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The Hadamard maximal determinant problem

Let A be a {±1}-matrix of order n,
i.e. an n × n matrix with entries in {−1,+1}.
How large can det(A) be?

Hadamard (1893) partly answered the question by proving an
upper bound

|det(A)| ≤ nn/2

that can be attained for infinitely many values of n. Such n are
called Hadamard orders and the matrices attaining the bound
are called Hadamard matrices.
Hadamard’s bound can be proved by applying the
arithmetic-geometric mean inequality to the eigenvalues
of AT A.
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Some variants of the maxdet problem

I We can ask the same question for n × n matrices that are
allowed to have real entries in [−1,1]. Since the maxima
occur at extreme points of [−1,1]n, the answer is the same
as before.

I We can ask the same question for (n − 1)× (n − 1)
matrices whose entries are in {0,1} or [0,1]. The answer
is the same, except for a scaling factor of 2n−1.

I A more general problem is to maximise det(AT A), where A
is an m × n matrix with entries in {−1,+1}, and m ≥ n.
This problem arises in the design of experiments.
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The functions D(n) and R(n)

Let D(n) be the maximum determinant of an n× n {±1}-matrix,
and

R(n) :=
D(n)

nn/2 ≤ 1

be the ratio of D(n) to the Hadamard bound.
Clearly R(n) = 1 iff n is a Hadamard order.
In this talk we consider lower bounds on R(n);
these are of interest when n is not a Hadamard order.
Apart from the small cases n ∈ {1,2}, Hadamard orders are
multiples of four.
The Hadamard conjecture (actually made by Paley, 1933)
is that all positive multiples of four are Hadamard orders.
This has been verified for n < 668.
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How to find lower bounds?

There are two ways that we can obtain a lower bound on R(n) if
Hadamard matrices of order “close” to n exist.

I minors: Choose a Hadamard matrix H of order h ≥ n, and
take an n × n submatrix with a large determinant ∆.
Theorems about minors of Hadamard matrices imply a
lower bound on ∆, e.g. h = n + 1⇒ ∆ = hh/2−1.

I bordering: Choose a Hadamard matrix H of order h ≤ n,
and add a suitable border of d := n − h rows and columns.
For example, if n = 17, we can construct a maximal
determinant matrix of order 17 by choosing a Hadamard
matrix of order 16 and an appropriate border.

The probabilistic method is applicable to bordering, as we can
choose a border that is randomised in some way (details later).
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R(n) for small n

n R n R n R n R
– – 1 1 2 1 3 0.77
4 1 5 0.86 6 0.74 7 0.63
8 1 9 0.73 10 0.74 11 0.61
12 1 13 0.86 14 0.74 15 0.63
16 1 17 0.75 18 0.74 19 0.64
20 1 21 0.78 22 0.70? 23 0.61?
24 1 25 0.86 26 0.74 27 0.63?
28 1 29 0.74? 30 0.74 31 0.62?

Table: R(n) for n ≤ 31

Each block of two columns corresponds to a congruence class
of n mod 4. Data from Will Orrick’s website
http://www.indiana.edu/~maxdet/.
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Some known and conjectured lower bounds

Rokicki et al (2010) verified numerically that

R(n) > 1/2 for all n ≤ 120,

and conjectured that this lower bound always holds.
However, the known rigorous bounds are much weaker than
Rokicki’s conjecture.
Until recently, the best published result,1 even assuming the
Hadamard conjecture, was

R(n) ≥ 1√
3n

.

This bound tends to zero as n→∞.

1Brent and Osborn, EJC 2013.
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Improved lower bounds on R(n)

Using the probabilistic method, we2 recently showed that

R(n) ≥ cd

for some cd > 0 that depends only on d .
Here, as usual, d = n − h ≥ 0 is the width of the border.
For all n ≥ 1 we have

R(n) ≥
(

2
πe

)d/2(
1− d2

( π
2h

)1/2
)
.

Also, if the Hadamard conjecture is true, then d ≤ 3 and

R(n) ≥
(

2
πe

)d/2

≥
(

2
πe

)3/2

>
1
9
.

2Brent, Osborn and Smith, arXiv:1402.6817, 2014.
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A naive approach

How can we use the probabilistic method to bound R(n)?
An obvious approach is to consider a random {±1}-matrix of
order n, hoping that a random matrix often has a determinant
close to the Hadamard bound.
In 1940, Turán showed that the

E[det(A)2] = n!

for {±1}-matrices A of order n, chosen uniformly at random.
Compare this to the Hadamard bound det(A)2 ≤ nn.

E[det(A)2] = n! ∼
(n

e

)n√
2πn� nn.

This is weaker than what we need by a factor of almost en.
Thus, the naive approach does not work.
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Large determinant matrices are rare
Since we need Chebyshev’s inequality later, we illustrate its use
by showing that the distribution of |det(A)| has a long tail.
Theorem [Chebyshev, 1867]. Let X be a random variable with
finite mean µ = E[X ] and finite variance σ2 = V[X ]. Then, for all
λ > 0,

P[|X − µ| ≥ λ] ≤ σ2

λ2
.

Let X = det(A), where A is a random {±1}-matrix of order n.
Then µ = 0 and σ2 = n! (by Turán’s theorem). Take λ = nn/2/2
(half the Hadamard bound). Then

P

[
|det(A)| ≥ nn/2

2

]
≤ 4n!

nn ∼
4
√

2πn
en

is tiny if n is large.
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A better approach – bordering a Hadamard matrix

Suppose n = h + d where h is the order of a Hadamard matrix
H, and d ≥ 0 is small. We always choose h as large as
possible, i.e. d as small as possible. If the Hadamard
conjecture is true, we can assume that 0 ≤ d ≤ 3.
We can start with H and add a border of d rows and columns.
Since H has a large determinant (as large as possible for a
{±1}-matrix of order h), we hope that the resulting matrix of
order n also has a large determinant.
To analyse the effect of a border on the determinant, we need
to consider the Schur complement.
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The Schur complement

Let

A =

[
H B
C D

]
be an n × n matrix written in block form, where H is h × h
(not necessarily Hadamard, but assumed to be nonsingular),
and n = h + d > h.
The Schur complement of H in A is the d × d matrix

D − CH−1B.

This is relevant to our problem because it can be shown, using
block Gaussian elimination, that

det(A) = det(H) det(D − CH−1B).
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Application of the Schur complement
Let H be an h × h Hadamard matrix that is a principal
submatrix of an n × n matrix A, as on the previous slide.

A =

[
H B
C D

]
.

I Since H is Hadamard, HHT = hI and det(H) = hh/2, so

det(A) = hh/2 det(D − h−1CHT B) .

I In order to maximise |det(A)|, we need to maximise

|det(D − h−1CHT B)| .
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A small numerical example

Suppose we want to construct a large-determinant {±1}-matrix
of order 5. We could start with the order 4 Hadamard matrix

H =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1


which has det(H) = 16, and add a border along the right and
bottom.
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Choosing B, C, D randomly
Suppose we randomly choose B, C and D to give

A =


+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 +1 +1 −1 +1

 .
Then

BT H = (HT B)T = [+2,−2,−2,−2],

C = [+1,+1,+1,−1],

CHT B = 2− 2− 2 + 2 = 0,

det(D − h−1CHT B) = det(1) = 1,
det(A) = det(H) · 1 = 16.

This is disappointing as det(A) is no larger than det(H).
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Choosing only B randomly
Let’s choose B randomly, but then choose C to avoid any
cancellation in the inner product C · HT B, and finally choose D
to maximise the resulting determinant. This gives

A =


+1 +1 +1 +1 −1
+1 −1 +1 −1 +1
+1 +1 −1 −1 +1
+1 −1 −1 +1 +1
+1 −1 −1 −1 −1


In fact BT H = (HT B)T = [+2,−2,−2,−2],

C = [+1,−1,−1,−1],

CHT B = 2 + 2 + 2 + 2 = 8.

det(D − h−1CHT B) = det(−1− 2) = −3,
and det(A) = det(H) · (−3) = −48. By reversing the sign of one
row in A, we get the maximum possible determinant (48).
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Generalisation: constructing a border for d ≥ 1
Choose the h × d {±1}-matrix B uniformly at random.
We want to choose C and D (depending on B) to maximise the
expected value

E[|det(D − h−1CHT B)|].

Guided by our numerical examples, approximate this by
choosing C = (cij), where

cij = sgn(HT B)ji for 1 ≤ i ≤ d , 1 ≤ j ≤ h

so there is no cancellation in the inner products defining the
diagonal elements of C · HT B.
Finally, choose D = −I (we later modify the off-diagonal
elements of D get a {±1}-matrix).
In the case d = 1 this construction is due to Brown and
Spencer (1971); also (independently) to Best (1977).
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Entries in the Schur complement
Write F = h−1CHT B, so the Schur complement is D − F .
The choice of D is unimportant when h is large, so for the
moment we’ll ignore D and concentrate on F .

I Diagonal elements. By a counting argument [Brown and
Spencer 1971, Best 1977], if h ≥ 2 then

E[fii ] = 2−h
h∑

k=0

|h−2k |
(

h
k

)
=

h
2h

(
h

h/2

)
=

(
2h
π

)1/2

+ O(h−1/2).

I Off-diagonal elements. If i 6= j , then

E[fij ] = 0 and V[fij ] = E[f 2
ij ] = 1.

We expect the diagonal elements to be “large” (of order h1/2)
and the off-diagonal elements to be “small” (of order 1).

Richard Brent and Judy-anne Osborn Entries in the Schur complement



Another numerical experiment

Let’s try our construction with n = 6, h = 4, d = 2. We choose
a Hadamard matrix H of order h = 4 and add a border of width
d = 2. Repeat 104 times, computing F = h−1CHT B and det(F )
each time.
In a typical experiment we find

mean(F ) =

[
1.5002 −0.0076
−0.0002 1.4993

]
≈ E[F ] =

[
1.5 0
0 1.5

]
,

but
mean(det(F )) = 1.6877 6= det(E[F ]) = 2.25.

Why the discrepancy?
The reason is that elements of F are correlated.
In particular, E(f12f21) 6= E(f12)E(f21) = 0.
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Correlations between elements of F

From the definition of F , we see that fij depends only on the
choice of columns i and j of the random border B.
Thus, fij and fk` are independent iff

{i , j} ∩ {k , `} = ∅.

In the numerical example on the previous slide, f12 and f21 are
correlated in a way which tends to reduce the determinant!
However, the diagonal elements f11 and f22 are independent.
Thus

E[f11f22] = E[f11]E[f22].
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Inequalities for the fij
Best (1977) showed, using the Cauchy-Schwarz inequality, that

|fij | ≤ h1/2.

The Cauchy-Schwarz inequality also shows that, if i 6= j and
k 6= `, then

E [|fij fk`|] ≤
√

E[f 2
ij ]E[f 2

k`] = 1.

Using these two inequalities and the fact that the diagonal
elements of F are independent, we can get a lower bound on
E[det(F )] by expanding the determinant as a sum of products
and bounding each of the d ! terms.
The result is only useful if d !� h. In practice it is useful for
d ≤ 3. This is fine if you believe the Hadamard conjecture.
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Example: the case d = 2

If d = 2, then

det(F ) = det
[
f11 f12
f21 f22

]
= f11f22 − f21f12.

Thus E[det(F )] = E[f11f22]− E[f21f12]

≥ E[f11]E[f22]− E[|f21f12|]

≥ 2h
π
−O(1).

Using the Schur complement lemma, we can deduce that
R(n) ≥ 2

πe > 0.23 whenever n − 2 is a Hadamard order.

Previous lower bounds3 are ∼ 5.43/n and ∼ 0.587/n1/2;
both tend to zero as n→∞. Thus, the new bound is much
better for large n.

3Koukouvinos, Mitrouli & Seberry [2000], Brent and Osborn [2013].
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Obtaining a lower bound in the general case

To get a useful lower bound on R(n) for general n, without
assuming the Hadamard conjecture, we need some new
ingredients:

I An upper bound on the variance of the diagonal elements
of F in the probabilistic construction described above (so
that we can apply Chebyshev’s inequality).

I Ostrowski’s inequality for determinants of matrices that are
“close” to the identity matrix.

I Livinskyi’s bound on gaps between Hadamard orders (to
show that the result is nontrivial for all sufficiently large n).

We’ll consider these in reverse order.
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Gaps between Hadamard orders

From a result of Livinskyi (2012), the “gaps” between
Hadamard orders near n are at most of order n1/6,
so we can assume that d = O(h1/6).
The “error term” in our bound is O(d2/h1/2).
By Livinskyi’s result, this is O(1/h1/6), so→ 0 as h→∞.
Earlier results on gaps between Hadamard orders, by Seberry
(1976) and Craigen (1995), are not sharp enough to show this.
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Ostrowski’s inequality

Theorem (Ostrowski, 1938). If X = I − E is a d × d real matrix
and the elements of E satisfy |eij | ≤ ε ≤ 1/d , then

det(X ) ≥ 1− dε.

If our matrix F is close to a diagonal matrix, we can scale it to
make it close to the identity matrix, and then use Ostrowski’s
inequality to get a lower bound on det(F ).
We expect F to be close to a diagonal matrix with high
probability, because the diagonal elements of F have a
distribution with mean of order h1/2 and small variance (we’ll
see this later), and the off-diagonal elements have mean zero
and variance 1. Similarly for G = I + F .
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The choice of D

Recall that

A =

[
H B
C D

]
and the Schur complement of H in A is D − CH−1B = D − F .
We choose D = −I and write G = I + F , so −G is the Schur
complement.
Our choice of D is not a {±1}-matrix because there are zeros
off the main diagonal. However, we can later change these
zeros to either +1 or −1 without decreasing |det(D − F )|.
Thus, any lower bounds on R(n) that we prove using D = −I
are also valid for {±1}-matrices.

Richard Brent and Judy-anne Osborn Can assume that D = −I



Good G

Define a good G to be one for which all the gij are sufficiently
close to their expected values. More precisely, gij is “good” if

|gij − E[gij ]| < d ,

and G is “good” if all the gij are good.
The motivation for this definition is that, if G is good, we’ll be
able to apply Ostrowski’s inequality to µ−1G, which is close to
the identity matrix. Here µ = E[gii ] = E[fii ] + 1 ∼ (2h/π)1/2.
Recall Chebyshev’s inequality: P[|X − E[X ]| ≥ λ] ≤ σ2/λ2.
This gives us a bound on the probability that an element gij is
bad (i.e. not good). We take X = gij , σ2 = V[gij ], and λ = d .
Then

P[gij is bad] ≤ σ2/d2.
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The off-diagonal elements

Consider the off-diagonal elements gij , i 6= j . For these, σ2 = 1,
so Chebyshev’s inequality gives

P[gij is bad] ≤ 1/d2.

There are d(d − 1) off-diagonal elements, so the probability
that any of them is bad is at most

d(d − 1)

d2 = 1− 1
d
.

This argument does not assume independence!
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The diagonal elements
We need V [gii ] for a diagonal element gii of G. By a
combinatorial argument, we can show that, for h ≥ 4,

V [gii ] = 1 +
h(h − 1)

2h+1

(
h/2
h/4

)2

− h2

22h

(
h

h/2

)2
.

Using the asymptotic expansion of log Γ(z) with an error bound
to estimate the binomial coefficients, it follows that

σ2 := V [gii ] < 1.

(Is there an easier proof that avoids asymptotics?)
Chebyshev’s inequality gives

P[gii is bad] ≤ σ2

d2 <
1
d2

.

Thus, the probability that any diagonal element is bad is < 1/d .
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Good G exist!

Putting the pieces together,

P[G is bad] <

(
1− 1

d

)
+

1
d

= 1.

Thus,
P[G is good] = 1− P[G is bad] > 0.

Since there is a positive probability that a random choice of B
gives a good G, the set of good G is nonempty!
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Completing the proof

We can apply Ostrowski’s inequality to X = µ−1G if G is good
and ε = d/µ is sufficiently small. Here µ = E[gii ] ∼

√
2h/π.

More precisely, the condition on ε is dε < 1,
which is equivalent to d2 < µ.
This leads to the following theorem.
Theorem. If n = h + d where d ≥ 1 and there exists a
Hadamard matrix of order h ≥ 4, then

D(n) ≥ hh/2µd (1− d2/µ).

Note. Since µ is of order h1/2 ≈ n1/2 and d � n1/6 [Livinskyi],

d2/µ� n1/3/n1/2 = 1/n1/6 → 0,

so d2 < µ for all sufficiently large n.
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The lower bound on D(n)

In the inequality

D(n) ≥ hh/2µd (1− d2/µ)

I the factor hh/2 comes from the determinant of H,
I the factor µd comes from the expected product of the

diagonal elements of G, and
I the factor (1− d2/µ) comes from the application of

Ostrowski’s inequality.

The first two factors seem unavoidable. The last factor can be
improved by using the “Lovász Local Lemma” and Hoeffding’s
tail inequality instead of Chebyshev’s inequality.4

4Brent, Osborn and Smith, arXiv:1402.6817.
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A lower bound on R(n)

Corollary. If d ≥ 1, n = h + d as above, then

R(n) ≥
(

2
πe

)d/2(
1− d2

√
π

2h

)
.

Since d2/h1/2 = O(1/n1/6), this is close to the bound

R(n) ≥
(

2
πe

)d/2

that we can prove for d ≤ 3.
We5 can also prove the latter inequality if n ≥ n0, where n0 is
an absolute constant (independent of d).
A plausible conjecture is that the inequality holds for all
positive n.

5BOS, arXiv:1402.6817.
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