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Introduction

In the abstract, I said that I would consider
I primality testing,
I finding bounds on Ramsey numbers, and
I finding almost-optimal designs.

These problems do not appear to have much in common, so
why did I choose them?
The reason is that, in all three cases, probabilistic ideas are
very helpful for their solution.
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The key idea - Probability!

Lest men suspect your tail untrue,
Keep probability in view

John Gay, Fables (1727)

We can often use probability to our advantage in both
mathematical proofs and algorithms, even when the problem
does not seem to involve anything of a statistical or probabilistic
nature.
I am sure that Professor Moyal would have appreciated this,
since he was interested in both mathematics and statistics.
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Primality testing

The problem of distinguishing prime numbers
from composite numbers · · ·
is known to be one of the most important
and useful in arithmetic.

Carl Friedrich Gauss (1801)

Nowadays primality testing is even more important than it used
to be, because several cryptographic systems need large prime
numbers for their security.
An example is the widely-used Rivest-Shamir-Adleman (RSA)
cryptosystem (1977). To generate a public key for RSA requires
two large, “random” primes p and q, which are kept secret. The
product N = pq is made public – it is the “public key”.
The encryption and decryption algorithms only work correctly if
p and q are primes.
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SRA in 1977
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Primality testing

Is this number prime?

52068196988805362879381584432308825311426757446226391

No!

Proof. It is the product of

215324780041872123634986089

and
241812377463848634206176319.

(Multiply them to verify it! :-)
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How to test primality?

An obvious way to test if a given integer n is prime is to divide
by all possible factors 2,3, . . . , b

√
nc. If one of them divides n

exactly, then n is composite. Otherwise n must be prime.
Unfortunately, this “brute force” algorithm is impractical – it
takes “exponential time”.
“Exponential time” means an exponential function of the length
of the input n. Usually the length ` is defined to be the number
of bits required to encode n, i.e. ` ≈ log2(n).
You can see that the worst case time for the brute force
algorithm is about 2`/2, which is exponential in `.
The average time (averaging over all `-bit integers) is also
exponential in `.
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Two theorems stated by Fermat

The “little” theorem. [Fermat (1640)]

If n is prime and 0 < b < n, then

bn−1 = 1 mod n.

The “last” theorem. [Wiles and Taylor (1995)]

There are no positive integer solutions of

an + bn = cn

if n is an integer greater than 2.
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Can we use Fermat’s little theorem?

Suppose n is a given (large) integer, and we want to determine
if n is prime or composite.
We could choose some integer b, where 1 < b < n, and
compute

r = bn−1 mod n.

This can be done efficiently, in “polynomial time”, by a “square
and multiply mod n” algorithm that uses the binary
representation of n.
If n is prime, then we know, from Fermat’s theorem, that r = 1.
Hence, if the computed r 6= 1, and we didn’t make an error in
our arithmetic, n must be composite.
However, a primality test based on this does not work.
If r = 1, we can’t be sure that n is prime.
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Carmichael numbers

There are some (not too rare) composite integers n, called
Carmichael numbers, for which r = 1 for all b relatively prime
to n. A primality test using Fermat’s little theorem fails on
Carmichael numbers.
For example, if n = 561 = 3 · 11 · 17 and b is any integer that is
not divisible by 3,11 or 17, then

bn−1 = 1 mod n.

To see this, note that p − 1 divides n − 1 for p ∈ {3,11,17}.
Thus, by Fermat’s theorem, bn−1 = 1 mod p for p ∈ {3,11,17}.
If follows from the “Chinese remainder theorem” that
bn−1 = 1 mod n.
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The strong Fermat test
Suppose that n − 1 = 2kq, where k ≥ 0 and q is odd.
If n is prime and 0 < b < n, then either (A)

bq = 1 mod n

or (B) the sequence

S = (bq,b2q,b4q, . . . ,b2k q) mod n

ends with 1, and the value just preceding the first appearance
of 1 must be −1 mod n.
Conversely, if neither (A) nor (B) holds, then n must be
composite.
We say that b is a witness to the compositeness of n
because, given b, one can easily prove that n is composite
(without finding any factors of n).
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The Rabin-Miller probabilistic primality test
Rabin (1980) showed that, for any odd composite number
n > 4, the number of witnesses to compositeness
b ∈ {1,2,3, . . . ,n − 1} is at least 3(n − 1)/4.
This is true even if n is a Carmichael number!
Suppose n > 4 is composite and we choose 20 numbers
bi ∈ {1,2, . . . ,n − 1} uniformly at random. The probability that
none of the bi is a witness to the compositeness of n is at most

(1− 3/4)20 = 4−20 < 10−12.

Thus, if we announce that n is composite if we find a witness,
and n is prime otherwise, the probability that we make an error
is less than one in 1012.
Note that the errors are all in one direction – we may announce
(with small probability) that a composite number is prime, but
we never announce that a prime number is composite.
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The AKS primality test
It was a surprise to most experts when, in 2002, a
deterministic polynomial-time primality test was discovered
by Agrawal, Kayal and Saxena (AKS).
Does this make the Rabin-Miller test obsolete? No!
Although the AKS test runs in polynomial time, the degree of
the polynomial is quite large (originally 12, now reduced to
about 6). Thus, the AKS test is much slower than one trial of
the Rabin-Miller test. To test a 1024-bit number (about the size
used in RSA) would take about 1000 years on a 1Ghz
computer, whereas Rabin-Miller takes only a few seconds.
We could afford to use say 100 trials in the Rabin-Miller test,
with probability of error less than 10−60. This is considerably
smaller than the probability that the AKS test would give the
wrong answer because a cosmic ray passed through the
computer and flipped a critical memory bit! Experience shows
that such things, although rare, do happen.

Richard Brent Primality testing



Rabin, Miller, AKS

Michael Rabin in 1980; Gary L. Miller (date unknown);
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena in 2002.
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What about proofs?

The Rabin-Miller probabilistic primality test is an example of a
randomized algorithm, also called a Monte Carlo algorithm.
There are many other useful randomized algorithms that I don’t
have time to talk about today. A good introduction is the book
Randomized Algorithms by Motwani and Raghavan (1995).
Probabilistic ideas can also be used to give rigorous
mathematical proofs. Paul Erdős (1913–1996) was a pioneer in
this area of mathematics and gave many such proofs.
I will discuss an example due to Erdős, then a recent example
from my own research.
For many more examples and references, see the book
The Probabilistic Method by Alon and Spencer (2008).
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The party problem
Suppose there are at least six people at a party. Then,

I either there are three guests who all know each other,
I or there are three guests no pair of whom know each other.

This is sometimes called the theorem on friends and strangers.

George Szekeres apparently looking at a “bath” party in
Budapest.
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Translation into a problem in graph theory

Think of the people at a party as vertices in a graph. If two
people, say u and v , know each other, draw a blue edge
connecting vertices u and v in the graph. Otherwise, draw a red
edge connecting vertices u and v .
Thus, if there are N people at the party, we obtain a complete
graph KN on N vertices, where the N(N − 1)/2 edges are
coloured blue or red.
The theorem on friends and strangers says that in any
colouring of K6 we can find a monochromatic K3, i.e. a triangle
whose edges are all the same colour.
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Proof

Suppose the edges of K6 are coloured red and blue. Pick a
vertex v . There are 5 edges incident to v , so at least 3 of them
must be the same colour. Without loss of generality we can
assume that these edges, connecting the vertex v to vertices r ,
s and t , are blue (see the illustration above).
If any of the edges (r , s), (s, t), (t , r) is blue, then there is an
entirely blue triangle vrs, vst or vtr . If not, then those three
edges are all red and we have an entirely red triangle rst .
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We need at least six people

This colouring of the complete graph K5 does not have a
monochromatic triangle. (In fact, each subgraph K3 has two
edges of one colour and one edge of the other colour.) Thus,
the proof that we gave on the previous slide depends on having
at least 6 vertices in the graph (or people at the party).
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Ramsey’s theorem and Ramsey numbers
Consider a complete graph KN with N vertices. Suppose each
edge is coloured red or blue.
Ramsey’s theorem (1930) says that, for any positive integers r
and s, there is a number R(r , s) (now called a Ramsey number)
such that, if N ≥ R(r , s), then KN must have a subgraph
Kr (with r vertices) that is coloured entirely red, or a subgraph
Ks (with s vertices) that is coloured entirely blue.
Idea of proof [Erdős and Szekeres (1935)]: Use induction on
r + s to show that

R(r , s) ≤
(

r + s − 2
r − 1

)
,

using
R(r , s) ≤ R(r − 1, s) + R(r , s − 1).

In particular, R(3,3) ≤
(4

2

)
= 6 (this gives another proof of the

theorem on friends and strangers).
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Frank Ramsey (1903–1930)
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Upper and lower bounds on R(k , k)

I will consider the symmetric case r = s = k say.
It is known that R(2,2) = 2, R(3,3) = 6, and R(4,4) = 18.
The exact value of R(k , k) is not known for k > 4.
For k = 5, all that we know is 43 ≤ R(5,5) ≤ 49
(although McKay and Radziszowski (1997) have given
a convincing heuristic argument that R(5,5) = 43).
Thus, it is interesting to obtain upper and lower bounds
(as close together as possible) on R(k , k).
From the inductive proof sketched above,

R(k , k) ≤
(

2k − 2
k − 1

)
∼ 4k−1
√
πk

as k →∞.

Thus, we have an upper bound that is exponential in k .
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A lower bound on R(k , k)

There is no known deterministic construction that gives an
exponential lower bound on R(k , k). However, Erdős proved
such a bound using the probabilistic method.
Theorem (Erdős, 1947). If

(
n
k

)
< 2k(k−1)/2−1

then R(k , k) > n.
Corollary. For all k ≥ 3, we have R(k , k) > 2k/2.
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Proof of the theorem

Consider a random colouring of the edges of Kn, where each
edge is coloured red or blue independently and with equal
probability. For each induced subgraph G of k vertices, the
probability that all k(k − 1)/2 edges in G are monochromatic
(i.e. all red or all blue) is p = 21−k(k−1)/2.
There are

(n
k

)
possible choices of G. Thus, the probability P

that some such G is monochromatic satisfies

P ≤ p
(

n
k

)
< 1.

In other words, with positive probability 1− P, no such G is
monochromatic. Thus, there must exist some colouring of Kn
that has no monochromatic induced subgraph on k vertices.
This implies that R(k , k) > n.
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Proof of the corollary

If k ≥ 3 and n = b2k/2c, then
(

n
k

)
· 21−k(k−1)/2 <

nk

k !
· 21+k/2

2k2/2

≤ 21+k/2

k !
· nk

2k2/2

≤ 1.

Thus,
(n

k

)
< 2k(k−1)/2−1, and it follows from the Theorem that

R(k , k) > n. Thus R(k , k) ≥ n + 1 > 2k/2.

Richard Brent Erdős’s lower bound on R(k, k)



Important points

Even if you didn’t follow the details of the proofs, some points to
note are:

I If the probability of something (e.g. a colouring with a
certain property) is positive, then it must be possible.
If it were impossible, then the probability would be zero.

I The condition that the probability is positive may be a
rather unintuitive inequality that can be transformed into an
easier-to-understand inequality (though this process may
give away a little in precision).

I Since we were considering a finite graph Kn we could have
given a proof that just involved a “counting argument” and
did not mention probability. However, it would have been
harder to understand and more likely to contain errors!
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The upper and lower bounds on R(k , k)

To summarise, we showed that, for k ≥ 3,

2k/2 < R(k , k) ≤
(

2k − 2
k − 1

)
∼ 4k−1
√
πk

< 22k .

This is a wide range, but it is close to the best that is currently
known – no one has improved significantly on the exponents
k/2 and 2k (at least not on the coefficients 1/2 and 2).
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The maximal determinant problem

Suppose A is an n × n matrix with entries in {±1}.
How large can the determinant det(A) be?
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The maximal determinant problem

Hadamard (1893) partly answered the question by proving an
upper bound

det(A) ≤ nn/2

that can be attained for infinitely many values of n. Such n are
called Hadamard orders and the matrices attaining the bound
nn/2 (or −nn/2) are called Hadamard matrices.
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Jacques Hadamard (1865–1963)
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A short proof of Hadamard’s inequality
Consider the “Gram matrix” G = AT A. Note that G is positive
semi-definite, so has non-negative real eigenvalues λj . Also,
the diagonal elements gjj of G are n. Thus

det(A)2/n = det(G)1/n =


∏

j

λj




1/n

≤ 1
n

∑

j

λj (by AGM inequality)

=
trace(G)

n
= n.

Thus det(A) ≤ nn/2, and there is equality iff G = nI.

The proof shows that Hadamard matrices are orthogonal,
i.e. AT A = AAT = nI.

Richard Brent Proof of Hadamard’s inequality



Comments on the maxdet problem

I We can ask the same question for n × n matrices that are
allowed to have real entries in [−1,1]. The answer is the
same, since the maximum occurs at extreme points.

I We can ask the same question for (n − 1)× (n − 1)
matrices whose entries are in {0,1}. The answer is the
same, except for a scaling factor of 2n−1 (see next slide).

I A more general problem that arises in the design of
experiments is to maximise det(AT A), where A is an m × n
matrix with entries in {0,±1}, and m ≥ n.
I will only consider the case m = n.
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Determinants of {±1} matrices
An n × n {±1} matrix always has determinant divisible by 2n−1,
because of a well-known mapping from {0,1} matrices of order
n − 1 to {±1} matrices of order n.
The mapping is reversible if we are allowed to normalise the
first row and column of the {±1} matrix by changing the signs
of rows/columns as necessary.




1 0 1
1 1 0
0 1 1


 double
−→




2 0 2
2 2 0
0 2 2




border
−→




1 1 1 1
0 2 0 2
0 2 2 0
0 0 2 2




subtract
−→
first row




1 1 1 1
−1 1 −1 1
−1 1 1 −1
−1 −1 1 1
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Design of experiments

The field of Design of Experiments was pioneered by
C .S. Peirce (1877–1883) and R. A. Fisher (1926–1935).1

We might want to perform m experiments to find information
about the effect of n variables, where m ≥ n. For example, we
could be trying to estimate the weights of n objects using m
weighings, or estimate the effect of n different drugs on m
patients. We can model the experiment by an m × n matrix A of
{0,±1} entries.
Provided the outcomes are linear functions of the variables, a
sensible criterion to choose the best experimental design is to
maximize det(AT A). Here AT A is called the information matrix
of the design.
An m × n {±1}-matrix A for which det (AT A) is maximal is
called a D-optimal design, and if m = n it is called saturated.

1The dates are dates of their most relevant publications.
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Charles S. Peirce and Ronald A. Fisher
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The Hadamard conjecture
It seems probable that, whenever m is divisible by 4, it
is possible to construct an orthogonal matrix of order
m composed of ±1, but the general theorem has
every appearance of difficulty.

Paley, 1933

Raymond Paley (1907–1933)
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The Hadamard conjecture

It is conjectured that Hadamard matrices exist for orders
n = 1,2, and 4k for all positive integers k . This conjecture is
known as the Hadamard conjecture, although it seems to have
been first explicitly stated by Paley. It is easy to prove that 1, 2
and 4k are the only possible orders.
Paley showed how to construct a Hadamard matrix of order
q + 1 when q ≡ 3 mod 4 is a prime power, and of order
2(q + 1) when q ≡ 1 mod 4 is a prime power. Combined with a
doubling construction of Sylvester, this shows that Hadamard
matrices of order n = 2r (q + 1) exist whenever q is zero or an
odd prime power, r ≥ 0 and 4|n.
Many other constructions have been found. Together, they
show that all n = 4k ≤ 664 are the orders of Hadamard
matrices.
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Hadamard and non-Hadamard orders

Recall that n is a Hadamard order if a Hadamard matrix of
order n exists, and a non-Hadamard order otherwise.
For example, 1,2,4,8,12,16,20,24 are Hadamard orders;
3,5,6,7,9,10,11,13 are non-Hadamard orders.
Let D(n) be the maximum determinant of an n× n {±1}-matrix,
and

R(n) :=
D(n)

nn/2 ≤ 1

be the ratio of D(n) to the Hadamard bound.
For positive integers n, R(n) = 1 iff n is a Hadamard order.
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R(n) for small n

n R n R n R n R
– – 1 1 2 1 3 0.77
4 1 5 0.86 6 0.74 7 0.63
8 1 9 0.73 10 0.74 11 0.61

12 1 13 0.86 14 0.74 15 0.63
16 1 17 0.75 18 0.74 19 0.64
20 1 21 0.78 22 0.70? 23 0.61?

Table: R(n) for n < 24

Each block of two columns corresponds to a congruence class
of n mod 4.
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Known lower bounds on R(n)

It appears plausible that there always exists such a
matrix with determinant greater than 1

2hn, where
hn = nn/2 is the Hadamard bound.

Rokicki et al (2010)

Tomas Rokicki Will Orrick
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Known lower bounds on R(n)

What can we say about lower bounds on R(n)?
Rokicki, Kazmenko, Meyrignac, Orrick, Trofimov and
Wroblewski (2010) verified numerically that R(n) > 1/2 for all
n ≤ 120, and conjectured that this lower bound always holds.
However, the theoretical bounds are much weaker.
Until recently, the best result was

R(n) ≥ 1√
3n

.

This bound tends to zero as n→∞.
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Improved lower bounds on R(n)

Using the probabilistic method, we2 recently showed that

R(n) ≥ cd

for some cd > 0 that depends only on d = n − h, where h is the
largest Hadamard order ≤ n.
Also, if the Hadamard conjecture is true, then d ≤ 3 and

R(n) > 1/9.

2Brent, Osborn and Smith, arXiv:1402.6817v2, 13 March 2014.
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First try – A naive approach

How can we use the probabilistic method to give a lower bound
on R(n)?
An obvious approach is to consider a random {±1}-matrix of
order n, hoping that a random matrix often has a large
determinant. It does, but not large enough!
Turán (1940) showed that the

E[det(A)2] = n!

for {±1}-matrices A of order n, chosen uniformly at random.
Compare this to the Hadamard bound det(A)2 ≤ nn.

E[det(A)2] = n! ≈
(n

e

)n√
2πn� nn.

The difference is a factor of almost en.

Richard Brent Turán’s result E[det(A)2] = n!



Erdős and Turán

Paul Erdős (1913–1996) Paul Turán (1910–1976)
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Bordering a Hadamard matrix

Suppose n = h + d where h is the order of a Hadamard matrix
H, and d is small (if the Hadamard conjecture is true, we can
assume that 0 ≤ d ≤ 3).
We can start with H and add a “border” of d rows and columns.
Since H has a large determinant (as large as possible for a
{±1}-matrix of order h), we might hope that the resulting
order n matrix will often have a large determinant.
To analyse the effect of a border on the determinant, we need
to look at the Schur complement.
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The Schur complement

Let

A =

[
H B
C D

]

be an n × n matrix written in block form, where H is h × h,
and n = h + d > h. (Here H does not have to be Hadamard,
any nonsingular h × h matrix will do.)
The Schur complement of H in A is the d × d matrix

D − CH−1B.

The Schur complement is relevant to our problem because

det(A) = det(H) · det(D − CH−1B).
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Proof of the determinant identity

To prove the Schur complement identity

det(A) = det(H) · det(D − CH−1B),

take determinants of each side in the identity

A =

[
H B
C D

]
=

[
I 0

CH−1 I

] [
H B
0 D − CH−1B

]
.

You can verify this identity directly by block matrix multiplication,
or derive it by block Gaussian elimination.

Richard Brent Proof of the determinant identity



Application of the Schur complement
Let H be an h × h Hadamard matrix that is a principal
submatrix of an n × n matrix A, where n = h + d as usual.

A =

[
H B
C D

]
.

I Since H is Hadamard, HHT = hI and det(H) = hh/2, so

det(A) = hh/2 det(D − h−1CHT B) .

I To maximise |det(A)| we need to maximise

|det(D − h−1CHT B)| .

(The sign of the determinant is not important, only the
absolute value is of interest to us.)
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A numerical example

Suppose we want to construct a large-determinant {±1}-matrix
of order 5. We could start with the order 4 Hadamard matrix

H =




+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1




which has det(H) = 16, and add a border along the right and
bottom.
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Choosing B, C, D randomly

Suppose we randomly choose B, C and D to give

A =

[
H B
C D

]
=




+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 +1 +1 −1 +1




BT H = (HT B)T = [+2,−2,−2,−2],
C = [+1,+1,+1,−1],
CHT B = 2− 2− 2 + 2 = 0,
det(D − h−1CHT B) = det(1) = 1, and
det(A) = det(H) · 1 = 16. Disappointing!
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Choosing only B randomly

Let’s choose B randomly, but then choose C to avoid any
cancellation in the inner product C · HT B, then choose D to
maximise |det |. This gives

A =

[
H B
C D

]
=




+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 −1 −1 −1 −1




BT H = (HT B)T = [+2,−2,−2,−2],
C = [+1,−1,−1,−1], CHT B = 2 + 2 + 2 + 2 = 8.
det(D − h−1CHT B) = det(−1− 2) = −3, and
det(A) = det(H) · (−3) = −48. Apart from the sign, which is
easily fixed, we get the maximum possible determinant (48).
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A good probabilistic construction

Choose the h × d {±1}-matrix B uniformly at random.
Guided by our numerical examples, choose C = (cij), where

cij = sgn(HT B)ji for 1 ≤ i ≤ d , 1 ≤ j ≤ h

so there is no cancellation in the inner products defining the
diagonal elements of C · HT B.
In the case d = 1 this construction is due to Brown and
Spencer (1971) and also (independently) Best (1977).

Richard Brent A good probabilistic construction



Results obtained using the probabilistic construction

Write F = h−1CHT B, so the Schur complement is D − F .
By studying the probability distribution of elements of F we find
that, with a positive probability, F is close to a diagonal matrix.
The diagonal elements of F have mean µ ≈ (2h/π)1/2 and
variance σ2 ≤ 1/4.
The off-diagonal elements have mean 0 and variance 1.
Thus, F is usually close to the diagonal matrix µI.
Using these facts about F , we3 can prove Theorems 1–2
(see next slide).

3Brent, Osborn and Smith, arXiv:1402.6817v2, 13 March 2014.
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Lower bound for d ≤ 3

Theorem 1 applies if d ≤ 3, which is always the case if the
Hadamard conjecture is true.

Theorem 1. If 0 ≤ d ≤ 3, n = h + d , where h is the order of a
Hadamard matrix, then

R(n) ≥
(

2
πe

)d/2

.

Corollary. If the Hadamard conjecture is true, then

R(n) > 1/9.

Richard Brent 1 ≤ d ≤ 3



General lower bound

Without assuming the Hadamard conjecture, we have

Theorem 2. If d ≥ 0, n = h + d as above, then

R(n) ≥
(

2
πe

)d/2(
1− d2

√
π

2h

)
.

To prove Theorem 2, we need some additional ingredients:
I Chebyshev’s inequality (1867) for the tail of a probability

distribution, and
I Ostrowski’s inequality (1938) for det(I − E) where the

elements of E are small.
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The O(d2/h1/2) term

By a result of Livinsky (2012) on gaps between Hadamard
orders,

d2/h1/2 → 0 as n→∞,

so the lower bound given by Theorem 2 is close to

(
2
πe

)d/2

when n is large.
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Livinskyi, Ostrowski, Chebyshev

Ivan Livinskyi (recent); Alexander Ostrowski (1893–1986);
Pafnuty Chebyshev (1821–1894)
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A randomised algorithm

The probabilistic construction can easily be used to give a
randomised algorithm for finding large-determinant matrices,
i.e. nearly D-optimal designs.
The algorithm actually works better than the theory suggests.
In all the cases that we have tried, there is no difficult in finding
an n × n {±1}-matrix A with

det(A)

nn/2 ≥
(

2
πe

)d/2

.
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Conclusion

We’ve seen that probabilistic ideas can be used for
I practical primality testing,
I finding lower bounds on Ramsey numbers,
I finding large-determinant {±1}-matrices

(almost-optimal designs), and
I proving lower bounds that are close to

Hadamard’s upper bound on the largest-possible
determinants of {±1}-matrices.

There are many other examples that I could have given if we
had more time.
I hope that I have convinced you that probabilistic ideas are
relevant even for problems that do not appear to involve any
randomness!
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