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Abstract
Some multipoint iterative methods without memory, for approximating

simple zeros of functions of one variable, are described. For m > 0, n g 0, and
k satisfying m + 1 g k > 0, there exist methods which, for each iteration, use
one evaluation of /,/',•••,/'"", followed by n evaluations of /"", and have
order of convergence m +2n + 1. In particular, there are methods of order
2(n + I) which use one function evaluation and n + I derivative evaluations
per iteration. These methods naturally generalize the known cases n = 0
(Newton's method) and n = 1 (Jarratt's fourth-order method), and are useful if
derivative evaluations are less expensive than function evaluations. To
establish the order of convergence of the methods we prove some results,
which may be of independent interest, on orthogonal and "almost orthogonal"
polynomials. Explicit, nonlinear, Runge-Kutta methods for the solution of a
special class of ordinary differential equations may be derived from the
methods for finding zeros of functions. The theoretical results are illustrated
by several numerical examples.

1. Introduction

Traub [32] and Jarratt [13] have considered multipoint iterative methods
for approximating a simple zero of a function / which is more difficult to
evaluate than its derivative / ' . (Examples of such functions are given in
Sections 8 and 9.) Jarratt improved Traub's results by giving a fourth-order
method which, for each iteration, uses one evaluation of / and two of / ' , and is
"without memory" in the sense of Traub [32]. This is rather surprising, for the
obvious method [evaluating f{x0) and /'(JC0), computing the Newton-Raphson
approximation xo = x0 — f(xo)lf'(xo), evaluating f'(x0), and taking x, as the
appropriate zero of the quadratic Q(x) which satisfies Q(xo) = f(x0), Q'(xo) =
f'(x0), and Q'(xo) = f'(xo)] has order three rather than four. Jarratt showed that
order four is attainable if we evaluate / '((X0 + 2JC0)/3) instead of f'(x0). For
methods with two function evaluations and one derivative evaluation per
iteration the results are less surprising: Ostrowski [29] showed that order four
is attainable by evaluating f(x0), f'(x0), and f(x0).
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In this paper we show that Jarratt's result can be generalized in a natural
way: for all v > 0, there are multipoint iterative methods (without memory)
which use one function evaluation and v derivative evaluations per iteration,
and have order 2v. Jarratt's methods is an example with v = 2, but the methods
with v > 2 appear to be new. Our sixth-order methods (v = 3) are more efficient
than the fifth-order method of Jarratt [14].

Jarratt's results can also be extended to methods using higher derivatives.
Our main result (Theorem 4.1) is that, for all m >0, n SO and k satisfying
m + l ^ ) c > 0 , there are methods of order m + In + 1 which use, for each
iteration, one evaluation of /,/',•• •,/""' (at the same point), followed by n
evaluations of /"" (at distinct points). These methods are described in Section 2,
and the order of convergence is established in Section 4. The theoretical
efficiencies of the different methods are compared in Section 5.

Special cases of practical interest (k g 3, n g 3) are given explicitly in
Section 6. Fortran subprograms for the methods of order four, six and eight
(with k = m = 1 and n = 1, 2 and 3) are given in Brent [5], [6]. Numerical results
for these methods are summarized in Section 9, and some possible extensions
are mentioned in Section 7.

Since our methods are useful for functions whose derivatives can be
evaluated easily, it is not surprising that they are related to certain Runge-Kutta
methods for solving a restricted class of ordinary differential equations. This is
discussed in Section 8, and numerical comparisons with well-known Runge-
Kutta methods are included in Section 9.

The theory of most of our zero-finding methods depends on the theory of
orthogonal and "almost orthogonal" polynomials. We assume several well-
known properties of orthogonal polynomials, but some nonstandard results
which we need later are proved in Section 3. These results, which are related to
those of Micchelli and Rivlin [24], may be of independent interest.

2. The methods

Let k, m and n be integers satisfying m > 0, n § 0 , m + l g J t > 0 , and let /
be a sufficiently smooth function of one real variable with a simple zero f. (It is
sufficient for / to have a continuous (m + 2n + l)-th derivative in a neighbour-
hood of £.) We describe two classes of methods for improving an initial
approximation x0 to £, using evaluations of f(x0), f'(x0),-- -,/<m)Uo) and /"'yO,
•••,/""(yn), where the points y,,-- -,yn will be specified below. After generating
an improved approximation x,,x0 may be replaced by x, and a new approxima-
tion x2 generated in the same way, etc. Since all the methods considered are
stationary and without memory, it is sufficient to describe how Xi is generated
from Xo..
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Methods in the first class, B(k,m,n), have order min(m +2n + 1,2m +n+ 1).
The second class, C(k,m,n), is a modification of B(k,m,n), and metods in
C(k,m,n) have order m +2n + 1.

For our purposes it is sufficient to say that a method has order of
convergencep > 1 if p is the greatest number such that JC, — C = O(\xr0 — £\") for
all starting values JC0 sufficiently close to the simple zero £. (More general
definitions are given in Brent [4], [6] and Ortega and Rheinboldt [26].) The order
is an integer for all methods considered below.

For p + 1 >q >0 , the Jacobi polynomial Gn(p,q,x) is the monic polyno-
mial, of degree n, which is orthogonal to all polynomials of degree less than n
with respect to the weight function (\ - x)"'"x"~l on the interval [0,1]. (Our
notation follows that of Abramowitz and Stegun [1].) Thus G0(p,q,x) = 1,
G,(p,q,x) = x - ql{p + 1), G2{p,q,x) = x2 - 2(q + l)jc/(p + 3) + q(q + 1)/
«p+2)(p+3)) , etc.

The class B(k,m,n)

We say that a method belongs to B(k,m,n) if an iteration generates a new
approximation x, to £, from an old approximation x0, in the following way:

1. Evaluate fV = fO)(xo) for i = 0,1, • • •, m.
2. If / r = 0 set x, = x0 and stop, otherwise set S = | /H/o"| .
3. Let 2, be an approximate zero of the polynomial

Pi(x) = 2 (*-*>)'/&'Vi!,

satisfying the conditions

(2.1)

and

(2.2)

4. Evaluate ft) = fk\yi), where y, = xo + a,(z, -*«) , for i = 1, • • - ,« . Here
a,,-,an denote the zeros of Gn(m + \,m +2-k,x) in some fixed order.

5. Let pn+, be the polynomial of degree at most m+n, satisfying
Pnti(jco) = /o" for / = 0 , - - , m and p(fl,(y,) = /<

i
t) for i = 1,•••,«. Let x, be an

approximate zero of pn +, , satisfying

(2.3)

and

p.+,(x,) = O ( 8 ' ) , (2.4)

where p = min (m + In + 1, 2m + « + 1).
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Comments on B(k,m,n)

We do not specify how z, is computed so long as (2.1) and (2.2) hold. One
method is to perform [Iog2(m + 1)1-1 iterations of Newton's method, starting
from the approximate zero Jo-/?"//" ' . Similar remarks apply for the computa-
tion of x,.

Pi(x) is the Taylor polynomial agreeing with f(x0),- • •,fir"''(x0). Conditions
(2.1) and (2.3) ensure that z, and Xi are approximations to the correct zeros of
Pi and pn+, respectively. If x0 is sufficiently close to £ then Newton's method
gives the approximation x0 = x0 - fTlfo' satisfying xo = £ + O((x0- £)2), but
| jco-xo | = 8, so we may assume that

8/2 g | ; to -£ 1^28. (2.5)

Thus, any terms O(8') are equivalent to terms O(\x0-(|').
Since f is a simple zero of /, (2.2) is equivalent to z, = £, + O(8m+l), where

£, is the zero of p, closest to £. By the theory of Hermite interpolation (Traub
[32]), £, = C + O(8m+1), so (2.2) is equivalent to

z, = C + O(Sm+1). (2.6)

THEOREM 2.1. If M is in B(k,m,n) and x0 is sufficiently close to a simple
zero C, then steps 1 to 5 of M are well-defined, and

| o - £ | P ) , (2.7)

where ,

p = min(m +2n + l,2m +n + 1). (2.8)

SKETCH OF PROOF. We shall not give the proof of Theorem 2.1 in detail,
since it is similar to (but easier than) the proof of Theorem 4.1. We shall,
however, indicate how the order p given by (2.8) arises.

From the definition of pn+i (step 5 above) and the Taylor series expansion
of / about x0, it is easy to show that

+1) (2.9)

and

+n) (2.10)

for all x in the region of interest (say [xo~ 48, xo + 48] in view of (2.5)). Using

proper t ies of the Jacobi polynomial Gn(m + l,m +2-k,x), as in L e m m a 4.3

below, there is a kind of " s u p e r c o n v e r g e n c e " phenomenon (de Boor and

Swar tz [2], O s b o r n e [28]) at z, :
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P«+i(Zi) = f(z,) + O(6m+2n+l), (2.11)

in contrast to (2.9).
Let xi be the exact zero of pn+i near JCi. Using (2.6), (2.9) and (2.10), we

have

+'). (2.12)

Now

\f(x,)\ = \pn+l(xl)-f(.xl)\
(2.13)

for some £ between x, and z,. Using (2.10), (2.11) and (2.12), this gives

/(*,) = O(6m+2n+1) + O(82m+n+') = 0 ( 8 " ) ,

and thus (as f'(x) is bounded away from zero near £)

Since (2.3) and (2.4) ensure that JC, = JC, + O ( S P ) , the result (2.7) follows.

The class C(k,m,n)
Methods in the class B(k,m,n) are unsatisfactory if m < n, since their

order is 2m + n + 1, less than the order m + 2n + 1 which might be expected
from (2.11). The higher order is attainable if zx is updated and the zeros
a , , - •,<*„ are perturbed suitably after each evaluation of /<fc)(y,-), so the second
term in (2.13) is reduced to O(5m+2n+l) or less, without substantially increasing
the first term. We say that a method belongs to C(k,m,n) if an iteration
generates a new approximation x, to £, from an old approximation x0, in the
following way:

1. Evaluate /!," = f"(x0) for i = 0,1,• • -,m.
2. If /g" = 0 set x, = x0 and stop, otherwise set 5 = |/J>°7/o"|.
3. For i = 1,2, ••-,« do steps 4 to 7.
4. Let p, be the polynomial of degree at most m+i — l, satisfying

p!"(*o) = /o} for / = 0,1,- • -,m and p!-*'^) = /)*' for / = 1, • • • , / - 1. Let z, be an
approximate zero of p,-, satisfying the conditions

z , = x 0 + O ( 8 ) (2.14)

and

+ l ) . (2.15)
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5. If i > 1, compute

«.j = «i-u (Z'-i ~ xo)l(z, - x0) (2.16)

for / = 1, • • •, i — 1.
6. Let q, be the monic polynomial of degree n + I - i, satisfying

[ P(x)q,(x)xmrl-k(l-xf-1 (jjix-a^jdx =0 (2.17)

for all polynomials P of degree n — i. Let a,,, be an approximate zero of q,, satis-
fying

ai, = ai + O(S) (2.18)

and

q,(a,,,) = O(8'n+'-'). (2.19)

7. Evaluate f\k) = f(k)(y,), where

y, =Xo+a,-.1(z1--JCo). (2.20)

8. Letp n + 1 be the polynomial, of degree at most m + n, satisfying Pnii{x0) =
/o" for i = 0, •• -,m and plf+^y,) = /!k) for / = 1,- • -,n. Let x, be an approximate
zero of pn+i, satisfying (2.3) and

+ 2 " + 1 ) . (2.21)

Comments on C(k,m,n)

It is easy to see that the class C(k, m, n) is the same as B (k, m, n) if and only
if n = 0 or 1. Using flog2(m + 1)1-1 iterations, z, could be computed by New-
ton's method from the approximation x0 — fo"lfo" if i = 1, and one iteration from
the approximation z,_, if / > 1. Similarly for x,.

The existence and uniqueness of q, (for x0 sufficiently close to £) is shown
constructively below. In the cases of practical interest, explicit formulae can be
given for a,,,, so that there is no need to construct q, (see (6.5), (6.9), and (6.10)
for some examples).

From (2.16) and (2.20),

y, =xo + a,Azi-xo) (2.22)

for/ = i, i + 1,- -,n, so the effect of replacing the approximation z, to £ by the
approximation z, is the same as if we had used a slightly perturbed node a,,, in
place of oti,i.
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Before proving that a method in C(k,m,n) has order m +2n + 1 (Theorem
4.1), we need some results on orthogonal polynomials. The next two sections
may be omitted without loss of continuity.

3. Some results on orthogonal polynomials

Theorem 3.1 is a generalization of the well-known results that zeros of
polynomials orthogonal with respect to a positive weight function interlace,
and that the matrix A given by (3.1) is nonsingular (by unisolvency, this is true
for any distinct a,,---,an, not necessarily zeros of Pn).

THEOREM 3.1. Let Po, • • •, Pn be polynomials of degree 0, •• -,n, orthogonal
with respect to the weight function w(x) on [a,b]. If w(x) is positive a.e. on
[a,b], and «,,•••,«„ are the zeros of Pn in any order, then all leading principal
minors of

A =
••• Pn-i(an)

P o ( a , ) • • • P o ( a ^ )

are nonsingular.

PROOF. Since w is positive, there is a three-term recurrence relation of
the form

P,(x) = (A,x + B,)P,+1(x) + QPi+2(x) (3.2)

for / = 0 , l , - - , and A,^0 (see Isaacson and Keller ([12], Ch. 5) or Szego
([31], Thm. 3.2.1)). Let x be a zero of Pn. Applying (3.2) with j = n-2,
n — 3, • • -,n — p — 1 gives

Pn-p-1(jc) = <k,(x)PB-1(;c) (3.3)

for p = 0,1,- -,n - 1, where <pn.P(x) is a polynomial of degree p in x, with
leading term An-2- • • An-P-\XP.

Suppose 0 < s =n, and let As be the leading principal minor of order s of
A. Using (3.3) with x = a,,- • -,as, we have

(3.4)
<f>n.s-i(a,)

By performing row operations and using the observation above on the leading
term <(>„,„, this gives

det(A.) = (fl PH-i(a,)) ( P / n t r 1 ) det(VJ, (3.5)
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a,

(3.6)

is a Vandermonde matrix. Since the a, are distinct and not zeros of Pn-\, the
result follows from (3.5).

The idea of the following theorem is most easily seen by considering the
special case /3, = a, (i = l,---,n) first. Then d0 = • • • = dn-\ = 0,(3.11) says that
y,,- • -,ys are slight perturbations of «,,• • -,as, and the theorem states that there
exist slight perturbations ys+i,---,yn of as+i,-••,<*„, such that ri",,,(;c --y,) is
exactly orthogonal to polynomials of degree less than n - s, and approximately
orthogonal to polynomials of degree n- s, •••,n — \. We state the more
complicated result (with /3 ,,•••, /3n slight perturbations of a ,,-••,«„) because in
Section 4 we shall apply Theorem 3.2 several times, and the yi, - -- ,yn of one
application will be (close to) the /31, - - -, /3« of the next application.

THEOREM 3.2. Let Po,--,Pn be orthonormal polynomials (of degree
0,••• ,n) with respect to the positive weight function w on [a,b], and let
a,,---,an be the zeros of Pn in some fixed order. Suppose 0 < s < n, 8
sufficiently small, and B,,--,Bn satisfy

B, - a, | g 5 (3.7)

for i = 1, ••-,n. Suppose that there is a positive constant c,, and numbers
§,,-• -,5s, such that

for 0g/<n-s,
for n -s s i <n,

(3.8)

(3.9)

and

where

d. = c, - ft)) w (x )dx. (3.10)
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Finally, suppose y\,---,y, satisfy

(3.11)

for i = 1,- • -,s. Then there is a positive constant c2 and unique ys+i,- • -,yn such
that

y. =p, + O(S.) (3.12)

for ( = s + 1,- • -,n, and

( 0 for 0Si<n-s,
O(8n-i) for n-s ^i <n,

1 for i = n,
(3.13)

[ 1 for i = n,

where

e, = c2 Pl(x)[[\(x - y,) ) w(x)dx. (3.14)

PROOF. Let

and q2(x) = q,(x) + 'Z"li fj.iP,(x), where the constants /a, = O(8S) will be deter-
mined below. From (3.11),

<j,(x) = c , f l ( x - / 3 , ) + O ( S s ) f o r all x in [a,b],

i = l

so from (3.8) to (3.10) we have

C O(SS) for 0 s i < n - s , j
/, =1 O(8n-,) for n - j g i < B , (3.15)

[ l + O(SJ for i=n, J
where

Let

/, = f P,(x)q,(x)w{x)dx. (3.16)
Ja

g, = | P,(x)q2(:c)w(x)dx. (3.17)

Since the Pi are orthonormal, (3.16) and (3.17) give

gi =/.+/*« (3.18)

for i = 0, • • •, n - 1. Set /u,, = - /f for i = 0, • • •, n - s - 1.
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From Wilkinson ([33], Sec. 2.7), the zeros y", of q2 are analytic functions of
Hn-,,-••,&•>-!, g i v e n b y

1 z § y q v (3.19)
J=0 /-n-s

(i = 1, • • - , « ) , p rovided /*, = O(SS) f o r ; = n - s, • • - , « - 1. By (3.7), (3.8), (3.11)

and T h e o r e m 3.1, the matrix

rPn- , (y5) ••• Pn-,(y'.r
A= E :

is nonsingular for 5 sufficiently small, so there exist /u,n-s, •• -,(in-x (all O(8,))
such that -y','=y', for i = \,--,s. Hence (by definition of y'i), 7, = 7'/ for
1 = 1,- • -,s. Take y, = y'/ for i = s + ],-••,n also, so

<?2(*) = c , n ( x - y , ) . (3.20)

By (3.19) and the construction of /LA, and y,, (3.12) holds. From (3.18) and the
choice of (JL0,• • -,/u,n-s-i, g, = 0 for / < n - s . From (3.8), (3.15) and (3.18),
g, = O(Sn-,)for n - s S / < n, andgn = 1 + O(8S). Taking c2 = c,/gn and collect-
ing these results, existence follows. Uniqueness (subject to (3.12)) follows from
(3.19) and the nonsingularity of A.

The following corollary gives an extension to "almost orthogonal" polyno-
mials of a classical result for orthogonal polynomials (the case 8 = 0,y, = a,).
The proof follows that of the classical result up to equation (3.23), and then
uses Theorem 3.2.

COROLLARY 3.1. Under the conditions of Theorem 3.2, there exist
weights Wj,---,wn such that

tw,y\=\ x'w{x)dx+rh (3.21)
where '"' J

0 for / = 0 , l , - - - , 2 n - ( s + l

O(S 2 n - , ) for j = 2 n -s,---,2n - 1 .

PROOF. We may assume 8 sufficiently small that y,,- • -,yn are distinct (in
view of (3.7), (3.11) and (3.12)). For any function / we have the Lagrange
interpolation formula

( f ) - - ; y n , x ] , (3.22)
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where

Let

Pw, = L,(x)w(x)dx,

and integrate both sides of (3.22), with f(x) = xi. Thus (3.21) holds if

r, = -j'{f\(x-yl)
>jflyu--;yn,x]w(x)dx. (3.23)

Since /[yi, • • -,yn,x] vanishes for j < n, and is a polynomial of degree j — n for
j ̂  n, the result follows by expanding this polynomial as a sum S';2V,P,(JC)

(where y, = O(l)) and applying Theorem 3.2.

4. Order of convergence

Before proving the main result (Theorem 4.1) we need some lemmas. The
notation of Section 2 is assumed.

LEMMA 4.1. If M is in C(k,m,n) and x0 is sufficiently close to the simple
zero f, then M is well-defined. If, in addition, x 0 ^ I, then (4.1) to (4.5) hold:

8l2^\xo-£\^28; (4.1)

z, = £ + O(8m+1) (4.2)

for i = 1, ••- ,«; <J, exists, is unique, and has a zero

a',., = a, + O(8) (4.3)

for j = 1, • • • ,« ;

a , J = o , - , J + 0 ( S " + | - 2 ) (4.4)

for 0 < / < i g n; and

+ n + l ) . (4.5)

PROOF. The exceptional case x0 = C is covered by step 2 of M(k,m,n), so
we may assume x 0 ^ £• The inequality (4.1) follows in the same way as (2.5).

(4.2) to (4.4) clearly hold for / = 1. We shall assume that they hold for i < t
(where 1 < t ^ n) and prove that they hold for / = t.

p, is a well-defined polynomial of degree m+t-l, and the theory
of polynomial interpolation (Traub [32]) shows that there is a zero
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£,=£ + 0(8m+t) of p,. Conditions (2.14) and (2.15) ensure that
2, = £ + O(Sm+l), so (4.2) with i = t follows.

From (2.16),
/ , , z,-i-z,\

a,j =»a,-ul 1 + - —I
\ Zt — Xo I

for 0 < / < t. Since

| 2,-, - Z, | S |Z,-, - f | + | 2, - C I = O(Sm+-')

and (using (4.1))

\z,-xo\^\xo-t\-\zt-£\

for 8 sufficiently small, (4.4) with / = t follows.
From (4.4) with i =t,t- 1, •••,/ + 1, we have a,, = aM + O(8m+'~'), but (by

the inductive hypothesis) a,,, = a, +0(8), so a,., = at•, + O(8) for; = 1,•••,(- 1.
Thus, Theorem 3.2 shows that q, exists, is unique, and has a zero a',,, =
a, + O(8) which a,., approximates. This completes the proof of (4.2) to (4.4), by
induction on /. Finally, (4.5) follows in the same way as (4.2).

LEMMA 4.2. If a method in C(k,m,n) is applied with x0 sufficiently
close to £, but x0 / f, then there exist weights w,, • • •, wn (all O(l)) such that

(4.6)

for j = 0,1,- • -,2n - 1.

PROOF. The first time step 6 is performed, we have i = l,qt(x) =
Gn(m + \,m +2-k,x) and, from (2.18) and (2.19), a,,, = a, + O(8m). For
subsequent executions of step 6 we have / > 1 and, from (2.22) and Lemma 4.1,
it is easy to show (by induction on i) that Theorem 3.2 is applicable (with
s = i-l,S, =0(8m + ; - ' ) for j = l , - - - , i - l , w(ac) = (l-x)*"'xm+I"k, etc.). After
the n-th execution of step 6, Corollary 3.1 (with s = n — 1) shows that there
exist weights w, such that

(4.7)
f 0 if O g j S n , 1
1 O(Sm+2"-'-') if n<j<2n.)

Since m + 2n — j — 1 § 2n - j , and the integral on the left side of (4.7) is equal to
(/ + m + 1 - k) \(k - 1) !/(j + m + 1)!, the result follows. (In fact (4.7) is stronger
than (4.6), but (4.6) is sufficient for later applications.)
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LEMMA 4.3. Suppose K constant, P(x) a polynomial, of degree at most
m + In, with coefficients bounded by K, satisfying P(0) = • • • = P<m)(0) = 0 and
P( l c )(/31e)=-=P"°(/3n£) = O, where

2 H\0i = (j +m +\-k)\(k -l)\l(j + m + 1 ) ! + O ( e 2 " " ' ) (4.8)

for y = 0 , l , • • • , 2 / 1 - 1 . Then P(e) = O(em+2"+1).

PROOF. Let

P ( x ) = 2 a,xi+m+\ so p<k>(/3,e) = 0 gives
y-o

Multiplying each side of (4.9) by wfi^'"1'' ek/(/c - 1)! and summing over
/ = \,--,n gives

( f wMJ + rn+ 1)1 \_f wMJ + rn+ 1)1

Thus, the result follows from (4.8).

LEMMA 4.4. If n > 0, x0 is sufficiently close to the simple zero £ of /, and
M in C(k,m,n) is applied, then (assuming

+2"+1) (4.10)

and

sup |/'(£)-p:,+1(£)| = O(S'"+n). (4.11)

PROOF. Let f(x) = /,(*) + /2(x), where

fi(x) = '"'Z (x -XoYf'ixoVi !• (4.12)

For / = 1,2, let r,(x) be the polynomial, of degree at most m + n, satisfying
r i 'Vo) = /V'(Xo) for / =0 , • • - , / ? ! andr!< o(yj) = / : k ) (y , ) fo r / = 1,•••,«, where y, is
defined by (2.20). Thus, from the definition of pn+,,

pn +i(x) = r,(x) + r 2 (x) . (4.13)

Since P ( x ) = / , ( x o + x ) - r , ( x o + x) is a polynomial of degree at most
m + 2n in x, and the conditions of Lemma 4.3 are satisfied with e = zn - x0 =
O(5) , j8ii = an.ii (i = 1,•••,«), and w, given by Lemma 4.2, we have P ( e ) =
O(e m + 2 " + 1), so
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/,(2n) = r,(2n) + O(5m + 2"+ 1) . (4.14)

We may write r2(x) = 2,m=o"a,,(x -x0)', and, from (4.12) and the definitions

of f2 and r2, we have ao= ••• = am = 0. The coefficients am+\,- • -,am+n are

determined by the linear equations

m +n
j — k i • * I / • i \ i k r(k > • \ / A < r\

£, an,i eu,t : /u -K)\ = e ]i Kyi) C*-^>

for i = l,--,n. From (4.12) and the definition of f2, the right hand side of (4.15)
is O(5m + 2 n + 1), and «„,„•••,«,„ are distinct, so e'a, = O(Sm+2n+l), for / =
m + l , - - , m +n . Thus r2(zn) = O(Sm+2"+l), and from (4.14) we have

= O(8m+2"+1),

so (4.10) is established. The proof of (4.11) is straightforward, and does not use
the special properties of «„,!,• • •,<*„,„ (except for their being distinct), so is
omitted.

Using Lemmas 4.1 and 4.4 it is easy to prove our main result:

THEOREM 4.1. If x0 is sufficiently close to the simple zero £, then a method
in C(k,m,n) is defined, and JC, = f + O(\x0-£\m+2n+l).

PROOF. Suppose n > 0, for otherwise the result follows from Lemma 4.1.
From equations (4.2) and (4.5) of Lemma 4.1, we have

x, = zn+O(Sm+n). (4.16)

Now

for some £ between x, and zn. From (2.21), Lemma 4.4 and (4.16), this gives
/(JCI) = O(5m+2n+1). Since £ is a simple zero of /, we may suppose that f'(x) is
bounded away from zero in the region of interest, so x, = £ + O(Sm+2n+l). The
result now follows from (4.1).

5. Theoretical comparison of various methods

If an iterative method of order p > 1 requires w units of work per iteration,
its efficiency is

(5.1)
w
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The motivation for this definition (and a more general definition) is given in
Brent [4]. In this section we compare the efficiencies of methods in the classes
C(l , l ,n) for n = 0,1,- • •. The extension to methods in C(k,m,n) is straightfor-
ward.

Theorem 4.1 shows that a method Mn in C(\,l,n) has order at least
2(n + 1), and we shall assume that the order is exactly 2(n + 1) (this is usually
true: see Section 6). If the work for one evaluation of f(x) is w(f) and the
overhead for one iteration is wo(n), then the total work per iteration is

w = w(f) + (n + \)w(f')+wo(n),

so (from (5.1)) the efficiency is

En =log[2(n + l)]/[w(/) + (n + l)w(/')+w0(/i)]. (5.2)

We expect wo(n) to be an increasing function of n, and it can be estimated for
any particular implementation of Mn. For the sake of simplicity, we shall
assume wo(n) = 0 below. This is a reasonable approximation if n is small and /
is difficult to evaluate (see also Kung and Traub [21], [22]).

With our simplifying assumption, (5.2) gives

EJEo = (1 + r) (1 + Iog2(n + l))/(n + 1 + r), (5.3)

where r = w(j)lw(f') and Eo is the efficiency of Newton's method. Some
values of EnIE0 are given in Table 5.1.

TABLE 5.1

En/£0for various n and r = w(f)/w(f')

0.0 1.000 0.862 0.750 0.664 0.597

0.5
1.0

2.0

5.0

10.0
CO

1.200
1.333

1.500

1.714

1.833

2.000

1.108
1.292

1.551

1.939

2.187

2.585

1.000
1.200

1.500

2.000

2.357

3.000

0.906
1.107

1.424

1.993

2.436

3.322

0.827
1.024

1.344

1.955

2.465

3.585

From (5.3) it may be shown that Mn is the optimal method (from
M0,M,,---) if

<f>(n)<r <<t>(n + 1),
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where

•<«>-=»>-
Thus, the optimal values of n are

/ 1 if 0 < r < 1.419,
2 if 1.419<r< 3.228,

n = 3 if 3 .228<r< 5.319,
4 if 5 .319<r< 7.629,
5 if 7 .629<r< 10.120, etc.

In particular, Jarratt's method (n = 1) is always more efficient than Newton's
method (n = 0), but it is less efficient than one of our sixth-order methods
(n = 2) if w(f) > 1.419w(/'), etc.

It is interesting to compare our methods with methods which use only
function evaluations. There are multipoint methods without memory which use
v + 1 function evaluations per iteration, and have order 2". This order is known
to be optimal for v = 1 (Kung and Traub [20], [22]) and v = 2 (Wozniakowski
[36]), and is conjectured to be optimal for all v g 1. Care has to be taken in
phrasing the conjecture to avoid Winograd's encoding trick: one way is to
suitably restrict the class of allowable iteration functions (see Brent [6]). Brent,
Winograd and Wolfe [8] have shown that the optimal order is 2"+l if memory is
permitted. In contrast to these results, an obvious conjecture is that methods
(without memory) which use one function evaluation and v derivative evalua-
tions per iteration have order at most 2v. Kung and Traub [22] proved this for
v = 1, and it has recently been proved for all v s l. In fact, Wozniakowski [37]
has shown that the methods in C(k,m,n) have optimal order in a wide class of
methods (without memory) using the same information about / at each
iteration. This result was obtained independently by Meersman [39].

Our methods are only of practical interest for small v (say v = n + 1 S 4),
and some such methods are described in detail in the next section. Related
methods with memory are given by King [17], [18].

6. Some methods of practical interest

In this section we use the notation of Section 2 as far as possible, and
temporary variables used in the description below are denoted A,, t,, vh a, b, c,
etc. Specific methods in C(k,m,n) (or in B(k, m,n) if m g n ) are referred to as
"method kmna", "method kmnb", etc. If a method has order p, the asymptotic
error constant (if it exists) is

.-£)"• (6.1)
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(It is usual to put absolute value signs in (6.1), but we omit them since p is an
integer for all the methods considered below.) Asymptotic error constants may
be obtained, in terms of /'(£), /"(£), etc., by substituting the Taylor series
expansion of f(x) about £ in the definition of the method, as described in Brent
[6]. The error constants for the methods considered below can be expressed as
sums of products of the form cnf.2<£.r', where (from Traub [32])

£ (i - l)r, = p - 1 (6.2)
i=2

and

Fourth-order methods

If m = m = 1 and k = 1 or 2, the relevant Jacobi polynomial is
G,(2,3-k,x) = x-(l-k/3), so

a, = l-kl3. (6.4)

Some fourth-order methods are summarized in Table 6.1. In all cases a, is
given by (6.4), A, = - /T/Zo", and /{*' = /<k>(x0 + a1A1). In some cases the
auxiliary variable

A 3 ( / , n ) / ( 6 / , - 2 / i , " ) if * = 1,
A2= |

I I/F
))] if fc=2

is used. The formulae for x, and the asymptotic error constants K are given in
the table. The only difference between the methods with it = 1 is in the
approximation used for the zero of the interpolating quadratic

-l(fW _ f(l>\
P*(X ) = ff> + fo'Xx - Xo) + 3 ( / ' 4 A |

/ 0 } (X - Xof.

Method Ilia is Jarratt's method [13], method 111b uses the approxi-
mation xo-p2(xo)lp2{x~o) where fo = xo + A,, method 111c uses the (better)
approximation x0-P2(xo)lp2(xo)-{pl(xo)p2(xo)l(P2(xo))\ and method 11 Id
solves the quadratic exactly if it has real roots. Similarly, the difference
between the methods with k = 2 is in the approximation used for the zero of the
interpolating quadratic /g"+ /{,"(* -xo) + hf?{x -xof.
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TABLE 6.1

Some fourth-order methods

Method

Il ia
111b
111c
11 Id
211a
211b

k

1
1
1
1
2
2

a,

2/3
2/3
2/3
2/3
1/3
1/3

X\ XQ

A,(5 + 3(/i,''//<,»)2)/8
A,(l-A2)

A,(l-A2(l+Al))
2A,/{l + [max(0,3f1

17/!,1>-2)]'}

A,(l-A2)
A,(l-A2(l+A!))

K

*J9- ^ , + 13*5/9

<t>J9-<l>2<t>, + <l>l
<t>J9 - <t>2<t>i

<t>J9-4>2<t>,

<l>J3-<l>2<t>, + <t>l
(f>J3 — <f>2<t>3

Sixth-order methods

If k = m = I, n = 2, the relevant Jacobi polynomial is G2(2,2,x) =
x 2 - 6x/5 + 3/10, with zeros (6±V6)/10.

METHOD 112a.

a,=(6-V6)/10,A,= - / H / ^ / S ' W U o + aiA,),
A2 = |A,(/(,1> + (2a1- D/n/C/V' + Ca, - 1 )/&"), oM = o,A,/A2,

M = (3-4a2.i)/(4-6a2.,), (6.5)

2 l 2 - a 2 , , ) , u2 = ( f 2 - t , ) / ( a 2 , 2 - a 2 t i ) ,

A, = /E,0) + /i»A2 + (3w, + 2v2)All6,

and

x, = xo + A2-A,/A4-iAi«i/Aj. (6.6)

The error constant is

K = <^/100 + (l-5a,)<M>5/10 + (3a,-2)<M>4/5. (6.7)

METHOD 112b. This method is the same as 112a, except a, = (6 + V6)/10.
The error constant is still given by (6.7).
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Comments on methods 112a and 112b

Most of the equations above are obtained in a straightforward manner
from the general description in Section 2. We should explain equation (6.5).
From (2.17) we need a linear polynomial q2(x) such that fl

oq2(x)x(x - a2.,)dx =
0, and it is easily verified that q2(x) = x - ( 3 -4a2 . i ) / (4-6a2 . i ) is the required
polynomial. a2., ^ 2/3 if JC0 is sufficiently close to £, so a2,2 is well-defined.

A3 and A4 are respectively the value of the interpolating polynomial p3(x)
and its derivative p 3(JC) at x = z2 = x0 + A2, so (6.6) is (to sufficient accuracy) the
approximation

z2 - pi(z2)lp 3(z2) - 1 p I(z2)p 3'(z2)/(p 3(z2))
3.

Eighth-order methods

If k = m = \, n = 3, the relevant Jacobi polynomial is G3(2,2,x) =
( 3 5 X 3 - 6 0 X 2 + 30JC -4) /35, with zeros

a =0.21234053823915294397...,

/3 =0.59053313555926528913...,

and (6.7)

y =0.91141204048729605260...

METHOD 113a.

a, = a (6.8)

where a is given by (6.7),

A,, /',", A2, and a2,t as for method 112a,

a = 100a 2.,- 120a2., + 30,

b = 60a 2
2,, - 75a2., + 20,

c = 30a 2., - 40a2l, + 12,

(b-(b2-ac)*)la, (6.9)

f2", t,, t2, v,, v2, A3, and A4 as for method 112a,

A5 = A2 - A3/A4,

a3 J = a,A,/A3,

03.2= a2.2A2/A5,
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_ 12 - 15(a3.i + «») + 20a3,ia3,2 ,, |
" 1 5 - 2 0 ( a + a ) + 3 0 a a ' K

, . 6a3,2«3,3 - 4(a3,2 + a » ) + 3
i.i = g(a3 , i ,a3 .2, « 3 J ) = " J 7 7 —

I

3, c*3,i, 0:3.2),

a2ll = n(a3 . i , 03.2,03.3) =

and

x, = *o + A5 - A8/A9 - 5 As u,/A9.

The error constant is

)6 (6.11)

-25(9-44y

Comments on method 113a

It is easy to verify that the polynomial

(100r2 - 120t + 30)x2 - 2(60f2 - ISt + 20)x + (30f2 - 40t + 12)

is orthogonal to 1 and x with respect to the weight function x(x - t) on [0,1]. In
view of (2.17), this explains (6.9). It may also be verified that, if a2,2 is defined by
(6.9), then b2>ac for all real a2,,, and a2.2—»/3 as a2,i-»a.
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Similarly,

[(15-20(f 30tu)x - ( 1 2 - 20tu)]x(x - t)(x - u)dx = 0,

explaining (6.10), and a3.3—*y as a}.,—>a and a3,2—»/3.

METHODS 113a-113f. By taking a, = a, /3 or y in (6.8), and either sign
before the square root in (6.9), we get six different methods, one of which is
method 113a. Table 6.2 summarizes these methods. The error constants

K = B<f>2<(>7 (6.12)

are obtained by suitably permuting a, /3 and y in (6.11). Numerical values of A,
B, C and D are given in the table.

TABLE 6.2

Some eighth-order methods

Method

113a
113b
113c
113d
113e
113f

a.

a
a

P
y
y

Sign in
(6.9)

+
-
+
-
+

Error
Constant

K(a,/3,y)
K(a,y,P)
K(P,y,a)
K(p,a,y)
K(y,afi)
K(y,P,a)

A

0.000816
0.000816
0.000816
0.000816
0.000816
0.000816

B

-0.007255
-0.007255
-0.013955
-0.013955
-0.064504
-0.064504

C

-0.010349
-0.047837
-0.015420
-0.001734

0.025770
0.049571

D

-0.025756
0.015897

-0.010549
-0.025756

0.015897
-0.010549

Comparison of error constants

It is natural to ask which of methods 113a-113f has minimal error constant
| K |. From (6.11), this depends on the behaviour of <j>2, • • •, <£8. Suppose that / is
holomorphic in a closed disk \z - C\ = r, so there is a constant c such that

\<t>,\Scr'-' (6.13)

for all / g 2. (Conversely, if (6.13) holds then / is holomorphic in the open disk
\z-£\<t.) From (6.12) and (6.13),

r-\ (6.14)

so a reasonable criterion is to choose the method with minimal a =
|D| . (A similar but slightly different criterion is given by King
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[16].) On our criterion, method 113c (o- = 0.0399) is slightly better than methods
113d (a = 0.0414) and 113a (a = 0.0434), but the difference is small. On the same
criterion, method 112a is better than method 112b.

A seventh-order method

If k = 1, m = i" = 2, the relevant Jacobi polynomial is (3:(3,3,v) =
x2- 4x13 + 2/5, with zeros (10± VT0)/15. By Theorem 2.1, methods in B(l,2,2)
have order 7. One such method is the following.

METHOD 122.

A,= - / H A " , A2=A,-^,2>A?/A",

f," = /'Oto + a ,A2), / i" = f'(x0 + a2A2),

x, an approximate zero of p3, satisfying (2.3) and

°. (6.15)

(An explicit formula for x,, similar to those above, is easy to derive.)
Provided (6.15) holds, instead of merely (2.4), the error constant is

- 4>7/225- 2<f>l<p5l3 + (£3<£5/3. Unlike some of the methods above, method 122
remains the same when a, and a2 are interchanged.

7. Other methods

The obvious method which uses evaluations of /, / ' and /" at x0, followed
by evaluations of / ' and /"at another point y, = xo+ O(S), has order five. It is
natural to ask if there is a choice of y, for which the order is six. Theorems 2.1
and 4.1 are not applicable, but for a similar analysis to go through we need a
nonzero number a such that P(l) = 0, for all fifth-degree polynomials P(x)
satisfying P(0) = P'(0) = P"(0) = P'(a) = P"(a) = 0 (compare Lemma 4.3). This
condition gives

n i i -i
det 3 4a 5a2 = 0 , (7.1)

L6 12a20a2J

which (using a / 0 ) reduces to

1 0 a 2 - 1 5 a + 6 = 0. (7.2)

Since (7.2) has no real roots, there is no real sixth-order method of this type.
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Similarly, it is natural to ask if there is an eighth-order method which uses
evaluations of /, / ' , /", and /'" at x0, followed by evaluations of / ' , /" and /'" at
some point y,. In this case we need a nonzero a satisfying

det

which reduces to

1

4

12

24

1

5a

20a

60a

1

6a2

30a2

120a2

1

7a 3

42a3

210a3

= 0, (7.3)

35a3-84a2 + 70a-20 = (7.4)

and (7.4) has one real root a = 0.74494327207110343664... We shall not give the
details of this method, but note that, provided the polynomial approximations
are solved sufficiently accurately, the error constant is simply (1 - a)*<f>8. Some
numerical results for this method (S8) are given in Section 9.

These examples suggest several questions. For example, there are
methods of order 2m + 1 which use evaluations of f(x0), • • -./""'(Jto) and /'(y,),
• • -./"""(yi), but for which m are there (real) methods of order 2m + 2? (There
are such methods for m = 1,3,5, etc., but none is known for even m.) Similarly,
for which n are there methods of order 3(n + 1) using evaluations of f(x0),
f'(xo), f"(x0) and /'(y.), /"(y.) for suitable real points yu- sy..? Some recent
results are given in [38] and [39].

A possible extension of our results is to methods where the evaluation of
derivatives /(t'(yi) is replaced by the evaluation of definite integrals

"" fU)dt)du = \y\yi-t)f(t)dt,
XO I J xo

/<-)(y.) =

etc. For example , if m g l , n = 1 and 0 < k § m + 1, our theory gives

m +2~k
a , = •

m +2
(7.5)

It is suggestive that the fourth-order of [40] have a,= l, which
is obtained formally by setting k = 0 in (7.5). Similarly, a, = (m + 3)/(m + 2) is
obtained formally by setting k = - 1 in (7.5), and there is in fact a method of
order m +3 which uses evaluations of/(x0),-• •,/(m)(*o) and/'""(y,), where y, is
determined in the usual way from this value of a,. (For details of this method,
see Kacewicz [15] and Wozniakowski [35].) However, we do not expect the
formal analogy to hold for large n. One reason for this is that an order of at least
2'"'21 is attainable by methods using one evaluation of / and n evaluations of
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/'"" per iteration, for two evaluations of / '"" can be used to approximate one
evaluation of / to any desired accuracy. Note that finding a zero of / using
evaluations of / ( - l ) is equivalent to finding a turning point of g = / '"" using
evaluations of g, so the methods discussed in Brent [3] may also be used.

8. A class of nonlinear Runge-Kutta methods

Consider the ordinary differential equation

dx/dt=g(x), (8.1)

with initial condition x (t0) = x0. If t, = t0 + h, and we want to find x (ti), we need
a zero of the function

Jx0
< 8 2 )

Since / '(*) = Ug(x) may be computed almost as easily as g(x), and f(x0) = - h
is known without any computation, a zero-finding method using evaluations of
f(x0), f'(x0), f'(y,), • • -,/'(yn) is applicable. For example, one iteration of method
Ilia (see Section 6) may be written as

go = g(xo),

Ai = hg0,
(8.3)

ga = ( 2A/3)
and

when / is defined by (8.2). The equations (8.3) give an explicit method of
Runge-Kutta type for solving the differential equation (8.1). The method is
"nonlinear" because the formula for x, is nonlinear in g0 and ga. Since the
zero-finding method is fourth-order, x, = x(t,) + O(h4), so the Runge-Kutta
method (8.3) has order three. Note the difference in the definitions of order for
differential equation methods (Henrici [11]) and methods for finding zeros.

Similarly, for any zero-finding method in C(l, l,n), there is a correspond-
ing nonlinear Runge-Kutta method. Numerical results for some of these
methods are given in Section 9. By Theorem 4.1, the order of the zero-finding
method is 2(n + 1), so the order of of the Runge-Kutta method is 2n + 1. Thus
(with v = n + 1) we have the following theorem, which is related to some
results of N^rsett [25] and Osborne [27].
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THEOREM 8.1. If v>0, there is an explicit, nonlinear, Runge-Kutta
method of order 2v - 1, using v function evaluations per iteration, for single
differential equations of the form (8.1).

Theorem 8.1 contrasts with the known results for (linear) Runge-Kutta
methods for systems of differential equations of the form

dxldt=g(x,t). (8.4)

From [9], the highest order attainable by such methods using v evaluations of
g{x,t) per iteration is

( v if I g i / g 4 ,
v-\ if 5 S i ; S 7 ,
v-2 if 8SvS9,

and

p*(v)Sv-2 if csio.

Thus, it seems unlikely that a generalization of our nonlinear methods to
systems of differential equations is possible, although an extension to single
equations of the form dx/dt = g(x,t) may be possible.

Examples of the use of our methods for the computation of inverse
distribution functions are given below, and in [7].

9. Numerical results

In this section we summarize the results of numerical tests of some of the
methods described in Sections 6 to 8. Table 9.1 gives e, =*,--£(/ = 1, •••,4) for
the function

/(x) = x 2 - x - 3 + 4/x-log2x, (9.1)

with a simple zero at £ = 2, from the initial approximation x0 = 10. Multiple-
precision arithmetic was used to obtain e3 and e4 accurately in order to
demonstrate the superlinear convergence. The order p and asymptotic error
constant K are as given above.

All the methods converge, although x0 is not very close to £. The higher
order methods give good approximations after two iterations (e.g. e2 = 1.03' - 10
for method 113a). Method 11 Id is the best of the fourth-order methods, at least
for the function (9.1).
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TABLE 9.1

Numerical results for the function (9.1)

Method

Ilia
111b
111c
11 Id
112a
113a
122
S8

Order

4
4
4
4
6
8
7
8

K

3.61
2.60
3.32' - 1
3.32'- 1
1.12—2
3.69'-4
6.90' - 2
2.82' - 5

1.56
1.44
9.87' - 1
4.50' - 1
3.86' - 1
1.49'-1
6.27' - 1
6.44' - 1

£2

1.80'-1
1.43'-1
4.09' - 2
3.53'-3
5.86'-5
1.03'-10
1.79'-3
2.66'-3

1.33'-3
5.02'-4
8.18'-7
5.05'-11
4.55' - 28
4.77' - 84
4.02'-21
4.52'-21

e.

1.12'-U

1.65'-13

1.49'-25

2.16'-42

9.94' - 167
9.81'-671
1.17'-144
4.94'-168

Table 9.2 illustrates equation (6.1). For / given by (9.1) and various
£o = x 0 - £ , t n e table gives the computed values K(eo) = ei/eo, and the pre-
dicted asymptotic error constant K = lime<r,oK(eo). The agreement between the
predicted and computed values is good.

TABLE 9.2

Computed and predicted error constants

Method Order K(10-) K(10"B) K(10"12) K

U2a
113a
122

s8

6
8
7
8

1.12131-2
3.68987'-4
6.89218'-2
7.11402'-2

1.12045'-2
3.68889'-4
6.89766' - 2
3.53173'-5

1.12045-2
3.68889'-4
6.89766' - 2
2.81896'-5

1.12045-2
3.68889'-4
6.89766' - 2
2.81889'-5

Finally, Table 9.3 gives numerical results for some of the Runge-Kutta
methods described in Section 8 and some more usual Runge-Kutta methods.
Suppose we want to tabulate solutions of

(277)-* r
Jo

e-V2du = t (9.2)
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for / =0.0(0.1)0.4 or / = 0.0(0.01)0.49. Equivalently, we want to solve the
differential equation

dx/dt =(27r)'e*2'2 (9.3)

with initial condition x(0) = 0. The following methods are possible:

1. Numerical integration of the left side of (9.2), followed by interpola-
tion. This would be appropriate if the solution were to be tabulated for given
values of x, but it is inconvenient if the solution is required for given values of t.

2. Using some method for second-order differential equations (or sys-
tems of first order equations) applied to the equation d2x/dt2 = x(dx/dt)2 with
appropriate initial conditions. This avoids the repeated evaluation of exponen-
tials, but depends on special properties of the integrand in (9.2), so is not
generally applicable.

3. Using some method for first-order differential equations applied to
(9.3). We compare some such methods.

In Table 9.3, method Hid' is the (third-order) nonlinear Runge-Kutta
method derived from the (fourth-order) zero-finding method 11 Id as described
in Section 8, and similarly for 112a' and 113a'. Method RKA is the classical
fourth-order method of Kutta [23], and RK1 is the seventh-order method of
Shanks [30]. (The use of method RKA to solve nonlinear equations was
suggested by Kizner [19].) The number of evaluations of e'2'2 per iteration is
denoted by v. If xh(t) is the computed solution (using step size h), the error
eh(t) is defined by

f
Jo

e'u2'2du-t.

Computations were performed with double-precision floating-point arithmetic
on a Univac 1108 computer (fraction length 60 bits).

The table suggests that our methods are more accurate than standard
Runge-Kutta methods with the same number of function evaluations per
iteration, and more efficient than standard methods with the same order. For
example, method 113a' is considerably more accurate than RKA, though both
methods require four function evaluations per iteration; and 113a' is slightly
more accurate than RK1, which requires nine function evaluations per
iteration. This is not surprising, for our methods are applicable only to single
differential equations of the special form (8.1), but the standard methods are
applicable to general systems of the form (8.4).
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TABLE 9.3

Comparison of Runge-Kutta methods

Method

Hid'

112a'
113a'
RK4

RK7

V

2

3
4
4

9

Order

3
5
7
4

7

e0 ,(0.2)

- 4.59' - 5
1.22'-7

-6 .28 ' -10
- 3 . 7 4 ' - 7

- 1.76'-9

eo o,(0.2)

- 5.66' - 8
2.54'-12

-6 .29 ' -17
2.12'- 11

-2 .86 ' -16

e»,(0.4)

- 9.45' - 6

3.16'-6
3.86' - 8
1.95'-5

- 5 . 1 9 ' - 7

eo o,(0.4)

1.49'-7
- 2.47' - 11

3.69' - i5
7.90'-9

-1 .67 ' -13
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