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Abstract
We consider identities satisfied by discrete analogues of
Mehta-like integrals. The integrals are related to Selberg’s
integral and the Macdonald conjectures. Our discrete
analogues have the form
Sα,β,δ(r, n) :=

∑
k1,...,kr∈Z

∏
1≤i<j≤r |kαi − kαj |β

∏r
j=1 |kj|δ

( 2n
n+kj

)
.

In the ten cases that we consider, it is possible to express
Sα,β,δ(r, n) as a product of Gamma functions and simple
functions such as powers of two. For example, if 1 ≤ r ≤ n, then

S2,2,3(r, n) =
r∏

j=1

(2n)! j!2

(n− j)!2
.

The emphasis of the talk is on how such identities can be
obtained (or ruled out), with a high degree of certainty, using
numerical computation. We outline the ideas behind some of
our proofs, which involve q-series identities and arguments
based on non-intersecting lattice paths.
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Some recent history

This talk is about expressing certain sums as products.
For an application of the probabilistic method to Hadamard’s
maximal determinant problem, Brent and Osborn (2013)
considered the sum

S(2, n) :=
∑
k∈Z

∑
`∈Z
|k2 − `2|

(
2n

n + k

)(
2n

n + `

)
and showed that

S(2, n) = 2n2
(

2n
n

)2

.

We can assume that k, ` ∈ [−n, n] as otherwise the product of
binomial coefficients vanishes. Thus, there are O(n2) nonzero
terms in the sum.
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Some recent history

Ohtsuka conjectured, and Prodinger proved, an analogous
triple-sum identity:

S(3, n) :=
∑
k∈Z

∑
`∈Z

∑
m∈Z
|∆(k2, `2,m2)|

(
2n

n + k

)(
2n

n + `

)(
2n

n + m

)

= 3n3(n− 1)
(

2n
n

)2

22n−1,

where ∆(x, y, z) := (y− x)(z− y)(z− x) and n ≥ 2.
Warnaar suggested generalising this and similar results to
r-fold sums. At a certain point we consulted Christian
Krattenthaler. This resulted in a collaboration between
Brent, Krattenthaler and Warnaar. I will summarise some
of the results obtained by this collaboration.

Richard Brent History



Notation and definitions
The Vandermonde determinant is

∆(k1, . . . , kr) := det(kj−1
i )1≤i,j≤r =

∏
1≤i<j≤r

(kj − ki).

Suppose α ≥ 0 and k = (k1, . . . , kr) ∈ Rr. A useful notation is

∆(kα) := ∆(kα1 , . . . , k
α
r ) =

∏
1≤i<j≤r

(kαj − kαi ).

We consider centered binomial sums involving the absolute
value of a generalised Vandermonde, specifically

Sα,β,δ(r, n) :=
∑
k∈Zr

|∆(kα)|β
r∏

j=1

|kj|δ
(

2n
n + kj

)
.

Here α, β, δ, r, n are non-negative integer parameters.
Our aim is to express these sums as products.
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Examples

The two-fold sum S(2, n) mentioned previously is

S2,1,0(2, n) :=
∑

k1

∑
k2

|∆(k2)|
2∏

j=1

(
2n

n + kj

)
.

The three-fold sum S(3, n) mentioned previously is

S2,1,0(3, n) :=
∑

k1

∑
k2

∑
k3

|∆(k2)|
3∏

j=1

(
2n

n + kj

)
.

We saw that these sums can be expressed as products of
factorials and powers of two.
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Examples
The r-fold generalisation can also be expressed as a product:

S2,1,0(r, n) :=
∑

k1,...,kr∈Z
|∆(k2)|

r∏
j=1

(
2n

n + kj

)

=
r−1∏
j=0

(2n)!
(n− j)!

Γ( j+3
2 )

Γ(3
2)

Γ(n− j + 3
2)

Γ(n− j
2 + 3

2)

Γ( j+1
2 )

Γ(n− j−1
2 )

.

We assume that n ≥ r − 1, as otherwise the sum vanishes.
Thus, a sum with O(nr) nonzero terms has been expressed as
a product of O(r) Gamma functions (or reciprocals of Gamma
functions). We call such a product a Gamma product.
Polynomial powers of constants, e.g. 2n−r, are allowed in such
products.
Recall that n! = Γ(n + 1). Thus factorials are special cases of
Gamma functions. We use both notations.
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Justification

Why are these binomial sums interesting?
Haven’t binomial sums been “solved” by Wilf and Zeilberger?

I Wilf and Zeilberger’s method only applies in low
dimensions (r).

I No “simple” proof (e.g. by induction on the dimension r)
of any of our identities is known.

I Interesting generalisations and/or q-analogues exist,
and in some cases are required for the proofs.

I The identities are discrete analogues of important integrals
due to Selberg, Bombieri, Macdonald, Mehta, Dyson et al.

I The identities can be interpreted as giving expectations
associated with certain random walks in r dimensions.
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Mehta’s integral
Mehta’s r-fold integral is

Fr(γ) :=
∫

Rr
|∆(x)|2γ dψ(x),

where ψ(x) is the r-dimensional Gaussian measure, i.e.

dψ(x) :=
exp(−1

2 ||x||
2
2)

(2π)r/2 dx1 · · · dxr .

Mehta and Dyson evaluated Fr(γ) for the cases γ ∈ {1/2, 1, 2},
and conjectured the general result

Fr(γ) =
r∏

j=1

Γ(1 + jγ)
Γ(1 + γ)

.

This was later proved by Bombieri and Selberg, using Selberg’s
integral (see the survey by Forrester and Warnaar).
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Discrete approximation
The finite sum

S1,2γ,0(r, n) =
∑

−n≤kj≤n

|∆(k)|2γ
r∏

j=1

(
2n

n + kj

)

is a (scaled) discrete approximation to Fr(γ). Using(
2n

n + k

)
∼ 22n
√

nπ
e−k2/n

as n→∞ with k = o(n2/3), we see that

lim
n→∞

S1,2γ,0(r, n)
22rn(n/2)γr(r−1)/2 = Fr(γ).

To make this rigorous we can use the method of tail-exchange
(see for example Graham, Knuth and Patashnik).
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Macdonald-Mehta integrals

More generally, we can define a Macdonald-Mehta integral

Fα,β,δ(r) :=
∫

Rr
|∆(xα)|β

r∏
j=1

|xj|δ dψ(x),

where α, β = 2γ, and δ are non-negative real parameters.
Then Sα,β,δ(r, n) is a (scaled) discrete approximation to
Fα,β,δ(r), in the sense that

Fα,β,δ(r) = lim
n→∞

Sα,β,δ(r, n)
22rn (n/2)αβr(r−1)/4+δr/2

.

The Macdonald-Mehta integrals arise in Macdonald’s
(ex-)conjecture related to root systems of finite reflection
groups.
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When does a Gamma product (probably) exist?

Given a finite sum f (r, n), how can we determine if a Gamma
product for the sum is likely to exist?
Observe that, if f (r, n) has a Gamma product, then all the prime
factors of f (r, n) are “small”. More precisely, they are O(n) as
n→∞ with r fixed.
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Example – Gamma product exists
If f (r, n) := S2,1,0(r, n), we find experimentally that the prime
factors of f (r, n) are bounded by 2n. Here is the output of a
small Magma program checking prime factors for r = 3, n ≤ 20.
The program finds the largest prime factor p of S2,1,0(3, n), and
prints p and p/n.

It appears that p is a (weakly) monotonic increasing function
of n, and it is reasonable to conjecture that p ≤ 2n.
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Example continued

Other positive values of r give similar results. Thus, it is
plausible that a Gamma product exists. In fact, it does:

f (r, n) =
r−1∏
j=0

(2n)!
(n− j)!

Γ( j+3
2 )

Γ(3
2)

Γ(n− j + 3
2)

Γ(n− j
2 + 3

2)

Γ( j+1
2 )

Γ(n− j−1
2 )

for n ≥ r − 1 (otherwise the sum vanishes).
From the product it is easy to see that p ≤ 2n, confirming what
we found experimentally.
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Example – Gamma product does not exist

We make a small change and set δ = 3. Here is the output:

Now p is no longer a monotonic increasing function of n, and
p/n can be large. Thus, a Gamma product is unlikely to exist.
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Ten cases
By checking prime factors, we determined that Gamma
products for Sα,β,δ(r, n) are likely to exist in the ten cases

α, β ∈ {1, 2}, 0 ≤ δ ≤ 2α+ β − 3,

and unlikely to exist in any other cases where α, β are positive
integers.

α β δ

1 1 0
1 2 0, 1
2 1 0, 1, 2
2 2 0, 1, 2, 3

The ten cases naturally fall into three families indicated by
the colour-coding. Why just ten cases? The methods used
to prove the ten cases may provide some clues.
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The three families

For α = 2 we have seven cases given by

S2,2γ,δ(r, n) =
r−1∏
j=0

(2n)!
Γ(n− j + χ)

Γ(1 + jγ + γ)
Γ(1 + γ)

×
r−1∏
j=0

Γ(n− j− γ + χ+ 1)
Γ(n− jγ − γ + χ+ 1)

Γ(jγ + δ+1
2 )

Γ(n− jγ − δ−3
2 − χ)

,

where χ := χ[δ = 0] = max(0, 1− δ).
For example, we already gave the case S2,1,0(r, n) which
corresponds to γ = 1

2 , δ = 0.
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The three families continued

For α = 1, δ = 0 we have two cases given by

S1,2γ,0(r, n/2) =
r∏

j=1

2n−2γ(j−1) n!
(n− j + 1)!

(n− j + γ + 1)!
(n− (j− 2)γ)!

Γ(1 + jγ)
Γ(1 + γ)

.

The one remaining case is

S1,2,1(r, n) = r!
dr/2e∏
j=1

(2n)! (j− 1)!2

(n− j)! (n− j + 1)!

br/2c∏
j=1

(2n)! (j− 1)! j!
(n− j)!2

.

This is the only case where the product involves “floor” and/or
“ceiling” functions.
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How do we find these formulas?

If all prime factors appear to be O(n) and we suspect the
existence of a Gamma product, how can we find it explicitly?
Define the “logarithmic difference” operator

Q : f (r, n) 7→ f (r, n)
f (r − 1, n)

.

Q is analogous to the backward difference operator but uses
division instead of subtraction.
In our applications f (r, n) is defined for r ≥ 0, with f (0, n) = 1.
Thus Q f (r, n) is defined for r ≥ 1, and Q f (1, n) = f (1, n).
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An easy example
Let’s start with the “easy” example

f (r, n) := S2,2,3(r, n) =
r∏

j=1

(2n)! j!2

(n− j)!2

of the abstract. Applying Q once we obtain (for n ≥ r ≥ 1)

g(r, n) := Q f (r, n) =
(2n)! r!2

(n− r)!2
.

Applying Q again gives (for n ≥ r ≥ 2)

h(r, n) := Q g(r, n) = Q2 f (r, n) = r2(n− r + 1)2.

If we fix r ≥ 2 and compute some values of h(r, n) it is easy to fit
a quadratic in n. By inspection, this quadratic is c(r)(n− r + 1)2.
Then it’s easy to vary r and guess that c(r) = r2.
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Easy example continued

We have guessed that

h(r, n) = Q g(r, n) = r2(n− r + 1)2

for n ≥ r ≥ 2. From the definition of the operator Q, we have

g(r, n) = g(1, n)
r∏

k=2

h(k, n),

and similarly

f (r, n) = f (0, n)
r∏

j=1

g(j, n).

Recall that f (0, n) = 1 and g(1, n) = f (1, n). Thus, all we need is
f (1, n).

Richard Brent Detective work



Easy example continued
We need

f (1, n) = S2,2,3(1, n) =
n∑

k=−n

|k|3
(

2n
n + k

)
.

This is a simple binomial sum that can be done by your favorite
method. Since we are only trying to guess f (r, n), there is no
point in being rigorous about f (1, n). Using the same
“logarithmic difference” idea applied to the function of one
variable f (1, n), we find that

f (1, n) = n2
(

2n
n

)
.

Thus, working backwards,

g(r, n) = n2
(

2n
n

) r∏
k=2

k2(n− k + 1)2.
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Easy example continued

We have

g(r, n) = n2
(

2n
n

) r∏
k=2

k2(n− k + 1)2,

and this easily simplifies to

g(r, n) =
(2n)! r!2

(n− r)!2
.

Thus, working backwards again,

f (r, n) =
r∏

j=1

g(j, n) =
r∏

j=1

(2n)! j!2

(n− j)!2

which is the desired Gamma product.
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A typical example

Unfortunately, the method that we used in the “easy” example
does not usually work. To see why, consider the example

f (r, n) := S2,1,0(r, n).

Here

Q f (r, n) =
(2n)!

(n− r + 1)!
Γ( r

2 + 1)
Γ(3

2)
Γ(n− r + 5

2)
Γ(n− r

2 + 2)
Γ( r

2)
Γ(n− r

2 + 1)
.

Now, Q2 f (r, n) is not a simple rational function of r and n,
because of the Γ factors involving the argument r/2.
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Typical example continued

One possible solution is to take a second (logarithmic)
difference with respect to n rather than r. This gives a nice
rational function

Q f (r, n)
Q f (r, n− 1)

=
4n(n− 1

2)(n− r + 3
2)

(n− r + 1)(n− r
2)(n− r

2 + 1)
.

However, it is no longer easy to work backwards and find the
desired Gamma product. The difficulty is that we need to know
the f (r, n) on the diagonal r = n + 1 (more generally,
r = 2n/α+ χ[δ = 0]) or asymptotically as n→∞. See the
picture on the next slide.
Both approaches are possible, but lead to complicated results
which are difficult to simplify to give the desired Gamma
product.
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Recursions involving n and r
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Typical example continued

Another idea is to consider the “cross ratio”

f (r, n)
f (r − 1, n)

f (r − 3, n)
f (r − 2, n)

=
( r

2 − 1)2(n− r
2 + 1)2(n− r + 2)2

(n− r + 3
2)2

,

where the subscripts denote ascending factorials.
This works (in fact it was our original method) but it is difficult to
go back from the cross ratio to the desired Gamma product. A
straightforward approach leads to a product with several
occurrences of dr/2e and br/2c, but this dependence on the
parity of r is only apparent, not real (the final product is an
analytic function of r and can be written without floor or ceiling
functions).
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More typical example continued
Conceptually simpler is to define f (s, n) := S2,1,0(2s, n) and take
all differences with respect to s. This works, but only gives a
product for S2,1,0(r, n) when r is even. We need to repeat the
process with f (s, n) := S2,1,0(2s + 1, n) to get a product for
S2,1,0(r, n) when r is odd.
The products obtained are over an index ranging from 1 to
s = br/2c. By judicious simplification, using the well-known
“product formula”

Γ(x)Γ(x + 1
2) = 21−2xΓ(2x)Γ(1

2)

where necessary, the products can be converted to products
over an index ranging from 1 to r. With luck they turn out to be
equivalent, so we only need one formula, independent of the
parity of r.
This happens in 9 of the 10 cases – the exception is S1,2,1(r, n).
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The exception

In the exceptional case we get two Gamma products, one for
odd r and one for even r. Using the “floor” and “ceiling”
functions, they may be written in a unified way as:

S1,2,1(r, n) = r!
dr/2e∏
j=1

(2n)! (j− 1)!2

(n− j)! (n− j + 1)!

br/2c∏
j=1

(2n)! (j− 1)! j!
(n− j)!2

.
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Some generalisations and analogues

We mention some generalisations and analogues. They are of
independent interest, and some of the generalisations are
necessary for the known proofs of the primary identities.

I A-generalisations.
I K-generalisations.
I q-analogues.
I Sums over Z + 1

2 .
I Alternating sums.

These classes are not mutually exclusive. We can have
Kq-generalisations, alternating sums over Z + 1

2 , etc.
The next few slides give examples of these
generalisations/analogues.
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A-generalisations

If α = β = 2, 0 ≤ δ ≤ 3, we have identities with an additional
real (or complex) variable x:

∑
−n≤k1,...,kr≤n

∆(k2)2
r∏

j=1

|kj|δ
(

2n
n + kj

)
(x)n−kj (x)n+kj

=
r∏

j=1

j! (j + δ′)! (2n)! (x)j−1 (x)n+j−χ (x + j + r + δ′)n−r+χ

(n− j + χ)! (n− j− χ− δ′)!
,

valid for n ≥ r − χ and all x ∈ R. Here χ := χ[δ = 0] and
δ′ := (δ − 3)/2. The factorials z! are be to interpreted as
Γ(z + 1) if z 6∈ Z (this occurs if δ is even, so δ′ 6∈ Z).
Similar identities exist if α = 1, β = 2, 0 ≤ δ ≤ 1.
Multiplying both sides by x−2n and letting x→∞, we recover
the corresponding primary identities.
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K-generalisations
If β = 2 we have identities with an extra integer variable m
symmetric with n. Consider the case (α, β, δ) = (1, 2, 0).
For m, n, r ∈ Z, m, n ≥ r/2 > 0, we have

∑
k∈Zr

∆(k)2
r∏

j=1

(
2m

m + kj

)(
2n

n + kj

)

=
r∏

j=1

j! (2m)! (2n)! (2m + 2n− 2r + j + 1)!
(2m + j− r)! (2n + j− r)! (m + n + j− r)!2

.

Dividing each side by
(2m

m

)r
, taking the limit as m→∞, and

simplifying, we obtain the primary identity

S1,2,0(r, n) :=
∑
k∈Zr

∆(k)2
r∏

j=1

(
2n

n + kj

)
=

r∏
j=1

22n−2j+2 j! (2n)!
(2n + j− r)!

.
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A-generalisations and K-generalisations
The A-generalisations and K-generalisations appear to be
different, since the former involves an additional real parameter
and the latter involves an additional (symmetric) integer
parameter. However, they appear to exist for the same set of
parameters (α, β, δ). This suggests a hidden connection.
In fact, if we make the change of variables m 7→ −(n + x) in any
one of the K-generalisations, and rewrite the resulting identity
using ascending factorials, we obtain the corresponding
A-generalisation, except that x = −(m + n) is now a
(non-positive) integer.
Consider fixed r, n and m ≥ n. When suitable scaled, each side
of the identity is a polynomial function of degree O(nr) in
x = −(m + n). Since the identity holds for infinitely many x
(e.g. all integer x ≤ −2n) it is true for all real (or complex) x.
Thus, the A-generalisations and K-generalisations are
essentially equivalent.
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q-functions
Assume that 0 < q < 1 and m, n are integers such that
0 ≤ m ≤ n. Then the q-shifted factorial, q-binomial coefficient,
q-gamma function and q-factorial are defined by:

(a; q)n :=
n∏

k=1

(1− aqk−1), (a; q)∞ :=
∞∏

k=1

(1− aqk−1) ,[
n
m

]
q

:=
(qn−m+1; q)m

(q; q)m
,

Γq(x) := (1− q)1−x (q; q)∞
(qx; q)∞

,

[n]q! := Γq(n + 1) =
n∏

k=1

1− qk

1− q
.

Exercise. Verify that the last three definitions give sensible
results as q→ 1, e.g. limq→1 Γq(x) = Γ(x).
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Quick introduction to Schur functions

For x = (x1, . . . , xn) and λ = (λ1, λ2, . . .) a partition of length at
most n, the Schur function sλ(x) may be defined by

sλ(x) :=
det1≤i,j≤n(xλj+n−j

i )

det1≤i,j≤n(xn−j
i )

.

The Schur functions form a basis for the ring Λn of symmetric
functions in n variables x1, . . . , xn. They occur in the
representation theory of the symmetric group Sn and
of the general linear group GLn(C).
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Specialisation of Schur functions

The principal specialisation of the Schur function sλ(x) arises
from substituting xj = q j−1, 1 ≤ j ≤ n.
For example, if λ is a partition of length at most n and largest
part at most r, which we write as λ ⊆ (rn), then

sλ(1, q, . . . , qn−1) =

q
P

i≥1(i−1)λi

r∏
i=1

[
n + r − 1
λ′i + r − i

]
q

[
n + r − 1

r − i

]−1

q

∏
1≤i<j≤r

1− qλ
′
i−λ′j+j−i

1− qj−i
.

Here λ′ is the conjugate partition of λ (obtained by reflecting the
Young diagram of λ in the main diagonal).
Another useful specialisation (the odd specialisation) is
xj = q j−1/2, i.e. consider sλ(q1/2, q3/2, . . . , qn−1/2).

Richard Brent Schur functions



q-analogues of the primary identities

Seven of the ten primary identities have q-analogues, in the
sense that there are identities involving q which give the
corresponding primary identity in the limit as q→ 1.
We generally have to divide both sides by a suitable power of
(1− q) before taking the limit, in order to ensure that the limit is
finite.
The three exceptions are cases (1, 2, 1), (2, 1, 0), (2, 1, 2), where
we do not know any q-analogue (they may exist – we can not
easily rule them out).
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Example
Let 0 < q < 1, r a positive integer and n an integer or
half-integer such that n ≥ (r − 1)/2. Then we have a
q-analogue of S1,1,0(r, n):

n∑
k1,...,kr=−n

∏
1≤i<j≤r

∣∣1− qki−kj
∣∣ r∏

j=1

q(kj+n−r+j)2/2
[

2n
n + kj

]
q

= (1− q)(
r
2) r!

[r]q1/2 !

r∏
j=1

(−q1/2; q1/2)j (−qj/2+1; q)2n−r

×
r∏

j=1

Γq(1 + 1
2 j)

Γq(3
2)

Γq(2n + 1) Γq(2n− j + 5
2)

Γq(2n− j + 2) Γq(2n− 1
2 j + 2)

.

Dividing both sides by (1− q)(
r
2) and taking the limit as q→ 1

yields the primary identity

S1,1,0(r, n) = 22rn−(r
2)

r∏
j=1

Γ(1 + 1
2 j)

Γ(3
2)

Γ(2n + 1) Γ(2n− j + 5
2)

Γ(2n− j + 2) Γ(2n− 1
2 j + 2)

.
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Sketch of proof (1)

How to prove such a q-analogue? Denote the sum on the left
by fr,n. It can be verified that the summand

∏
1≤i<j≤r

∣∣1− qki−kj
∣∣ r∏

j=1

q(kj+n−r+j)2/2
[

2n
n + kj

]
q

of fr,n is a symmetric function which vanishes unless the ki are
pairwise distinct. Anti-symmetrisation yields

fr,n = r!
∑

n≥k1>···>kr≥−n

∏
1≤i<j≤r

(
1− qki−kj

) r∏
j=1

q(kj+n−r+j)2/2
[

2n
n + kj

]
q
.
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Sketch of proof (2)
We replace n 7→ (n + r − 1)/2 and write fr,(n+r−1)/2 as a sum
over partitions λ ⊆ (rn). Using some well-known results on
Schur functions, this gives

f(n+r−1)/2,r = r!
∏

1≤i<j≤r

(
1− qj−i) r∏

j=1

[
n + r − 1

r − j

]
q

×
∑
λ⊆(rn)

sλ
(
q1/2, q3/2, . . . , qn−1/2).

MacMahon’s formula for the generating function of symmetric
plane partitions that fit in a box of size n× n× r, proved by
Andrews and Macdonald, gives∑

λ⊆(rn)

sλ
(
q1/2, q3/2, . . . , qn−1/2)

=
n∏

j=1

1− qj+(r−1)/2

1− qj−1/2

∏
1≤i<j≤n

1− qr+i+j−1

1− qi+j−1
.
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Sketch of proof (3)

Simplifying the q-products and replacing n 7→ 2n− r + 1 gives

fr,n = r!
(q(r+1)/2; q)2n−r+1

(q1/2; q)2n−r+1

r∏
j=1

(q; q)2n (q; q)j−1 (qj; q2)2n−r+1

(q; q)2
2n−j+1

.

The result now follows, using the definition of the q-gamma
function.
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Kq-generalisations
Some of the K-generalisations have q-analogues, which we call
Kq-generalisations. For example, if α = β = 2, 1 ≤ δ ≤ 3, then

∑
k1,...,kr

q2(r+1
3 )+(δ′+1)(r+1

2 ) ∏
1≤i<j≤r

[kj − ki]2q [ki + kj]2q

×
r∏

j=1

qk2
j−(2j+δ′)kj

(
1 + qkj

2

) ∣∣∣[kj]δq
∣∣∣ [ 2n

n + kj

]
q

[
2m

m + kj

]
q


=

r∏
j=1

[2n]q!
[n− j]q! [n− j− δ′]q!

[2m]q!
[m− j]q! [m− j− δ′]q!

×
r∏

j=1

j [j− 1]q! [j + δ′]q!
[m + n− j− r − δ′]q!

[m + n− j + 1]q!
,

where δ′ := (δ− 3)/2, and we interpret [x]q! as Γq(x + 1) if x 6∈ Z.
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Sums over Z + 1
2

For most of the primary identities there is a corresponding
identity where the parameter n is a half-integer, and we sum
over half-integers kj rather than integers. Thus, the binomial
coefficients

( 2n
n+kj

)
are well-defined.

In the half-integer cases (1, 2, 1) and (2, 2, 3) there is “almost” a
Gamma product (actually a sum of O(r) Gamma products).
For example, in case (1, 2, 1) we have: for all positive
half-integers n and positive integers r ≤ 2n + 1,∑

k1,...,kr∈Z+ 1
2

∆(k)2
r∏

i=1

|ki|
(

2n
n + ki

)

= F × r!
dr/2e∏
i=1

(2n)! (i− 1)!2

(n− i + 1
2)!2

br/2c∏
i=1

(2n)! i!2

(n− i + 1
2)!2

,

F =
br/2c∑
s=0

(n− s + 1)s

(−16)br/2c−s s!

(
2br/2c − 2s
br/2c − s

)2

.
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Alternating sums

We can modify the definition of Sα,β,δ(r, n) by inserting a sign
that gives a “chess-board” pattern in Zr:

Ŝα,β,δ(r, n) :=
∑

k1,...,kr∈Z

∏
1≤i<j≤r

|∆(kα)|β
r∏

j=1

(−1)kj |kj|δ
(

2n
n + kj

)
.

The sums Ŝα,β,δ(r, n) are expressible as Gamma products in the
usual ten cases, even though they are not discrete analogues
of Macdonald-Mehta integrals. This has been proved in five
cases, and is conjectured in the other five cases.
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Example – alternating case (1, 2, 1)

Ŝ1,2,1(r, n) ?= (−1)(
r+1

2 )
r∏

j=1

24n−2r (2n)! j!2 Γ(n− j + 3
2) Γ(n− j + 1

2)
(2n− j)! (2n− j + 1)! Γ(1

2)2
.

The Γ(· · · ) factors in the numerator can be negative if n < r.
More precisely, sgn Γ(k + 1

2) = (−1)min(k,0) for k ∈ Z.
This leads to an interesting pattern of signs in the region r ≤ 2n:

sgn Ŝ1,2,1(r, n) ?=

{
(−1)r(r−1)/2+min(r,n) if r ≤ 2n;
0 otherwise.

Note that (−1)r(r−1)/2 is periodic in r with period 4.
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Asymptotics

The degree of cancellation in the alternating sum Ŝ1,2,1(r, n) can
be quantified by comparison with the corresponding sum
S1,2,1(r, n) which has no negative terms. We find that

Ŝ1,2,1(r, n)
S1,2,1(r, n)

?= Or(n−r(r+1)/2)

as n→∞ with r fixed.
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Proofs

We have proved all of the primary identities and various
generalisations. Our proofs fall into several categories.

I Proofs via enumeration of non-intersecting lattice paths.
I Proofs via determinantal formulas that do not seem to have

a natural interpretation in terms of lattice paths, but follow
from elliptic hypergeometric transformation formulas.

I Proofs via Okada-type formulas for the multiplication of
Schur functions indexed by partitions of rectangular shape.

I Other proofs involving Schur functions.
I will outline how we use non-intersecting lattice paths. The
other categories of proof involve a moderate amount of
technical background and there is not enough time to cover it
today (though I already sketched one proof involving Schur
functions).
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Proofs via non-intersecting lattice paths
We thank Helmut Prodinger for suggesting the use of the
Lindström-Gessel-Viennot theorem. Our method is similar to
Michael Schlosser’s non-intersecting path derivation of elliptic
hypergeometric series.
We start with non-intersecting lattice paths at points
Ai = (0, 2(i− 1)), i = 1, 2, . . . , r, which end at points
Ei = (m + n, 2(i− 1)), i = 1, 2, . . . , r. The paths must cross the
line x = m at some intermediary points Ii = (m, ki),
i = 1, 2, . . . , r.
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Non-intersecting lattice paths continued
By a result of Lindström-Gessel-Viennot, the number of
non-intersecting lattice paths between the Ai’s and the Ii’s
is given by the determinant

det
1≤i,j≤r

((
m

j− 1 + 1
2(m− ki)

))
=

∏
1≤i<j≤r(

1
2(kj − ki))∏r

i=1(1
2(m− ki) + r − 1)!

∏r
i=1(m + i− 1)!∏r
i=1(1

2(m + ki))!
.

The number of non-intersecting lattice paths between the Ii’s
and the Ei’s is given by the same formula with m replaced by n,
and the number of non-intersecting lattice paths between the
Ai’s and the Ei’s is also given by the same formula if we replace
m by m + n and take ki = 2(i− 1), i = 1, 2, . . . , r.
Clearly, the last number equals the product of the two former
numbers summed over all possible choices for the ki’s (they
must have the same parity as m).
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Non-intersecting lattice paths continued
After shifting the ki’s appropriately, we deduce the following
K-generalisation of the primary identity for case (1, 2, 0).
Theorem If m, n, r ∈ Z and m, n ≥ r/2 > 0, then

∑
k∈Zr

∆(k)2
r∏

j=1

(
2m

m + kj

)(
2n

n + kj

)

=
r∏

j=1

j! (2m)! (2n)! (2m + 2n− 2r + j + 1)!
(2m + j− r)! (2n + j− r)! (m + n + j− r)!2

.

If we divide each side of this identity by
(2m

m

)r
and take the limit

as m→∞, we obtain the primary identity

S1,2,0(r, n) =
r∏

j=1

22n−2j+2 (2n)! j!
(2n + 1− j)!

.
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Comments on the use of lattice paths
The proof sketch above can be modified, using suitable
determinant identities (some of which have interpretations in
terms of lattice paths) to prove some other of our primary
identities that involve squares of the Vandermonde, i.e. β = 2.
In some cases we can also prove these identities by a different
method. For example, the case (1, 2, 0) can be proved rather
easily using a known hypergeometric sum (x, y ∈ R)

∑
0≤k1,...,kr≤n

∆(k)2
r∏

i=1

(
n
ki

)
(x)ki(y)n−ki

=
r∏

j=1

j!(n− j + 2)j−1(x)j−1(y)j−1(x + y + j + r − 2)n−r+1 .

Taking x = y here implies the K-generalisation on the previous
slide.
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