
Since A3 < 3.1464 and A4 < 3.1435, we see that four iterations
of Archimedes’ method suffice to disprove the claims.
Four iterations of Archimedes’ method suffice to show that

3.1408 < 310
71 < π < 31

7 < 3.1429 ,

as (correctly) claimed by Archimedes.

Jon Borwein, π and the AGM Archimedes

What if Archimedes made a small change?

We’ve seen that the essential part of Archimedes’ method is
the iteration

an+1 = AM(an,bn),

bn+1 = GM(an+1,bn).

If Archimedes had written it this way, he might have considered
making a small change and using the (more symmetric)
iteration

an+1 = AM(an,bn),

bn+1 = GM(an,bn).

This is just the arithmetic-geometric mean!

Jon Borwein, π and the AGM What if . . . ?

What if · · · continued

Archimedes would have found that the new (AGM) iteration
converges much faster than the old (ARM) iteration. To see
this, suppose that xn := an/bn = 1 + εn. Then

xn+1 = 1
2(an/bn + 1)/

√
an/bn = 1

2(x1/2
n + x−1/2

n),

so

1 + εn+1 = 1
2((1 + εn)1/2 + (1 + εn)−1/2) = 1 + 1

8ε
2
n + O(ε3

n).

Thus εn+1 ≈ 1
8ε

2
n if |εn| is small.

This is an example of quadratic convergence – the number of
correct digits roughly doubles at each iteration. In contrast, the
ARM has only linear convergence – the number of correct digits
increases roughly linearly with each iteration.

Jon Borwein, π and the AGM What if . . . ?

The limit

Although the AGM iteration converges faster than the ARM
iteration, it does not give the same limit. Thus, it’s not
immediately obvious that it is useful for computing π
(or anything else of interest).
Gauss and Legendre solved the problem of expressing
AGM(a,b) in terms of known functions. The answer may be
written as

1
AGM(a,b)

=
2
π

∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

The right-hand-side is the product of a constant (whose precise
value will be significant later) and a complete elliptic integral.

Jon Borwein, π and the AGM What if . . . ?

Elliptic integrals
The complete elliptic integral of the first kind is defined by

K (k) :=

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

,

and the complete elliptic integral of the second kind by

E(k) :=

∫ π/2

0

√
1− k2 sin2 θ dθ

=

∫ 1

0

√
1− k2t2
√

1− t2
dt .

The variable k is called the modulus, and k ′ :=
√

1− k2 is
called the complementary modulus.

Jon Borwein, π and the AGM Elliptic integrals

Some (confusing) notation
It is customary to define

K ′(k) := K (
√

1− k2) = K (k ′)

and
E ′(k) := E(

√
1− k2) = E(k ′),

so in the context of elliptic integrals a prime (′) does not denote
differentiation. Apologies for any confusion, but this is the
convention that is used in the literature, including Pi and the
AGM.
On the occasions when we need a derivative, we use operator
notation DkK (k) := dK (k)/dk .
Pi and the AGM uses the “dot” notation K̇ (k) := dK (k)/dk , but
this is confusing and hard to see, so we’ll avoid it.
k and k ′ can in general be complex, but for the moment we’ll
assume that they are real and in the interval (0,1).

Jon Borwein, π and the AGM Elliptic integrals

What’s in a name?

The arc-length L of an ellipse with semi-major axis a and
semi-minor axis b is given by

L = 4
∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ = 4aE ′(b/a).

Elliptic functions arise by inverting (incomplete) elliptic integrals.

Elliptic curves are named because of their connection with
elliptic functions.

Jon Borwein, π and the AGM Elliptic integrals

Connection with hypergeometric functions
In terms of the Gaussian hypergeometric function

F (a,b; c; z) := 1 +
a · b
1! · c

z +
a(a + 1) · b(b + 1)

2! · c(c + 1)
z2 + · · ·

we have
K (k) =

π

2
F
(

1
2 ,

1
2 ; 1; k2

)
and

E(k) =
π

2
F
(
−1

2 ,
1
2 ; 1; k2

)
.

We also have

K ′(k) =
2
π

log

(
4
k

)
K (k)− f (k),

where f (k) = k2/4 + O(k4) is analytic in the disk |k | < 1.
Note: in this talk, log always denotes the natural logarithm.

Jon Borwein, π and the AGM Elliptic integrals

The AGM and elliptic integrals
Substituting (a,b) 7→ (1, k) above, and recalling that
k2 + (k ′)2 = 1, we have

1
AGM(1, k)

=
2
π

∫ π/2

0

dθ√
cos2 θ + k2 sin2 θ

=
2
π

∫ π/2

0

dθ√
1− (1− k2) sin2 θ

=
2
π

∫ π/2

0

dθ√
1− (k ′)2 sin2 θ

=
2
π

K ′(k),

so

AGM(1, k) =
π

2K ′(k)
.

Jon Borwein, π and the AGM Elliptic integrals

Computing both E ′ and K ′ via the AGM

We have seen that, if we start from a0 = 1, b0 = k ∈ (0,1) and
apply the AGM iteration, then K ′(k) can be computed from

lim
n→∞

an =
π

2K ′(k)
.

We also have

E ′(k)

K ′(k)
=

1 + k2

2
−
∞∑

n=0

2n (an − an+1)2,

so E ′(k) can be computed at the same time as K ′(k).

Jon Borwein, π and the AGM Elliptic integrals

Logarithms and the AGM

Recall that, for small k , we have

K ′(k) =
2
π

log

(
4
k

)
K (k) + O(k2),

but
2
π

K (k) = F
(

1
2 ,

1
2 ; 1; k2

)
= 1 + O(k2).

Thus, assuming that k ∈ (0,1), we have

K ′(k) =
(

1 + O(k2)
)

log

(
4
k

)
.

An explicit bound on the O(k2) term is given in Thm. 7.2 of
Pi and the AGM.

Jon Borwein, π and the AGM Logarithms and the AGM

First attempt to compute π via the AGM

Choose k := 22−n for some sufficiently large positive integer n.
Then

log

(
4
k

)
= n log 2,

but
π

2 AGM(1, k)
= K ′(k) =

(
1 + O(k2)

)
log

(
4
k

)
,

which gives

π

log 2
= 2n AGM(1, k)

(
1 + O(4−n)

)
.

Thus, we can compute π/ log 2 to (2n + O(1))-bit accuracy
using an AGM computation. Similarly for π/ log 3, etc.

Jon Borwein, π and the AGM Computing π, except for a log factor

Historical notes
The algorithm for π/ log 2 was essentially given by Salamin in
HAKMEM (1972), pg. 71, although presented as an algorithm
for computing log(4/k), assuming that we know π.
On the same page Salamin gives an algorithm for computing π,
taking k = 4/en instead of our k = 4/2n. With his choice
π ≈ 2n AGM(1, k). However, this assumes that we know e, so it
is not a “standalone” algorithm for π via the AGM.
In 1975, Salamin (and independently the speaker) discovered
an algorithm for computing π via the AGM without needing to
know e or log 2 to high precision. It is called the
“Gauss-Legendre” or “Brent-Salamin” algorithm, and is about
twice as fast as the algorithm given in HAKMEM (1972).
In 1984, Jon and Peter Borwein discovered another
quadratically convergent algorithm for computing π, with about
the same speed as the Gauss-Legendre algorithm. We’ll
describe the Gauss-Legendre and Borwein-Borwein algorithms
shortly.

Jon Borwein, π and the AGM Some history

Legendre’s relation

The Gauss-Legendre algorithm takes advantage of a nice
identity known as Legendre’s relation: for 0 < k < 1,

E(k)K ′(k) + E ′(k)K (k)− K (k)K ′(k) =
π

2
.

For a proof, see Pi and the AGM, Sec. 1.6.
A special case, obtained by taking k = k ′ = 1/

√
2, is(

2E
(
1/
√

2
)
− K

(
1/
√

2
))

K
(
1/
√

2
)

=
π

2
.

Aside: it can be shown (Pi and the AGM, Thm. 1.7) that

K (1/
√

2) =
Γ2 (1

4

)
4π1/2 and 2E(1/

√
2)− K (1/

√
2) =

Γ2 (3
4

)
π1/2

.

Jon Borwein, π and the AGM Legendre’s relation

A quadratically convergent algorithm for π

Using Legendre’s relation and the formulas that we’ve given for
E and K in terms of the AGM iteration, it is not difficult to derive
the Gauss-Legendre [Brent-Salamin] algorithm.
Set a0 = 1, b0 = 1/

√
2, s0 = 1

4 and iterate (for n = 0,1, . . .)

an+1 =
an + bn

2
, bn+1 =

√
anbn, sn+1 = sn − 2n (an − an+1)2.

Then we get upper and lower bounds on π:

a2
n

sn
> π >

a2
n+1

sn
,

and both bounds converge quadratically to π. The lower bound
is more accurate, so the algorithm is often stated with just the
lower bound a2

n+1/sn.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Gauss and Legendre

Gauss c. 1828 Legendre

Jon Borwein, π and the AGM Gauss-Legendre algorithm

How fast does it converge?
n a2

n+1/sn a2
n/sn

0 : 2.914213562373095048801689 < π < 4.000000000000000000000000
1 : 3.140579250522168248311331 < π < 3.187672642712108627201930
2 : 3.141592646213542282149344 < π < 3.141680293297653293918070
3 : 3.141592653589793238279513 < π < 3.141592653895446496002915
4 : 3.141592653589793238462643 < π < 3.141592653589793238466361

Compare Archimedes:

0 : 3.0000000 < π < 3.4641017
1 : 3.1058285 < π < 3.2153904
2 : 3.1326286 < π < 3.1596600
3 : 3.1393502 < π < 3.1460863
4 : 3.1410319 < π < 3.1427146

· · ·
37 : 3.141592653589793238462636 < π < 3.141592653589793238462659

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Jacobi theta functions

To estimate the speed of convergence and, more precisely, to
obtain upper and lower bounds on the error after n iterations,
we consider the parameterisation of the AGM in terms of Jacobi
theta functions.

When I was a student, abelian functions were, as
an effect of the Jacobian tradition, considered the un-
contested summit of mathematics, and each of us was
ambitious to make progress in this field. And now? The
younger generation hardly knows abelian functions.

Felix Klein
Development of Mathematics in the 19th Century, 1928.

We are all “younger generation” now.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Theta functions and the AGM

We need the basic theta functions of one variable defined by

θ3(q) :=
∑
n∈Z

qn2
, θ4(q) :=

∑
n∈Z

(−1)nqn2
, |q| < 1.

It is not difficult to show that

θ2
3(q) + θ2

4(q)

2
= θ2

3(q2) and
√
θ2

3(q)θ2
4(q) = θ2

4(q2),

which shows that the AGM variables (an,bn) can, if scaled
suitably, be parameterised by (θ2

3(q2n
), θ2

4(q2n
)).

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Theta functions and the AGM

If 1 = a0 > b0 = θ2
4(q)/θ2

3(q) > 0, where q ∈ (0,1), then the
variables an, bn appearing in the AGM iteration satisfy

an =
θ2

3(q2n
)

θ2
3(q)

, bn =
θ2

4(q2n
)

θ2
3(q)

.

We can write q (which is called the nome) explicitly in terms of
the elliptic integral K with k ′ = b0/a0, in fact

q = exp(−πK ′(k)/K (k)).

This is due to Gauss/Jacobi.
A useful special case is k = k ‘ = 1/

√
2. Then K ′ = K and

q = e−π = 0.0432139 . . .

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Theta functions and the AGM
Recall that in the Gauss-Legendre algorithm we have a0 = 1,
b0 = 1/

√
2, s0 = 1

4 and, for n ≥ 0,

an+1 =
an + bn

2
, bn+1 =

√
anbn, sn+1 = sn − 2n (an − an+1)2.

Take q = e−π, and write

a∞ := lim
n→∞

an = θ−2
3 (q) = 2π3/2/Γ2(1

4) ≈ 0.8472,

s∞ := lim
n→∞

sn = θ−4
3 (q)/π = 4π2/Γ4(1

4) ≈ 0.2285 .

It is curious that the algorithm computes π as the ratio of a2
∞

and s∞, both of which appear more “complicated” than π.
As on the previous slide, an = θ2

3(q2n
)/θ2

3(q), and thus

sn − s∞ = θ−4
3 (q)

∞∑
m=n

2m
(
θ2

3(q2m
)− θ2

3(q2m+1
)
)2
.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Remark

The expression for sn − s∞ can be “simplified” if we use the
theta function

θ2(q) :=
∑
n∈Z

q(n+1/2)2
.

Jacobi’s identity
θ4

3(q) = θ4
2(q) + θ4

4(q)

connects θ2, θ3 and θ4. Using it, we see that

θ2
3(q)− θ2

3(q2) =
θ4

2(q)

4θ2
3(q2)

,

so

sn − s∞ = θ−4
3 (q)

∞∑
m=n

2m−4 θ8
2(q2m

)

θ4
3(q2m+1)

.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Theta functions and the AGM

Write an/a∞ = 1 + δn and sn/s∞ = 1 + εn. Then

δn = θ2
3(q2n

)− 1 ∼ 4q2n
as n→∞,

and

εn =
π

16

∞∑
m=n

2m θ8
2(q2m

) θ−4
3 (q2m+1

) ∼ 2n+4πq2n+1
.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Upper and lower bounds
Writing

a2
n/a2
∞

sn/s∞
=

a2
n

πsn
=

(1 + δn)2

1 + εn
,

it is straightforward to obtain an upper bound on π:

0 < a2
n/sn − π < U(n) := 8πq2n

.

Convergence is quadratic: if en := a2
n/sn − π, then

lim
n→∞

en+1/e2
n = 1

8π
.

Replacing an by an+1 and δn by δn+1, we obtain a lower bound
(after n + 1 square roots)

0 < π −
a2

n+1

sn
< L(n) := (2n+4π2 − 8π)q2n+1

.

Equivalently, after n > 0 square roots we have

0 < π − a2
n

sn−1
< (2n+3π2 − 8π)q2n

.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Remark
Pi and the AGM, and also Salamin (1976), give a slightly
weaker lower bound

π −
a2

n+1

sn
<

2n+4π2q2n+1

a2
∞

.

Compare our

π −
a2

n+1

sn
< (2n+4π2 − 8π)q2n+1

.

Note that a−2
∞ ≈ 1.3932.

The factor (2n+4π2 − 8π) is best possible, since

π −
a2

n+1

sn
= (2n+4π2 − 8π)q2n+1 −O(2nq2n+2

).

Jon Borwein, π and the AGM Gauss-Legendre algorithm

Numerical values of upper and lower bounds

n a2
n/sn − π π − a2

n+1/sn
a2

n/sn−π
U(n)

π−a2
n+1/sn

L(n)

0 8.58e-1 2.27e-1 0.790369040 0.916996189
1 4.61e-2 1.01e-3 0.981804947 0.999656206
2 8.76e-5 7.38e-9 0.999922813 0.999999998
3 3.06e-10 1.83e-19 0.999999999 1.000000000
4 3.72e-21 5.47e-41 1.000000000 1.000000000
5 5.50e-43 2.41e-84 1.000000000 1.000000000
6 1.20e-86 2.31e-171 1.000000000 1.000000000
7 5.76e-174 1.06e-345 1.000000000 1.000000000
8 1.32e-348 1.11e-694 1.000000000 1.000000000

U(n) := 8π exp(−2nπ) and L(n) := (2n+4π2 − 8π) exp(−2n+1π)
are the bounds given above. It can be seen that they are very
accurate, as expected from our analysis. In fact, they are sharp
enough to suggest an AGM algorithm (though not the best one)
for computing e±π.

Jon Borwein, π and the AGM Gauss-Legendre algorithm

A family of algorithms for π
Recall that the Gauss-Legendre algorithm yields an
approximation a2

n/sn [or a2
n+1/sn] to π = a2

∞/s∞.
Using the expressions for an and sn in terms of theta functions,
we see that

π =
a2

n θ
−4
3 (q2n

)

sn − θ−4
3 (q)

∑∞
m=n 2m−4 θ8

2(q2m)θ−4
3 (q2m+1)

[or similarly with the numerator replaced by a2
n+1θ

−4
3 (q2n+1

)].
This gives a family of algorithms for π (two for each n ≥ 0).
The expression for π is essentially of the form

π =
a2

n −O(q2n
)

sn −O(2nq2n+1)

[
or

a2
n+1 −O(q2n+1

)

sn −O(2nq2n+1)

]
and shows precisely how the algorithms approximate π and
why they provide upper [lower] bounds.
A drawback of these algorithms is that they require a
sufficiently accurate approximation to q = e−π.

Jon Borwein, π and the AGM A family of algorithms for π

The Borwein2 quadratic AGM algorithm for π
In Pi and the AGM, Jon and Peter Borwein present a different
quadratically convergent algorithm for π based on the AGM. (It
is Algorithm 2.1 in Chapter 2, and was first published in 1984.)
Instead of using Legendre’s relation, the Borwein-Borwein
algorithm uses the identity

K (k) DkK (k)
∣∣
k=1/

√
2 =

π√
2
,

where Dk denotes differentiation with respect to k .
Using the connection between K (k ′) and the AGM, we obtain

π = 23/2 (AGM(1, k ′))3

Dk AGM(1, k ′)

∣∣∣∣
k=1/

√
2
.

An algorithm for approximating the derivative in this formula can
be obtained by differentiating the AGM iteration symbolically.
Details are given in Pi and the AGM.

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

The Borwein2 quadratic AGM algorithm for π
The Borwein-Borwein algorithm (Alg. 2.1 of Pi and the AGM):

x0 :=
√

2; y1 := 21/4; π 0 :=
√

2; π0 := 2 +
√

2;

for n ≥ 0, xn+1 := 1
2(x1/2

n + x−1/2
n);

for n ≥ 1, yn+1 :=
yn x1/2

n + x−1/2
n

yn + 1
;

for n ≥ 1, πn :=
2πn−1

yn + 1
, πn := πn

(
xn + 1

2

)
.

Then πn decreases monotonically to π, and πn increases
monotonically to π. (The algorithm given in Pi and the AGM
defines πn := πn−1(xn + 1)/(yn + 1) and omits πn.)
The AGM iteration is present in Legendre form: if a0 := 1,
b0 := k ′ = 1/

√
2, and we perform the AGM iteration, then

xn = an/bn and, for n ≥ 1, yn = Dkbn/Dkan.

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

How fast does Borwein-Borwein converge?
n πn πn

0 : 1.414213562373095048801689 < π < 3.414213562373095048801689
1 : 3.119132528827772757303373 < π < 3.142606753941622600790720
2 : 3.141548837729436193482357 < π < 3.141592660966044230497752
3 : 3.141592653436966609787790 < π < 3.141592653589793238645774
4 : 3.141592653589793238460785 < π < 3.141592653589793238462643
Compare Gauss-Legendre:

n a2
n+1/sn a2

n/sn

0 : 2.914213562373095048801689 < π < 4.000000000000000000000000
1 : 3.140579250522168248311331 < π < 3.187672642712108627201930
2 : 3.141592646213542282149344 < π < 3.141680293297653293918070
3 : 3.141592653589793238279513 < π < 3.141592653895446496002915
4 : 3.141592653589793238462643 < π < 3.141592653589793238466361

Borwein-Borwein gives better upper bounds, but worse lower
bounds, for the same value of n (i.e. same number of sqrts).

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

Bounding the error using theta functions
As for the Gauss-Legendre algorithm, we can express the error
after n iterations of the Borwein-Borwein algorithm using theta
functions, and deduce the asymptotic behaviour of the error.
Consider the AGM iteration with a0 = 1,b0 = k ′ = (1− k2)1/2.
Then an and bn are functions of k , and we denote the derivative
of an with respect to k by Dkan. In Pi and the AGM it is shown
that, for n ≥ 1,

πn−1 =
(

23/2b2
nan/Dkan

)
|k=1/

√
2 .

As before, for q = e−π,

an =
θ2

3(q2n
)

θ2
3(q)

, and bn =
θ2

4(q2n
)

θ2
3(q)

.

Thus, we have to differentiate the expression for an with respect
to k , where k = (1− b2

0)1/2 = θ2
2(q)/θ2

3(q).

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

Bounding the error

With some care, and simplifying the result in the same manner
as for the Gauss-Legendre algorithm, differentiation gives

Dkan =
n∑

m=1

Dq

(
θ4

2(q2m−1
)

4θ2
3(q)θ2

3(q2m)

)/
Dq

(
θ2

2(q)

θ2
3(q)

)∣∣∣∣∣
q=e−π

.

We denote the limit as n→∞ by Dka∞. In fact,

Dka∞ =
23/2a3

∞
π

= 0.547486 . . .

Now we can write

Dka∞ = Dkan +
∞∑

m=n+1

Dq

(
θ4

2(q2m−1
)

4θ2
3(q)θ2

3(q2m)

)/
Dq

(
θ2

2(q)

θ2
3(q)

)∣∣∣∣∣
q=e−π

.

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

Bounding the error

The denominator is a constant which can be evaluated as

c := Dq

(
θ2

2(q)

θ2
3(q)

)∣∣∣∣∣
q=e−π

=
eπΓ4(1

4)

16π3
√

2
= 5.699228 . . .

Putting these pieces together gives an upper bound (for n ≥ 1)

0 < πn − π < 2n+4π2q2n+1
,

and a lower bound

0 < π − πn < 4πq2n
,

where q = e−π.
These can be compared with the lower bound 2n+4π2q2n+1

and upper bound 8πq2n
for the Gauss-Legendre algorithm.

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

Numerical values of upper and lower bounds

n π − π ratio to bound π − π ratio to bound

1 1.01e-3 0.9896487063 2.25e-2 0.9570949132
2 7.38e-9 0.9948470082 4.38e-5 0.9998316841
3 1.83e-19 0.9974691480 1.53e-10 0.9999999988
4 5.47e-41 0.9987456847 1.86e-21 1.0000000000
5 2.41e-84 0.9993755837 2.75e-43 1.0000000000
6 2.31e-171 0.9996884727 6.01e-87 1.0000000000
7 1.06e-345 0.9998444059 2.88e-174 1.0000000000
8 1.11e-694 0.9999222453 6.59e-349 1.0000000000

It can be seen that the bounds are very accurate (as expected
from the exact expressions for the errors in terms of theta
functions). The upper bound overestimates the error by a factor
of 1 + O(2−n).

Jon Borwein, π and the AGM The Borwein-Borwein algorithm

A fourth-order algorithm for π

The Borwein brothers did not stop at quadratic (second-order)
algorithms for π. In Chapter 5 of Pi and the AGM they gave
algorithms of orders 3, 4, 5 and 7. Here is a nice iteration of
order 4, derived using a modular identity of order 4.

y0 :=
√

2− 1; a0 := 2y2
0 ;

yn+1 :=
1− (1− y4

n)1/4

1 + (1− y4
n)1/4

;

an+1 := an(1 + yn+1)4 − 22n+3yn+1(1 + yn+1 + y2
n+1).

Then πn := 1/an converges quartically to π, i.e. the number of
correct digits is multiplied by (approximately) 4 each iteration!
An error bound is

0 < π − πn < 4π2 4n+1 exp(−2π 4n).

Jon Borwein, π and the AGM A Borwein quartic algorithm for π

Convergence of the quartic algorithm
The table shows the error π − πn after n iterations of the
Borwein quartic algorithm, and the ratio

π − πn

4π2 4n+1 exp(−2π 4n)

of the error to the upper bound given on the previous slide.

n π − πn (π − πn)/bound
0 2.273790912e-1 0.7710517124
1 7.376250956e-9 0.9602112619
2 5.472109145e-41 0.9900528160
3 2.308580715e-171 0.9975132040
4 1.110954934e-694 0.9993783010
5 9.244416653e-2790 0.9998445753
6 6.913088685e-11172 0.9999611438
7 3.376546688e-44702 0.9999902860
8 3.002256862e-178825 0.9999975715

Jon Borwein, π and the AGM A Borwein quartic algorithm for π

A cubic algorithm for π
Here is an iteration of order 3:

a0 := 1/3; s0 := (
√

3− 1)/2;

rn+1 := 3/(1 + 2(1− s3
n)1/3);

sn+1 := (rn+1 − 1)/2;

an+1 := r2
n+1an − 3n(r2

n+1 − 1).

Then πn := 1/an converges cubically to π.
The proof uses modular equations (Pi and the AGM, Chs. 4–5).

An empirical error bound (a slightly weaker result has been
proved) is

0 < π − πn < 4π2 3n+1 exp(−2π 3n).

Compare the bound for the quartic algorithm:

0 < π − πn < 4π2 4n+1 exp(−2π 4n).

Jon Borwein, π and the AGM A Borwein cubic algorithm for π

An observation

After 2n iterations of the Gauss-Legendre algorithm we have an
(accurate) error bound

0 < π − a2
2n+1/s2n < 4π2 4n+1 exp(−2π 4n).

This is the same as the (accurate) error bound

0 < π − πn < 4π2 4n+1 exp(−2π 4n);

for the Borwein quartic algorithm!
On closer inspection we find that the two algorithms
(Gauss-Legendre “doubled” and Borwein quartic) are
equivalent, in the sense that they give exactly the same
sequence of approximations to π. This is perhaps implicit in
Pi and the AGM, but I have not seen it stated explicitly.

Jon Borwein, π and the AGM A subtle program optimisation

Verification
Here k is the number of square roots, and “π − approximation”
is the error in the approximation given by the Gauss-Legendre
algorithm after k − 1 iterations, or by the Borweins’ quartic
algorithm after (k − 1)/2 iterations. The error is the same for
both algorithms (computed to 1000 decimal digits).

k π − approximation

1 2.2737909121669818966095465906980480562749752399816e-1
3 7.3762509563132989512968071098827321760295030264154e-9
5 5.4721091456899418327485331789641785565936917028248e-41
7 2.3085807149343902668213207343869568303303472423996e-171
9 1.1109549335576998257002904117322306941479378545140e-694

Jon Borwein, π and the AGM Verification

Verification continued

For example, the first line follows from

a2
1/s0 = π0 = 3

2 +
√

2
≈ π − 0.227

and the second line follows from

a2
3/s2 = π1 =

(2−2 + 2−5/2 + 2−5/4 +
√

2−5/4 + 2−7/4)2

23/4 + 21/4 − 2−1/2 − 5
4

≈ π − 7.376...× 10−9.

Jon Borwein, π and the AGM Verification

Sketch of proof
As noted on page 171 of Pi and the AGM, the Borwein quartic
iteration is equivalent to doubling a certain quadratic iteration
(5.2 on page 170 with the parameter r = 4) that may be written
as

α0 := 6− 4
√

2; k0 := 3− 2
√

2;

k ′n =

√
1− k2

n ; kn+1 :=
1− k ′n
1 + k ′n

;

αn+1 := (1 + kn+1)2αn − 2n+2kn+1.

Then αn → 1/π with quadratic convergence.
Thus, it is sufficient to show that this iteration 5.2 is equivalent
to the Gauss-Legendre algorithm. This can be done directly by
induction on n. (Note that after one iteration of Gauss-Legendre
we have k = (1− b2

1/a
2
1)1/2 = 3− 2

√
2, so the subscripts are

displaced by one relative to iteration 5.2.)

Jon Borwein, π and the AGM Sketch proof

Some other fast algorithms for π

Let (x)n := x(x + 1) · · · (x + n − 1) denote the ascending
factorial. In Chapter 5 of Pi and the AGM, Jon and Peter
Borwein discuss Ramanujan-Sato series such as

1
π

= 23/2
∞∑

n=0

(1
4)n(1

2)n(3
4)n

(n!)3
(1103 + 26390n)

994n+2
.

This is linearly convergent, but adds nearly eight decimal digits
per term, since 994 ≈ 108.
A more extreme example is the Chudnovsky series

1
π

= 12
∞∑

n=0

(−1)n (6n)! (13591409 + 545140134n)

(3n)! (n!)3 6403203n+3/2
,

which adds about 14 decimal digits per term.

Jon Borwein, π and the AGM Other fast algorithms for π

Remarks on complexity
We consider the bit complexity of an algorithm. This is the
(worst case) number of single-bit operations required to
complete the algorithm. For a fuller discussion, see Chapter 6
of Pi and the AGM. We are interested in asymptotic results, so
are usually willing to ignore constant factors.
If all operations are performed to (approximately) the same
precision, then it makes sense to count operations such as
multiplications, divisions and square roots. Algorithms based
on the AGM fall into this category.
If the precision of the operations varies widely, then
bit-complexity is a more sensible measure of complexity. An
example is Newton’s method, which is self-correcting, so can
be started with low precision. Another example is summing a
series with rational terms, such as

e =
∞∑

k=0

1
k !
.

Jon Borwein, π and the AGM Bit and operational complexity

Complexity of multiplication
The complexity of multiplying two n-bit numbers to obtain a
2n-bit product is denoted by M(n). The classical algorithm
shows that M(n) = O(n2), but various asymptotically faster
algorithms exist. They are associated with the names
[Gauss, Kronecker, Cooley, Tukey,] Karatsuba, Toom, Cook,
Schönhage, Strassen, Fürer, Harvey, van der Hoeven, and
Lecerf, in roughly chronological order.
The best result so far [Harvey et al, 2016] is

M(n) = O
(

n log n K log∗n
)

with K = 8. Here the iterated logarithm function log∗n is defined
by

log∗n :=

{
0 if n ≤ 1;

1 + log∗(log n) if n > 1.

It is unbounded but grows extremely slowly, e.g. slower than
log log · · · log n [any fixed number of logs], as n→∞.

Jon Borwein, π and the AGM Complexity of multiplication

Complexity of division, root extraction, etc

We’ll follow Pi and the AGM and assume that M(n) is
nondecreasing and satisfies the regularity condition

2M(n) ≤ M(2n) ≤ 4M(n).

Newton’s method can be used to compute reciprocals and
square roots with bit-complexity

O
(

M(n) + M(dn/2e) + M
(⌈

n/22
⌉)

+ · · · + M(1)
)

= O(M(n)).

Using this technique, it can be shown that the bit complexities
of squaring, multiplication, reciprocation, division, and root
extraction are asymptotically the same, up to small constant
factors. All these operations have complexity of order M(n).

Jon Borwein, π and the AGM Equivalence of certain common operations

Complexity of summing certain series

To compute π to n digits (binary or decimal) by Machin’s arctan
formula

π = 16 arctan(1/5)− 4 arctan(1/239),

or to compute 1/π by the Chudnovsky series

1
π

= 12
∞∑

n=0

(−1)n (6n)! (13591409 + 545140134n)

(3n)! (n!)3 6403203n+3/2
,

we have to sum of order n terms.
Using divide and conquer (also called binary splitting or FEE)
this can be done with bit-complexity

O(M(n) log2 n).

Jon Borwein, π and the AGM Binary splitting

Complexity of computing π via the AGM

Suppose we compute π to n-digit accuracy using one of the
quadratically convergent AGM algorithms. This requires
O(log n) iterations, each of which has complexity O(M(n)).
Thus, the overall complexity is

O(M(n) log n).

This is (theoretically) better than series summation methods,
which have complexity of order M(n) log2 n.
In practice, constant factors are important, and a method with
complexity of order M(n) log2n may be faster than a method
with complexity O(M(n) log n) unless n is sufficiently large. This
is one reason for the recent popularity of the Chudnovsky series
for high-precision computation of π, even though the AGM
methods are theoretically (i.e. asymptotically) more efficient.

Jon Borwein, π and the AGM Complexity of computing π

Computing log x via the AGM
We already mentioned Salamin’s algorithm for computing log x
for sufficiently large x = 4/k (i.e. sufficiently small k) using

K ′(k) =
(

1 + O(k2)
)

log

(
4
k

)
.

We can evaluate K ′(k)/π using the AGM with (a0,b0) = (1, k),
and hence approximate log(4/k), assuming that π is
precomputed.
To compute log x to n-bit accuracy requires about 2 log2(n)
AGM iterations, or 3 log2(n) iterations if we count the
computation of π.
If x is not sufficiently large, first multiply it by a suitable power of
two, say 2p, and later subtract p log 2. This assumes that log 2 is
precomputed, and that the precision is increased to
compensate for cancellation. If it would be faster, use the Taylor
series, e.g. when |x − 1| < 2−n/ log n.

Jon Borwein, π and the AGM Computing logarithms via the AGM

An exact formula for log x
The error term in the expression

log(4/k) = (1 + O(k2))K ′(k)

can be written explicitly using hypergeometric series. We give
an alternative using theta functions, for which the series
converge faster. The ingredients are various identities that we
have seen already:

log(1/q) = πK ′(k)/K (k),

k = θ2
2(q)/θ2

3(q),

K (k) = (π/2) θ2
3(q),

K ′(k) = (π/2)/AGM(1, k).

Putting these pieces together gives Sasaki and Kanada’s nice
formula

log(1/q) =
π

AGM(θ2
2(q), θ2

3(q))
.

Jon Borwein, π and the AGM Computing logarithms via the AGM

Improved AGM algorithm for log
Replacing q by q4 to avoid fractional powers of q in the
expansion of θ2(q), we obtain

log x =
π/4

AGM(θ2
2(q4), θ2

3(q4))
,

where q = 1/x and we assume that x > 1.
As in Salamin’s algorithm, we have to ensure that x is
sufficiently large, but now there is a trade-off between
increasing x or taking more terms in the series defining the
theta functions. For example, if x > 2n/36, we can use

θ2(q4) = 2(q + q9 + q25 + O(q49)),

θ3(q4) = 1 + 2(q4 + q16 + O(q36)).

This saves about four AGM iterations, compared to Salamin’s
algorithm.

Jon Borwein, π and the AGM Computing logarithms via the AGM

The complex AGM

So far we have assumed that the initial values a0,b0 in the AGM
iteration are real and positive. There is no difficulty in extending
the results that we have used to complex a0,b0, provided that
they are nonzero and a0/b0 is not both real and negative. For
simplicity, we’ll assume that a0,b0 ∈ H = {z | <(z) > 0}.
In the AGM iteration (and in the definition of the geometric
mean) there is an ambiguity of sign. We always choose the
square root with positive real part. Thus the iterates an,bn are
uniquely defined and remain in the right half-plane H.
In the Sasaki-Kanada algorithm we no longer replace q by q4 if
this would give starting values (θ2

2(q4), θ2
3(q4)) for the AGM

outside of H.

Jon Borwein, π and the AGM The complex AGM

Computing other elementary functions via the AGM

Recall that, for z ∈ C\{0}, log(z) = log(|z|) + i arg(z),
provided we use the principal values of the logarithms.
Thus, if x ∈ R, we can use the complex AGM to compute

arctan(x) = =(log(1 + ix)).

arcsin(x), arccos(x) etc can be computed via arctan using
elementary trigonometric identities such as
arccos(x) = arctan(

√
1− x2/x).

Since we can compute log, arctan, arccos, arcsin, we can
compute exp, tan, cos, sin (in suitably restricted domains) using
Newton’s method. Also, of course, exp(ix) = cos(x) + i sin(x)
gives another way of computing the trigonometric functions.
Similarly for the hyperbolic functions cosh, sinh, tanh and their
inverse functions.

Jon Borwein, π and the AGM Elementary functions via the AGM

Avoiding complex arithmetic

Although computing the elementary functions via the complex
AGM is conceptually straightforward, it introduces the overhead
of complex arithmetic. It is possible to avoid complex arithmetic
by the use of Landen transformations (which transform
incomplete elliptic integrals). See exercise 7.3.2 of Pi and the
AGM for an outline of this approach.
Whichever approach is used, the bit-complexity of computing
n-bit approximations to any of the elementary functions
(log, exp, arctan, sin, cos, tan, etc) in a given compact set A ⊂ C
that excludes singularities of the relevant function is
O(M(n) log n). Here “n-bit approximation” means with absolute
error bounded by 2−n. We could require relative error bounded
by 2−n, but the proof would depend on a Diophantine
approximation result such as Mahler’s |π − p/q| > 1/q42.

Jon Borwein, π and the AGM Elementary functions via the AGM

Computing non-elementary functions via the AGM

Certain non-elementary functions can be computed with
complexity O(M(n) log n) via the AGM. For example, we can
compute the elliptic integrals K (k) and E(k), and the Jacobi
theta functions θ2(q), θ3(q), θ4(q).

Functions that appear not to be in this class of “easily”
computable functions include the Gamma function Γ(z) and the
Riemann zeta function ζ(s).

Jon Borwein, π and the AGM Other functions via the AGM

Lower bounds

It is plausible to conjecture that log(x) and the other elementary
functions can not be computed with bit-complexity O(M(n))
(or anything smaller than M(n) log n). However, as usual in
complexity theory, nontrivial lower bounds are difficult to prove.

It is observed in Pi and the AGM (page 227) that all algebraic
numbers can be computed with bit-complexity O(M(n)), so a
proof that this is not possible for π would imply that π is
transcendental (which we know to be true).

Jon Borwein, π and the AGM Lower bounds

Conclusion

I hope that I have given you some idea of the mathematics
contained in the book Pi and the AGM. In the time available I
have only been able to cover a small fraction of the gems that
can be discovered there. If you would like to know more, there
is no substitute for reading the book yourself.
It is not an “easy read”, but it is a book that you can put under
your pillow, like Dirichlet is said to have done with his copy of
Disquisitiones Arithmeticae.
Although the research covered in Pi and the AGM is only a
small fraction of Jon’s legacy, it is the part that overlaps most
closely with my own research, which is why I decided to talk
about it today.

Jon Borwein, π and the AGM Concluding remarks

Jon and Peter Borwein in happier times

Jon Borwein, π and the AGM Jon and Peter

References
D. H. Bailey, The computation of π to 29,360,000 decimal digits
using Borweins’ quartically convergent algorithm, Math. Comp.
50 (1988), 283–296.
D. H. Bailey, Pi and the collapse of peer review,
http://mathscholar.org/
pi-and-the-collapse-of-peer-review, 20 July 2017.
D. H. Bailey and J. M. Borwein, Pi: The Next Generation,
Springer, 2016.
M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM,
AI Memo 239, MIT AI Lab, Feb. 1972. (Entry by E. Salamin.)
J. M. Borwein, The life of pi: from Archimedes to Eniac and
beyond, prepared for Berggren Festschrift, 19 June 2012,
https://www.carmamaths.org/jon/pi-2012.pdf

J. M. Borwein and P. B. Borwein, The arithmetic-geometric
mean and fast computation of elementary functions, SIAM
Review 26 (1984), 351–365.

Jon Borwein, π and the AGM References

http://mathscholar.org/pi-and-the-collapse-of-peer-review
http://mathscholar.org/pi-and-the-collapse-of-peer-review
https://www.carmamaths.org/jon/pi-2012.pdf

References cont.

J. M. Borwein and P. B. Borwein, Pi and the AGM,
Monographies et Études de la Société Mathématique du
Canada, John Wiley & Sons, Toronto, 1987.
J. M. Borwein, P. B. Borwein and D. H. Bailey, Ramanujan,
modular equations, and approximations to pi or how to compute
one billion digits of pi, Amer. Math. Monthly 96 (1989), 201-219.
J. M. Borwein and P. B. Borwein, A cubic counterpart of
Jacobi’s identity and the AGM, Trans. Amer. Math. Soc., 323
(1991), 691–701.
R. P. Brent, Multiple-precision zero-finding methods and the
complexity of elementary function evaluation, in Analytic
Computational Complexity (edited by J. F. Traub), Academic
Press, New York, 1975, 151–176.
R. P. Brent, Fast multiple-precision evaluation of elementary
functions, J. ACM 23 (1976), 242–251.

Jon Borwein, π and the AGM References

References cont.

R. P. Brent and P. Zimmermann, Modern Computer Arithmetic,
Cambridge University Press, 2010.
D. V. Chudnovsky and G. V. Chudnovsky, The computation of
classical constants, Proc. Nat. Acad. Sci. USA 88(21),
8178–8182.
J. Guillera, New proofs of Borwein-type algorithms for Pi,
Integral Transforms and Special Functions 27 (2016), 775–782.
D. Harvey, J. van der Hoeven and G. Lecerf, Even faster integer
multiplication, J. Complexity 36 (2016), 1–30.
E. Salamin, Computation of π using arithmetic-geometric
mean, Math. Comp. 30 (1976), 565–570.
T. Sasaki and Y. Kanada, Practically fast multiple-precision
evaluation of log(x), J. Inf. Process. 5 (1982), 247–250.

Jon Borwein, π and the AGM References

