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de Launey and Levin

Theorem. [de Launey and Levin (2009), Proposition 2]

Let A be a Hadamard matrix of order n. Then for M chosen
uniformly at random from square order m submatrices of A,

E(det(M)2) =
nm(n
m

)

Questions
1. What about non-Hadamard matrices A ∈ {±1}n×n?
2. de Launey & Levin’s proof is hard: is there a simpler proof?
Answers: Yes to both.

Judy-anne Osborn Motivation



de Launey and Levin

Theorem. [de Launey and Levin (2009), Proposition 2]

Let A be a Hadamard matrix of order n. Then for M chosen
uniformly at random from square order m submatrices of A,

E(det(M)2) =
nm(n
m

)
Questions
1. What about non-Hadamard matrices A ∈ {±1}n×n?

2. de Launey & Levin’s proof is hard: is there a simpler proof?
Answers: Yes to both.

Judy-anne Osborn Motivation



de Launey and Levin

Theorem. [de Launey and Levin (2009), Proposition 2]

Let A be a Hadamard matrix of order n. Then for M chosen
uniformly at random from square order m submatrices of A,

E(det(M)2) =
nm(n
m

)
Questions
1. What about non-Hadamard matrices A ∈ {±1}n×n?
2. de Launey & Levin’s proof is hard: is there a simpler proof?

Answers: Yes to both.

Judy-anne Osborn Motivation



de Launey and Levin

Theorem. [de Launey and Levin (2009), Proposition 2]

Let A be a Hadamard matrix of order n. Then for M chosen
uniformly at random from square order m submatrices of A,

E(det(M)2) =
nm(n
m

)
Questions
1. What about non-Hadamard matrices A ∈ {±1}n×n?
2. de Launey & Levin’s proof is hard: is there a simpler proof?
Answers: Yes to both.

Judy-anne Osborn Motivation



We’ll find useful: the Cauchy-Binet formula (1812)

m

n

matrix B

!
!
is a subset of m!
columns of B

BS

Proof and history: Muir, 1906; or Brualdi & Schneider, 1983.
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Main result

Theorem 1. Let A be a square {±1} matrix of order n ≥ m ≥ 1.
Then for M be chosen uniformly at random from square order
m submatrices of A,

E(det(M)2) ≤ nm(n
m

)

When m > 1, equality holds iff A is a Hadamard matrix.
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Proof: Trivial for m = 1, so assume m ≥ 2

E(det(M)2) =

∑
|rows|=m

∑
|columns|=m det(M)2(n

m

)2 A
M

n

n

=

∑
|rows|=m det(BBT )(n

m

)2 by Cauchy-Binet A
M

n

n
B

≤
∑
|rows|=m nm(n

m

)2
by Hadamard’s inequality, with
equality iff all rows orthogonal

=

(n
m

)
nm(n

m

)2 =
nm(n
m

) Q.E.D.
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Turán and Corollary 1

Theorem (Turán)
Let M be chosen uniformly at random from the set of square
{±1} matrices of order m. Then

E(det(M)2) = m!

Corollary (1, to our Main Theorem, or de Launey & Levin)
Let H be a Hadamard matrix of order n ≥ m > 1. Let M be
chosen uniformly at random from the set of square order m
submatrices of H. Then

E(det(M)2) > m!
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Proof of Corollary 1

Let H be Hadamard, M be a square submatrix of order m > 1
chosen uniformly at random. Then by Theorem 1,

E(det(M)2) =
nm(n
m

)

=
nmm!

n(n − 1)(n − 2)...(n − (m − 1))

> m!

Q.E.D.
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Example:

H  =12

Let M be a submatrix of order 2 chosen uniformly at random in
H12. Then

E(det(M)2) = 2.181818... > 2
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Corollary 2

Definition
Z (m,A) = |zero minors of order m of {±1} matrix A|

Corollary (2, to our Main Theorem)
Let A be a square {±1} matrix of order n ≥ m > 1. Then

Z (m,A) ≥
(

n
m

)2

− 4
(

n
m

)(n
4

)m

When m ≤ 3, equality occurs iff A is a Hadamard matrix.

Proof - see the paper
Example: Z (2,H12) = 1980, from 4356 submatrices of order 2.
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Explicitly for H12

m
∣∣minor

2m−1

∣∣frequency

H  =121: 1144

2: 01980, 12376

3: 024640, 123760

4: 0109890, 1126720, 28415

5: 0205920, 1318384, 295040, 37920

6: 0150480, 1348480, 2239184, 376032, 431680, 57920

7: 0205920, 3318384, 695040, 97920

8: 0109890, 9126720, 188415

9: 024640, 2723760

10: 01980, 812376

11: 243144

12: 14581

NB: North-south symmetry follows from Szöllősi, 2010.
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