
MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION1

Richard P Brent

Computer Centre,
Australian National University,

Canberra, A.C.T. 2600, Australia

ABSTRACT

We consider methods for finding high-precision approximations to simple zeros of
smooth functions. As an application, we give fast methods for evaluating the el-
ementary functions log(x), exp(x), sin(x) etc. to high precision. For example, if x
is a positive floating-point number with an n-bit fraction, then (under rather weak
assumptions) an n-bit approximation to log(x) or exp(x) may be computed in time
asymptotically equal to 13M(n) log2 n as n → ∞, where M(n) is the time required
to multiply floating-point numbers with n-bit fractions. Similar results are given for
the other elementary functions, and some analogies with operations on formal power
series are mentioned.

1 Introduction

When comparing methods for solving nonlinear equations or evaluating functions, it is custom-
ary to assume that the basic arithmetic operations (addition, multiplication, etc.) are performed
with some fixed precision. However, an irrational number can only be approximated to arbitrary
accuracy if the precision is allowed to increase indefinitely. Thus, we shall consider iterative pro-
cesses using variable precision. Usually the precision will increase as the computation proceeds,
and the final result will be obtained to high precision. Of course, we could use the same (high)
precision throughout, but then the computation would take longer than with variable precision,
and the final result would be no more accurate.

Assumptions

For simplicity we assume that a standard multiple-precision floating-point number representation
is used, with a binary fraction of n bits, where n is large. The exponent length is fixed, or may
grow as o(n) if necessary. To avoid table-lookup methods, we assume a machine with a finite
random-access memory and a fixed number of sequential tape units. Formally, the results hold
for multitape Turing machines.

1First appeared in Analytic Computational Complexity (edited by J F Traub), Academic Press, New York,
1975, 151–176. Retyped with minor corrections and postscript by Frances Page at Oxford University Computing
Laboratory, 1999 (urls updated 2005).
Copyright c© 1975, 1999, 2005, R. P. Brent and Academic Press, Inc. rpb028 typeset using LATEX.

1

Precision n Operations

An operation is performed with precision n if the operands and result are floating-point numbers
as above (i.e., precision n numbers), and the relative error in the result is O(2−n).

Precision n Multiplication

Let M(n) be the time required to perform precision n multiplication. (Time may be regarded
as the number of single-precision operations, or the number of bit operations, if desired.) The
classical method gives M(n) = O(n2), but methods which are faster for large n are known.
Asymptotically the fastest method known is that of Schönhage and Strassen [71], which gives

(1.1) M(n) = O(n log(n) log log(n)) as n→∞ .

Our results do not depend on the algorithm used for multiplication, provided M(n) satisfies the
following two conditions.

(1.2) n = o(M(n)) , i.e., lim
n→∞

n/M(n) = 0 ;

and, for any α > 0,

(1.3) M(αn) ∼ αM(n) , i.e., lim
n→∞

M(αn)
αM(n)

= 1 .

Condition (1.2) enables us to neglect additions, since the time for an addition is O(n), which is
asymptotically negligible compared to the time for a multiplication. Condition (1.3) certainly
holds if

M(n) ∼ cn[log(n)]β [log log(n)]γ ,

though it does not hold for some implementations of the Schönhage-Strassen method. We need
(1.3) to estimate the constants in the asymptotic “O” results: if the constants are not required
then much weaker assumptions suffice, as in Brent [75a,b].

The following lemma follows easily from (1.3).

Lemma 1.1

If 0 < α < 1,M(n) = 0 for n < 1, and c1 < 1
1−α < c2, then

c1M(n) <
∞∑

k=0

M(αkn) < c2M(n)

for all sufficiently large n.

2 Basic Multiple-precision Operations

In this section we summarize some results on the time required to perform the multiple-precision
operations of divison, extraction of square roots, etc. Additional results are given in Brent [75a].

2

Reciprocals

Suppose a 6= 0 is given and we want to evaluate a precision n approximation to 1/a. Applying
Newton’s method to the equation

f(x) ≡ a− 1/x = 0

gives the well-known iteration
xi+1 = xi − xiεi ,

where
εi = axi − 1 .

Since the order of convergence is two, only k ∼ log2 n iterations are required if x0 is a reasonable
approximation to 1/a, e.g., a single-precision approximation.

If εk−1 = O(2−n/2), then εk = O(2−n), so at the last iteration it is sufficient to perform the
multiplication of xk−1 by εk−1 using precision n/2, even though axk−1 must be evaluated with
precision n. Thus, the time required for the last iteration is M(n) + M(n/2) + O(n). The time
for the next to last iteration is M(n/2)+M(n/4)+O(n/2), since this iteration need only give an
approximation accurate to O(2−n/2), and so on. Thus, using Lemma 1.1, the total time required
is

I(n) ∼ (1 + 1
2)(1 + 1

2 + 1
4 + · · ·)M(n) ∼ 3M(n)

as n→∞.

Division

Since b/a = b(1/a), precision n division may be done in time

D(n) ∼ 4M(n)

as n→∞.

Inverse Square Roots

Asymptotically the fastest known method for evaluating a−
1
2 to precision n is to use the third-

order iteration
xi+1 = xi − 1

2xi(εi − 3
4ε2

i) ,

where
εi = ax2

i − 1 .

At the last iteration it is sufficient to evaluate ax2
i to precision n, ε2

i to precision n/3, and
xi(εi − 3

4ε2
i) to precision 2n/3. Thus, using Lemma 1.1 as above, the total time required is

Q(n) ∼ (2 + 1
3 + 2

3)(1 + 1
3 + 1

9 + · · ·)M(n) ∼ 9
2M(n)

as n→∞.

3

Square Roots

Since
√

a =
{

a.a−
1
2 if a > 0 ,

0 if a = 0 ,

we can evaluate
√

a to precision n in time

R(n) ∼ 11
2 M(n)

as n→∞. Note the direct use of Newton’s method in the form

(2.1) xi+1 = 1
2(xi + a/xi)

or

(2.2) xi+1 = xi +
(

a− x2
i

2xi

)

is asymptotically slower, requiring time ∼ 8M(n) or ∼ 6M(n) respectively.

3 Variable-precision Zero-finding Methods

Suppose ζ 6= 0 is a simple zero of the nonlinear equation

f(x) = 0 .

Here, f(x) is a sufficiently smooth function which can be evaluated near ζ, with absolute error
O(2−n), in time w(n). We consider some methods for evaluating ζ to precision n. Since we are
interested in results for very large n, the time required to obtain a good starting approximation
is neglected.

Assumptions

To obtain sharp results we need the following two assumptions, which are similar to (1.2) and
(1.3):

(3.1) M(n) = o(w(n)) , i.e., lim
n→∞

M(n)/w(n) = 0 ;

and, for some α ≥ 1 and all β > 0,

(3.2) w(βn) ∼ βαw(n)

as n→∞.

From (3.1), the time required for a multiplication is negligible compared to the time for a function
evaluation, if n is sufficiently large. (3.2) implies (3.1) if α > 1, and (3.2) certainly holds if, for
example,

w(n) ∼ cnα[log(n)]γ [log log(n)]δ .

The next lemma follows from our assumptions in much the same way as Lemma 1.1.

4

Lemma 3.1

If 0 < β < 1, w(n) = 0 for n < 1, and

c1 < 1/(1− βα) < c2 ,

then

c1w(n) <
∞∑

k=0

w(βkn) < c2w(n)

for all sufficiently large n.

A Discrete Newton Method

To illustrate the ideas of variable-precision zero-finding methods, we describe a simple dis-
crete Newton method. More efficient methods are described in the next three sections, and in
Brent [75a].

Consider the iteration
xi+1 = xi − f(xi)/gi ,

where gi is a one-sided difference approximation to f ′(xi), i.e.,

gi =
f(xi + hi)− f(xi)

hi
.

If ε = |xi − ζ| is sufficiently small, f(xi) is evaluated with absolute error O(ε2
i), and hi is small

enough that

(3.3) gi = f ′(xi) + O(εi) ,

then the iteration converges to ζ with order at least two. To ensure (3.3), take hi of order εi,
e.g. hi = f(xi).

To obtain ζ to precision n, we need two evaluations of f with absolute error O(2−n), preceded
by two evaluations with error, O(2−n/2), etc. Thus the time required is

(3.4) t(n) ∼ 2(1 + 2α + 2−2α + · · ·)w(n) .

Asymptotic Constants

We say that a zero-finding method has asymptotic constant C(α) if, to find a simple zero ζ 6= 0
to precision n, the method requires time t(n) ∼ C(α)w(n) as n→∞. (The asymptotic constant
as defined here should not be confused with the “asymptotic error constant” as usually defined
for single-precision zero-finding methods.)

For example, from (3.4), the discrete Newton method described above has asymptotic constant

CN (α) = 2/(1− 2−α) ≤ 4 .

Note that the time required to evaluate ζ to precision n is only a small multiple of the time
required to evaluate f(x) with absolute error O(2−n). (If we used fixed precision, the time to
evaluate ζ would be of order log(n) times the time to evaluate f(x).)

5

4 A Variable-precision Secant Method

The secant method is known to be more efficient than the discrete Newton method when fixed-
precision arithmetic is used. The same is true with variable-precision arithmetic, although the
ratio of efficiencies is no longer constant, but depends on the exponent α in (3.2). Several secant-
like methods are described in Brent [75a]; here we consider the simplest such method, which is
also the most efficient if α < 4.5243 . . .

The secant iteration is

xi+1 = xi − fi

(
xi − xi−1

fi − fi−1

)
,

where fi = f(xi), and we assume that the function evaluations are performed with suficient
accuracy to ensure that the order of convergence is at least ρ = (1 +

√
5)/2 = 1.6180 . . . , the

larger root of

(4.1) ρ2 = ρ + 1 .

Let ε = |xi−1 − ζ|. Since the smaller root of (4.1) lies inside the unit circle, we have

xi − ζ = O(ερ)

and
xi+1 − ζ = O(ερ2

) .

To give order ρ, fi must be evaluated with absolute error O(ερ2
). Since fi = O(|xi − ζ|) =

O(ερ), it is also necessary to evaluate (fi − fi−1)/(xi − xi−1) with relative error O(ερ2−ρ), but
|xi−xi−1| ∼ ε, so it is necessary to evaluate fi−1 with absolute error O(ερ2−ρ+1). [Since fi must
be evaluated with absolute error O(ερ2

), fi−1 must be evaluated with absolute error O(ερ), but
ρ2 − ρ + 1 = 2 > ρ, so this condition is superfluous.]

The conditions mentioned are sufficient to ensure that the order of convergence is at least ρ.
Thus, if we replace ερ2

by 2−n, we see that ζ may be evaluated to precision n if f is evaluated with
absolute errors O(2−n), O(2−2nρ−2

), O(2−2nρ−3
), O(2−2nρ−4

), . . . It follows that the asymptotic
constant of the secant method is

CS(α) = 1 + (2ρ−2)α/(1− ρ−α) ≤ CS(1) = 3 .

The following lemma states that the secant method is asymptotically more efficient than the
discrete Newton method when variable precision is used.

Lemma 4.1

CS(α) < CN (α) for all α ≥ 1. In fact CS(α)/CN (α) decreases monotonically from 3
4 (when

α = 1) to 1
2 (as α→∞).

5 Other Variable-precision Interpolatory Methods

With fixed precision, inverse quadratic interpolation is more efficient than linear interpolation,
and inverse cubic interpolation is even more efficient, if the combinatory cost (i.e., “overhead”)
is negligible. With variable precision the situation is different. Inverse quadratic interpolation
is slightly more efficient than the secant method, but inverse cubic interpolation is not more

6

efficient than inverse quadratic interpolation if α ≤ 4.6056 . . . Since the combinatory cost of
inverse cubic interpolation is considerably higher than that of inverse quadratic interpolation,
the inverse cubic method appears even worse if combinatory costs are significant.

Inverse Quadratic Interpolation

The analysis of variable-precision methods using inverse quadratic interpolation is similar to that
for the secant method, so we only state the results. The order ρ = 1.8392 . . . is the positive
root of ρ3 = ρ2+ρ+1. It is convenient to define σ = 1/ρ = 0.5436 . . . To evaluate ζ to precision
n requires evaluations of f to (absolute) precision n, (1− σ + σ2)n, and σj(1− σ − σ2 + 2σ3)n
for j = 0, 1, 2, . . . Thus, the asymptotic constant is

CQ(α) = 1 + (1− σ + σ2)α + (3σ3)α/(1− σα)

≤ CQ(1) = 1
2(7− 2σ − σ2) = 2.8085

Lemma 5.1

CQ(α) < CS(α) for all α ≥ 1. In fact, CQ(α)/CS(α) increases monotonically from 0.9361. . .
(when α = 1) to 1 (as α→∞).

Inverse Cubic Interpolation, etc

If µ = 0.5187 . . . is the positive root of µ4 +µ3 +µ2 +µ = 1, then the variable-precision method
of order 1/µ = 1.9275 . . . , using inverse cubic interpolation, has asymptotic constant

CC(α) = 1 + (1− µ + µ2)α + (1− µ− µ2 + 2µ3)α + (4µ4)α/(1− µα)

≤ CC(1) = (13− 6µ− 4µ2 − 2µ3)/3 = 2.8438

Note that CC(1) > CQ(1). Variable-precision methods using inverse interpolation of arbitrary
degree are described in Brent [75a]. Some of these methods are slightly more efficient than the
inverse quadratic interpolation method if α is large, but inverse quadratic interpolation is the
most efficient method known for α < 4.6056 . . . In practice α is usually 1, 11

2 or 2.

An Open Question

Is there a method with asymptotic constant C(α) such that C(1) < CQ(1)?

6 Variable-precision Methods using Derivatives

In Sections 3 to 5 we considered methods for solving the nonlinear equation f(x) = 0, using
only evaluations of f . Sometimes it is easy to evaluate f ′(x), f ′′(x), . . . once f(x) has been
evaluated, and the following theorem shows that it is possible to take advantage of this. For an
application, see Section 10.

Theorem 6.1

If the time to evaluate f(x) with an absolute error O(2−n) is w(n), where w(n) satisfies conditions
(3.1) and (3.2), and (for k = 1, 2, . . .) the time to evaluate F (k)(x) with absolute error O(2−n)
is wk(n), where

wk(n) = o(w(n))

7

as n→∞, then the time to evaluate a simple zero ζ 6= 0 of f(x) to precision n is

t(n) ∼ w(n)

as n→∞.

Proof

For fixed k ≥ 1, we may use a direct or inverse Taylor series method of order k + 1. The
combinatory cost is of order k log(k + 1)M(n) (see Brent and Kung [75]). From (3.1), this is
o(w(n)) as n→∞. Thus,

t(n) ≤ [1− (k + 1)−α]−1w(n) + o(w(n))

≤ (1 + 1
k + o(1))w(n) .

For sufficiently large n, the “o(1)” term is less than 1/k, so

t(n) ≤ (1 + 2
k)w(n) .

Given ε > 0, choose k ≥ 2/ε. Then, for all sufficiently large n,

w(n) ≤ t(n) ≤ (1 + ε)w(n) ,

so t(n) ∼ w(n) as n→∞.

Corollary 6.1

If the conditions of Theorem 6.1 hold, f : [a, b]→ I, f ′(x) 6= 0 for x ∈ [a, b], and g is the inverse
function of f , then the time to evaluate g(y) with absolute error O(2−n), for y ∈ I, is

wg(n) ∼ w(n)

as n→∞.

Note

Corollary 6.1 is optimal in the sense that, if wg(n) ∼ cw(n) for some constant c < 1, then
w(n) ∼ cwg(n) by the same argument, so w(n) ∼ c2w(n), a contradiction. Hence, c = 1 is
minimal.

7 The Arithmetic-geometric Mean Iteration

Before considering the multiple-precision evaluation of elementary functions, we recall some
properties of the arithmetic-geometric (A–G) mean iteration of Gauss [1876]. Starting from any
two positive numbers a0 and b0, we may iterate as follows:

ai+1 =
ai + bi

2
arithmetic mean

and

bi+1 =
√

aibi geometric mean

for i = 0, 1, . . .

8

Second-order Convergence

The A–G mean iteration is of computational interest because it converges very fast. If bi � ai,
then

bi+1/ai+1 =
2
√

bi/ai

1 + bi/ai
' 2
√

bi/ai ,

so only about | log2(a0/b0)| iterations are required before ai/bi is of order 1. Once ai and bi are
close together the convergence is second order, for if bi/ai = 1− εi then

εi+1 = 1− bi+1/ai+1 = 1− 2(1− εi)
1
2 /(2− εi) = ε2

i /8 + O(ε3
i) .

Limit of the A–G Mean Iteration

There is no essential loss of generality in assuming that a0 = 1 and b0 = cos φ for some φ. If
a = lim

1→∞
ai = lim

i→∞
bi, then

(7.1) a =
π

2K(φ)
,

where K(φ) is the complete elliptic integral of the first kind, i.e.,

K(φ) =

π/2∫
0

1√
1− sin2 φ sin2 θ

dθ .

(A simple proof of (7.1) is given in Melzak [73].)

Also, if c0 = sinφ, ci+1 = ai − ai+1 (i = 0, 1, . . .), then

(7.2)
∞∑
i=0

2i−1c2
i = 1− E(φ)

K(φ)
,

where E(φ) is the complete elliptic integral of the second kind, i.e.,

E(φ) =

π/2∫
0

√
1− sin2 φ sin2 θ dθ .

Both (7.1) and (7.2) were known by Gauss.

Legendre’s Identity

For future use, we note the identity

(7.3) K(φ)E(φ′) + K(φ′)E(φ)−K(φ)K(φ′) = 1
2π ,

where φ+φ′ = 1
2π. (Legendre [11] proved by differentiation that the left side of (7.3) is constant,

and the constant may be determined by letting φ→ 0.)

9

8 Fast Multiple-precision Evaluation of π

The classical methods for evaluating π to precision n take time O(n2): see, for example, Shanks
and Wrench [62]. Several methods which are asymptotically faster than O(n2) are known. For
example, in Brent [75a] a method which requires time O(M(n) log2(n)) is described. From the
bound (1.1) on M(n), this is faster than O(n1+ε) for any ε > 0.

Asymptotically the fastest known methods require time O(M(n) log(n)). One such method
is sketched in Beeler et al [72]. The method given here is faster, and does not require the
preliminary computation of e.

The Gauss-Legendre Method

Taking φ = φ′ = π/4 in (7.3), and dividing both sides by π2, we obtain

(8.1) [2K(π/4)E(π/4)−K2(π/4)]/π2 =
1
2π

.

However, from the A–G mean iteration with a0 = 1 and b0 = 2−
1
2 , and the relations (7.1) and

(7.2), we can evaluate K(π/4)/π and E(π/4)/π, and thus the left side of (8.1). A division then
gives π. (The idea of using (7.3) in this way occurred independently to Salamin [75] and Brent
[75b].) After a little simplification, we obtain the following algorithm (written in pseudo-Algol):

A← 1; B ← 2−
1
2 ; T ← 1/4; X ← 1;

while A−B > 2−n do
begin Y ← A; A← 1

2(A + B); B ←
√

BY ;
T ← T −X(A− Y)2 ;
X ← 2X

end;
return A2/T [or, better, (A + B)2/(4T)] .

The rate of convergence is illustrated in Table 8.1.

Table 8.1: Convergence of the Gauss-Legendre Method

Iteration A2/T − π π − (A + B)2/(4T)
0 8.6 × 10−1 2.3 × 10−1

1 4.6 × 10−2 1.0 × 10−3

2 8.8 × 10−5 7.4 × 10−9

3 3.1 × 10−10 1.8 × 10−19

4 3.7 × 10−21 5.5 × 10−41

5 5.5 × 10−43 2.4 × 10−84

6 1.2 × 10−86 2.3 × 10−171

7 5.8 × 10−174 1.1 × 10−345

8 1.3 × 10−348 1.1 × 10−694

9 6.9 × 10−698 6.1 × 10−1393

Since the A–G mean iteration converges with order 2, we need ∼ log2 n iterations to obtain pre-
cision n. Each iteration involves one (precision n) square root, one multiplication, one squaring,

10

one multiplication by a power of two, and some additions. Thus from the results of Section 2,
the time required to evaluate π is ∼ 15

2 M(n) log2 n.

Comments

1. Unlike Newton’s iteration, the A–G mean iteration is not self-correcting. Thus, we cannot
start with low precision and increase it, as was possible in Section 2.

2. Since there are ∼ log2 n iterations, we may lose O(log log(n)) bits of accuracy through
accumulation of rounding errors, even though the algorithm is numerically stable. Thus,
it may be necessary to work with precision n+O(log log(n)). From (1.3), the time required
is still ∼ 15

2 M(n) log2 n.

9 Multiple-precision Evaluation of log(x)

There are several algorithms for evaluating log(x) to precision n in time O(M(n) log(n)). For
example, a method based on Landen transformations of incomplete elliptic integrals is described
in Brent [75b]. The method described here is essentially due to Salamin (see Beeler et al [72]),
though the basic relation (9.1) was known by Gauss.

If cos(φ) = ε
1
2 is small, then

(9.1) K(φ) = (1 + O(ε)) log(4ε−
1
2)

Thus, taking a0 = 1, b0 = 4/y, where y = 4ε−
1
2 , and applying the A–G mean iteration to

compute a = lim
i→∞

ai, gives

log(y) =
π

2a
(1 + O(y−2))

for large y. Thus, so long as y ≥ 2n/2, we can evaluate log(y) to precision n. If log(y) = O(n)
then ∼ 2 log2 n iterations are required, so the time is ∼ 13M(n) log2 n, assuming π is precom-
puted.

For example, to find log(106) we start the A–G mean iteration with a0 = 1 and b0 = 4× 10−6.
Results of the first seven iterations are given to 10 significant figures in Table 9.1. We find that
π/(2a7) = 13.81551056, which is correct.

Table 9.1: Computation of log(106)

i ai bi

0 1.000000000 4.000000000× 10−6

1 5.000020000× 10−1 2.000000000× 10−3

2 2.510010000× 10−1 3.162283985× 10−2

3 1.413119199× 10−1 8.909188753× 10−2

4 1.152019037× 10−1 1.122040359× 10−1

5 1.137029698× 10−1 1.136930893× 10−1

6 1.136980295× 10−1 1.136980294× 10−1

7 1.136980295× 10−1 1.136980295× 10−1

Since log(2) = 1
n log(2n), we can evaluate log(2) to precision n in time ∼ 13M(n) log2 n. Suppose

x ∈ [b, c], where b > 1. We may set y = 2nx, evaluate log(y) as above, and use the identity

11

log(x) = log(y)− n log(2)

to evaluate log(x). Since log(y) ' n log(2), approximately log2 n significant bits will be lost
through cancellation, so it is necessary to work with precision n + O(log(n)).

If x is very close to 1, we have to be careful in order to obtain log(x) with a small relative error.
Suppose x = 1 + δ. If |δ| < 2−n/ log(n) we may use the power series

log(1 + δ) = δ − δ2/2 + δ3/3− . . . ,

and it is sufficient to take about log(n) terms. If δ is larger, we may use the above A–G mean
method, with working precision n + O(n/ log(n)) to compensate for any cancellation.

Finally, if 0 < x < 1, we may use log(x) = − log(1/x), where log(1/x) is computed as above. To
summarize, we have proved:

Theorem 9.1

If x > 0 is a precision n number, then log(x) may be evaluated to precision n in time
∼ 13M(n) log2 n as n→∞ [assuming π and log(2) precomputed to precision n+O(n/ log(n))].

Note

The time required to compute log(x) by the obvious power series method is O(nM(n)). Since
13 log2 n < n for n ≥ 83, the method described here may be useful for moderate n, even if the
classical O(n2) multiplication algorithm is used.

10 Multiple-precision Evaluation of exp(x)

Corresponding to Theorem 9.1 we have:

Theorem 10.1

If [a, b] is a fixed interval, and x ∈ [a, b] is a precision n number such that exp(x) does not
underflow or overflow, the exp(x) can be evaluated to precision n in time ∼ 13M(n) log2 n as
n→∞ (assuming π and log(2) are precomputed).

Proof

To evaluate exp(x) we need to solve the equation f(y) = 0, where f(y) = log(y) − x, and x is
regarded as constant. Since

f (k)(y) = (−1)k−1 (k − 1) ! y−k

can be evaluated in time O(M(n)) = o(M(n) log(n)) for any fixed k ≥ 1, the result follows from
Theorems 6.1 and 9.1. We remark that the (k +1)-th order method in the proof of Theorem 6.1
may simply be taken as

yi+1 = yi

k∑
j=0

(x− log(yi))j/j !

12

11 Multiple-precision Operations on Complex Numbers

Before considering the multiple-precision evaluation of trigonometric functions, we need to state
some results on multiple-precision operations with complex numbers. We assume that a precision
n complex number z = x + iy is represented as a pair (x, y) of precision n real numbers. As
before, a precision n operation is one which gives a result with a relative error O(2−n). (Now,
of course, the relative error may be complex, but its absolute value must be O(2−n).) Note that
the smaller component of a complex result may occasionally have a large relative error, or even
the wrong sign!

Complex Multiplication

Since z = (t + iu)(v + iw) = (tv − uw) + i(tw + uv), a complex multiplication may be done
with four real multiplications and two additions. However, we may use an idea of Karatsuba
and Ofman [62] to reduce the work required to three real multiplications and some additions:
evalute tv, uw, and (t + u)(v + w), then use

tw + uv = (t + u)(v + w)− (tv + uw) .

Since |t + u| ≤
√

2 |t + iu| and |v + w| ≤
√

2 |v + iw|, we have

|(t + u)(v + w)| ≤ 2|z| .

Thus, all rounding errors are of order 2−n|z| or less, and the computed product has a relative
error O(2−n). The time for the six additions is asymptotically negligible compared to that
for the three multiplications, so precision n complex multiplication may be performed in time
∼ 3M(n).

Complex Squares

Since (v + iw)2 = (v − w)(v + w) + 2ivw, a complex square may be evaluated with two real
multiplications and additions, in time ∼ 2M(n).

Complex Division

Using complex multiplication as above, and the same division algorithm as in the real case, we
can perform complex division in time ∼ 12M(n). However, it is faster to use the identity

t + iu

v + iw
= (v2 + w2)−1[(t + iu)(v − iw)] ,

reducing the problem to one complex multiplication, four real multiplications, one real reciprocal,
and some additions. This gives time ∼ 10M(n). For complex reciprocals we have t = 1, u = 0,
and time ∼ 7M(n).

Complex Square Roots

Using (2.2) requires, at the last iteration, one precision n complex squaring and one precision
n/2 complex division. Thus, the time required is ∼ 2(2 + 10/2)M(n) = 14M(n).

13

Complex A–G Mean Iteration

From the above results, a complex square root and multiplication may be performed in time
∼ 17M(n). Each iteration transforms two points in the complex plane into two new points, and
has an interesting geometric interpretation.

12 Multiple-precision Evaluation of Trigonometric Functions

Since

(12.1) log(v + iw) = log |v + iw| + i.artan(w/v)

and

(12.2) exp(iθ) = cos(θ) + i. sin(θ) ,

we can evaluate artan(x), cos(x) and sin(x) if we can evaluate log(z) and exp(z) for complex
arguments z. This may be done just as described above for real z, provide we choose the correct
value of

√
ajbj . Some care is necessary to avoid excessive cancellation; for example, we should

use the power series for sin(x) if |x| is very small, as described above for log(1 + δ). Since
∼ 2 log2 n A–G mean iterations are required to evaluate log(z), and each iteration requires
time ∼ 17M(n), we can evaluate log(z) in time ∼ 34M(n) log2 n. From the complex version of
Theorem 6.1, exp(z) may also be evaluated in time ∼ 34M(n) log2 n.

As an example, consider the evaluation of log(z) for z = 106(2 + i). The A–G mean iteration is
started with a0 = 1 and b0 = 4/z = 1.6× 10−6 − (8.0× 10−7)i. The results of six iterations are
given, to 8 significant figures, in Table 12.1.

Table 12.1: Evaluation of log 106(2 + i)

j aj bj

0 (1.0000000, 0.0000000) (1.6000000× 10−6, −8.0000000× 10−7)
1 (5.0000080× 10−1, −4.0000000× 10−7) (1.3017017× 10−3, −3.0729008× 10−4)
2 (2.5065125× 10−1, −1.5384504× 10−4) (2.5686505× 10−2, −2.9907884× 10−3)
3 (1.3816888× 10−1, −1.5723167× 10−3) (8.0373334× 10−2, −4.6881008× 10−3)
4 (1.0927111× 10−1, −3.1302088× 10−3) (1.0540970× 10−1, −3.6719673× 10−3)
5 (1.0734040× 10−1, −3.4010880× 10−3) (1.0732355× 10−1, −3.4064951× 10−3)
6 (1.0733198× 10−1, −3.4037916× 10−3) (1.0733198× 10−1, −3.4037918× 10−3)

We find that
π

2a7
= 14.620230 + 0.46364761i

' log |z|+ i.artan(1
2)

as expected.

Another method for evaluating trigonometric functions in time O(M(n) log(n)), without using
the identities (12.1) and (12.2) is described in Brent [75b].

14

13 Operations on Formal Power Series

There is an obvious similarity between a multiple-precision number with base β:

βe
n∑

i=1

aiβ
−i (0 ≤ ai < β) ,

and a formal power series:

∞∑
i=0

aix
i (ai real, x an indeterminate) .

Thus, it is not surprising that algorithms similar to those described in Section 2 may be used to
perform operations on power series.

In this section only, M(n) denotes the number of scalar operations required to evaluate the first
n coefficients c0, . . . , cn−1 in the formal product(∞∑

i=0

aix
i

)(∞∑
i=0

bix
i

)
=

∞∑
i=0

cix
i .

Clearly, cj depends only on a0, . . . , aj and b0, . . . , bj , in fact

cj =
j∑

i=0

aibj−i .

The classical algorithm gives M(n) = O(n2), but it is possible to use the fast Fourier transform
(FFT) to obtain

M(n) = O(n log(n))

(see Borodin [73]).

If we assume that M(n) satisfies conditions (1.2) and (1.3), then the time bounds given in
Section 2 for division, square roots, etc. of multiple-precision numbers also apply for the corre-
sponding operations on power series (where we want the first n terms in the result). For example,

if P (x) =
∞∑
i=0

aix
i and a0 6= 0, then the first n terms in the expansion of 1/P (x) may be found

with ∼ 3M(n) operations as n → ∞. However, some operations, e.g. computing exponentials,
are much easier for power series than for multiple-precision numbers!

Evaluation of log(P (x))

If a0 > 0 we may want to compute the first n terms in the power series Q(x) = log(P (x)). Since
Q(x) = log(a0) + log(P (x)/a0), there is no loss of generality in assuming that a0 = 1. Suppose

Q(x) =
∞∑
i=0

bix
i. From the relation

(13.1) Q′(x) = P ′(x)/P (x) ,

15

where the prime denotes formal differentiation with respect to x, we have

(13.2)
∞∑
i=1

ibix
i−1 =

(∞∑
i=1

iaix
i−1

)
�
�
��
(∞∑

i=0

aix
i

)
.

The first n terms in the power series for the right side of (13.2) may be evaluated with ∼ 4M(n)
operations, and then we need only compare coefficients to find b, . . . , bn−1. (Since a0 = 1, we
know that b0 = 0.) Thus, the first n terms in log(P (x)) may be found in ∼ 4M(n) operations.
It is interesting to compare this result with Theorem 9.1.

Evaluation of exp(P (x))

If R(x) = exp(P (x)) then R(x) = exp(a0) exp(P (x) − a0), so there is no loss of generality in
assuming that a0 = 0. Now log(R(x)) − P (x) = 0, and we may regard this as an equation for
the unknown power series R(x), and solve it by one of the usual iterative methods. For example,
Newton’s method gives the iteration

(13.3) Ri+1(x) = Ri(x)−Ri(x)(log(Ri(x))− P (x)) .

If we use the starting approximation R0(x) = 1, then the terms in Rk(x) agree exactly with
those in R(x) up to (but excluding) the term O(x2k

). Thus, using (13.3), we can find the first
n terms of exp(P (x)) in ∼ 9M(n) operations, and it is possible to reduce this to ∼ 22

3 M(n)
operations by using a fourth-order method instead of (13.3). Compare Theorem 10.1.

Evaluation of Pm

Suppose we want to evaluate (P (x))m for some large positive integer m. We can assume that
a0 6= 0, for otherwise some power of x may be factored out. Also, since Pm = am

0 (P/a0)m, we
can assume that a0 = 1. By forming P 2, P 4, P 8, . . . , and then the appropriate product given by
the binary expansion of m, we can find the first n terms of Pm in O(M(n) log2 m) operations.
Surprisingly, this is not the best possible result, at least for large m. From the identity

(13.4) Pm = exp(m log(P))

and the above results, we can find the first n terms of Pm in O(M(n)) operations! (If a0 6= 1,
we also need O(log2 m) operations to evaluate am

0 .) If the methods described above are used to
compute the exponential and logarithm in (13.4), then the number of operations is ∼ 34

3 M(n)
as n→∞.

Other operations on power series

The method used to evaluate log(P (x)) can easily be generalised to give a method for f(P (x)),
where df(t)/dt is a function of t which may be written in terms of square roots, reciprocals
etc. For example, with f(t) = artan(t) we have df/dt = 1/(1 + t2), so it is easy to evalu-
ate artan(P (x)). Using Newton’s method we can evaluate the inverse function f (−1)(P (x)) if
f(P (x)) can be evaluated. Generalizations and applications are given in Brent and Kung [75].

Some operations on formal power series do not correspond to natural operations on multiple-
precision numbers. One example, already mentioned above, is formal differentiation. Other
interesting examples are composition and reversion. The classical composition and reversion
algorithms, as given in Knuth [69], are O(n3), but much faster algorithms exist: see Brent and
Kung [75].

16

References

Beeler, Gosper and Schroeppel [72] Beeler, M., Gosper, R.W., and Schroeppel, R. “Hak-
mem”. Memo No. 239, M.I.T. Artificial Intelligence Lab., 1972, 70–71.

Borodin [73] Borodin, A., “On the number of arithmetics required to compute certain func-
tions – circa May 1973”. In Complexity of Sequential and Parallel Numerical Algorithms
(ed. by J.F. Traub), Academic Press, New York, 1973, 149–180.

Brent [75a] Brent, R.P., “The complexity of multiple-precision arithmetic”. Proc. Seminar on
Complexity of Computational Problem Solving (held at the Australian National University,
Dec. 1974), Queensland Univ. Press, Brisbane, 1975.

Brent [75b] Brent, R.P., “Fast multiple-precision evaluation of elementary functions”. Sub-
mitted to J. ACM.

Brent and Kung [75] Brent, R.P. and Kung, H.T., “Fast algorithms for reversion and com-
position of power series”. To appear. (A preliminary paper appears in these Proceedings.)

Gauss [1876] Gauss, C.F., “Carl Friedrich Gauss Werke”, (Ed. 3), Göttingen, 1876, 362–403.

Katatsuba and Ofman [62] Karatsuba, A. and Ofman, Y., “Multiplication of multidigit
numbers on automata”, (in Russian). Dokl. Akad. Nauk SSSR 146 (1962), 293–294.

Knuth [69] Knuth, D.E., “The Art of Computer Programming”, (Vol. 2), Addison Wesley,
Reading, Mass., 1969, Sec. 4.7.

Legendre [11] Legendre, A.M., “Exercices de Calcul Integral”, (Vol. 1), Paris, 1811, 61.

Melzak [73] Melzak, Z.A., “Companion to Concrete Mathematics”, Wiley, New York, 1973,
68–69.

Salamin [75] Salamin, E., “A fast algorithm for the computation of π”. To appear in Math.
Comp.

Schönhage and Strassen [71] Schönhage, A. and Strassen, V., “Schnelle Multiplikation
grosser Zahlen”. Computing 7 (1971), 281–292.

Shanks and Wrench [62] Shanks, D. and Wrench, J.W., “Calculation of π to 100,000 deci-
mals”. Math. Comp. 16 (1962), 76–99.

17

Postscript (September 1999)

Historical Notes and References

This paper was retyped in LATEX with minor corrections in September 1999. It is available
electronically in compressed postscript format from http://wwwmaths.anu.edu.au/~brent/
pub/pub028.html

Brent [75a] is available electronically in compressed postscript format from
http://wwwmaths.anu.edu.au/~brent/pub/pub032.html

Brent [75b] appeared in Journal of the ACM 23 (1976), 242–251. See
http://theory.lcs.mit.edu/~jacm/jacm76.html#Brent1976:242

The “preliminary paper” Brent and Kung [75] appeared as “O((n log n)3/2) algorithms for
composition and reversion of power series” in Analytic Computational Complexity (edited by
J. F. Traub), Academic Press, New York, 1975, 217–225. The final paper appeared as “Fast
algorithms for manipulating formal power series”, Journal of the ACM 25 (1978), 581–595. See
http://theory.lcs.mit.edu/~jacm/jacm78.html#BrentK1978:581

A generalisation to multivariate power series appeared as R. P. Brent and H. T. Kung, “Fast
algorithms for composition and reversion of multivariate power series (preliminary version)”,
in Proceedings of a Conference on Theoretical Computer Science held at the University of Wa-
terloo, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario (August 1977),
149–158. Abstract available electronically from http://wwwmaths.anu.edu.au/~brent/pub/
pub039.html

For more on (generalized) composition of power series, see R. P. Brent and J. F. Traub, “On the
complexity of composition and generalized composition of power series”, SIAM J. Computing 9
(1980), 54–66. Abstract available electronically from http://wwwmaths.anu.edu.au/~brent/
pub/pub050.html

Hakmem by Beeler, Gosper and Schroeppel [72] is available electronically in various formats
from http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html

Salamin [75] appeared as “Computation of π using arithmetic-geometric mean” in Mathematics
of Computation 30 (1976), 565–570.

For much more on the arithmetic-geometric mean, see J. M. Borwein and P. B. Borwein, Pi and
the AGM, Wiley-Interscience, 1987.

Sharper Results

Some of the constants can be improved. For example, π can be computed in ∼ 6.25M(n) log2 n
by the Gauss-Legendre method of Section 8, and the constant 13 in Theorem 9.1 can be replaced
by 10.5. For more information see the postscript to Brent [75a], available electronically from
http://wwwmaths.anu.edu.au/~brent/pub/pub032.html

18

