Proceedings
of a
Conference
on
Theoretical Computer Science

August 15-17, 1977
University of Warterloo
Waterloo, Ontario
Canada

Additional copiet available, lor S froee:

Theory Conterence, Lompueter Scwnce Dlepartment,
Unaiver<ity of Waterloo, Winerloo, Ouwtagia NI A0, Camnda,




TAST ALGURITHME FOR COMPOSITION AND REVERSION OF MULTIVARIATE POWER SERIES

{Preliminary Version)

R. P, Brent
Computer Centre
hAustralian Naticnal University
Canberra, hustralia

1. INTRODUCTICH

In our earlier paper [2], we gave
fast algeorithms for manipulating uni-
variate powsr serizs. In this paper,
fast zlgorithms for composition and
reversion of moltivariate power series
are presented. The new algorithms
reguires substantially less operations
than the best previgusly known counter-
parts. The amount of reduction in the
tumber of required operations increages

rapidly as the number ef wariables in

mpltivariate power series increases.

(5ee Tahkle 5.1.)

In Section 2 we first define for=
mally the general reversion problem for
multivariate power series. We then
show that every reversion problem iz
associated with a composition preblem,
in the sense that if the composzition
problem can be solved fast =0 can the
reversion problem.

Section 3 deals with the casze when
the power series we want to compute are
univariake, though they may result from
compositions or reversieons involving
multivariate power series. The bivari-
ate case is treated in Section 4. In

Section 5, we state our resules for

This work has been supported in part
by the NHationzl Science Foundatien under
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Naval Research under Contrackt NOOO1ld-
Fe-C-0370, MR 044-422.
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mere than two variables and give a table

stmmarizing the new results,

2. THE COMPOSITION AND REVERSION
PROBLEMS
Hotation

We deal with power scries over an
algebraically closed fiecld K, and

count operations defined by the field.

Let QO(sy,.-.,5.)= L g, .o
1 KD i 50 ipaeeesidy
i i =
i3 h .
By resBy be a power series. We
define the degree of the term
1y 4
qils---,ih'sl EEE- to he 11+...+1h.

Define deg @ {or "ord Q) to he the
degree of the maximal {or minimal,
respectively) degree terms in
DEEL,---,Ek}- Qfsl,..+,sk} mod 5n+1 is
defined to be the polynomial consisting
of all terms in Q{sl,...,skl which
have degrees < n. By computing a
polynomial, we mean computing all the
cogfficients in the polynomial.

Let Als) and EB(s) be two giaven
univariate power series and let
the number

C = A'B. We denocte by M{n)

of ocperations reguired to compute

C{s) mod 5n+1 The classical multipli-
cation algorithm gives M(n) = Uinzl
and the, FFT gives M(n) = 0{n log n).

For the convenience in describing ouor
results, we shall assume that M(n)

satisfies the following properties:



M{n) + MOIF]} + BUFD) +...0= ol(n))d,
Min) + 2M(IZ]) + an(19)) +...

= o{{leg n)M(n)),
Hi{n} + zm[;%]} + 4mr4%|l Faas

= O(M{n}},
nM(n) = o(M(n°)).

Mote that these properties are satis-

r:nz ar

fied if M{n) = cn lag n where
¢ 1s any nonZero constant.

The Reversion Froblem

The reversion problem for multi-
variate power series arises frequently
in waricus branches of applied mathe-

matics. (See e.g., [3,4,5] for gome

recent results on the problem.) The

problem can e defined formally as

follows: GSuppose that we are given

maltivariakte power series
Qi{sl,.,.,srg and Ci[Sl“'*’sk} for

i=1,...,m where h >m and

k>h=-=m Let 3 ="h - m. The

reversion problem defined by

Q‘l{le---,sj; Vltsl,--ajﬂk}J+ii,
Um{sljohurﬂk]] = Clisl,l--JEk}!

{2.1)
mesl,...,sj, vl{sl,...,sk],...,
Vm(sl,,..,sk}) = Cmfsl,---,skl,
n+l

is to compute Vi‘51=*"’5k} mod s

for i= 1,...,m. PFor bricfness we

shall aften use vector notation, so

(2.1} can be written as

(2.2) Qfs';v(ls)) =

Cis)

where the Q,s',V... are vectors
whose definitions should he evident

fram the context.

A=),

To ensure the ocxis-

tence of it is necessacy bo
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impose some conditions on the gystem
(2.1) or {2.2). The following theoram
ig an immediate generalization of Cors-
lLlary 5.1 of Kung and Traub [7] or

Theorem 3.1 of Lipscon [8]. Iks proof

is omitted,

Theorem 2.1.
If

(2.3)  Q(g:0) = €(Q), and

(2.4} D,Q(0;0) is nonsingular,
Eacd

then there exists a unigque vis),

Vi0) = 0, satisfying (2.2), and the

iterates Uil}

gensrated by the Hewton-

like iteration

(2.5 g (g -yl g -

N

pyats' v () ges vV ()
- ivl
mod s
are well dsfined and satiefy
ora (viM(s) - wis 3 2t

Mote that DO iz defined by:

Lk
Py Qg0 Ay 0 (s75Y |
M
DRl W) = : :
avlqn(i’:gﬁ---avmﬁm{ﬁ':gl
where iv_ﬂjtﬁ‘:z} denokas the partial

i
derivative of th5'=v} with respect to

V..
i

The Compositien Problem

Ubzerve that to compute v{1+l}[5]

by (2.5) we need ko comelute

i ,

Q[5’=E{ }igji and Dvg{i’:ztl}{s}}
HI+E -~

mod 5 +  This motivates the follow-

ing definition for the composition



probloem: Suppese that we are given

multivariatc power scries Q{sl,...,sh}
and Piisl,...,sk], i=1,...,m, where
hzxm k2h-m and P.(Q...;,0) = 0O
The com-

for all i. Let j=h - m

position problem defined by

R[sl,..+,5k} = Q[sl,.--,sj,
Pliﬁl""‘Ek}""’Pm{El*'"’sklj

is to compute R[sl,...,sk} merd En+l+

Note that the sizes of both the
composition and reversion problems are
determined by (h,k,m) where
h-k{mgh We saya composition
problem is associated with a reversion
problem or wice-versa if they are
defined by the same (h,k,m}. With
respect to any fixed (h,k,m}, let
REV{n) and COoMP{n} be the number of
operations reguired to solve a rever-
sion problem and the associated com-
position problem, respectively. Then
eimilar to Theorem 3.1 of Brent and

Kung [2], one '=an obtain by {2.5) that
(2.6} REV(n) = REV(I31) + of{comp(n)).

(Here we used the fact that the

(i), _,,-L i+l .
Dals':v " {g)) Tmed s needed in
{2.5%) can be computed by the Hewton-
like iteration given Dvg{irrgtl}{s}}

g i+l .

mad g , as in Kung [6].} ({(2.6)
implies that a reversion problem can
ke sulved fast if the associated compo-
sition problem can, Therefore, in the
rest of the paper, we shall focus
mainly on the derivation of fast compo-
giticon algorithm. It turns out, how-

evar, that fast reversion algorithms

may also help in the derivation of fast
compesition algorithms. This is rather
gsurprising and will hecome evident in
sections guch as §3.3 and §4.3.

3. UNIVARIATE COMPOSITIONS
AND REVERSIONS

In this section, we consider the
case when the power series we want to
compute are univariate (i.e., the case
when k = 1 in the notation of Section
2.} In the rest of the paper, in the
title of each subsectian, the left
part defines a composition problem and

the right part defines the associated

reversion problems.

3.1. Ris) = Q(p{e)), Q(v{e)) = C(s)

It has been shown in Brent and

Kung [2] that

1

CoMB(n) = O({n log n)M(n}),
1

REV(n) = o{{n log n)’M{n)).

(In fact, it is shown there that
COMP(n) = O{REV{n}) and

REV{n) = O{COMP{n}).}

3.2. Ris) = Q(s,P(s}}, Q({s.¥is)] = C{s}

Using R{s) = Eui{sl‘ﬂsl i, we

have

COMB{n) = O{nM(n}}).
By (2.6] we have

FEEV(n} = O{nM{n}).
%3. Ris) = G{Plisl,Pq{sl},

Qltvl{s],vzts}} = Clis}
ﬂgivlis},¥2{3]] = czis}




ord P, = r. Let

1
r+l +aee, Py # 0.

Supposa that
_ r
Pl{s} = Pp8 + Ppyg®

We make the change of variables

- r
Pl{sl = prt . Then
1
P (=) = ol
_ def "1 o r+l
t=P,(s)"= {—"'"pr 1 =s{l + TP, S+ saels

Hence there exists ﬁl{t} such that

vl{t) = 5. We have

R(Vy (£)) = T(t)%Fa(p £, B,y (V (6] D)
and

R(s) = R(V, (F, (s))) = Q(F, ().

o+l

Therefore, R{g) mod s can be com-

puted by the following algorithm:

Algorithm 3.1,

1) Compute 31[51 e En+1.
2] Compute ?l{t} aod 7L,
3) compute B, (¥, (t)) mod gl
4) Compute Qf{t) mod ga+L
n+1l

5) Compute E{Ei{s}} tned s -
Using a kechnique of Brent [1], step 1
can be done in O(M{n)) operations.
By results of $3.1, steps 2, 3, and 5
can be done in O({n log n}leM{nll
operations. Using the technigne of
$3.2, step 4 can be done in O{nM{n})
cperations. Thus, Algorithm 3.1 takes

o{nM{n)) operaticns. We have
coMb(n) = of{nt(n)},

and by (2.8},
REV(n) =

o{nMin}).

E;ilﬂtﬁj = Q{FT{S}j“F"
QiMis1) = Eis) an

For h =

By (51},

h * h System

3, we write
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R(s) = T 0, (p(s),P,(s)} By(s) .

By results of #3.3, for each 1
1

Qi{Plis},Pzis}} mod 8™t can be com-

puted in O{nM{n)} ocperations. Hence
the total work for h = 3 is
Qtnzﬂln)} operations. For general &,

using
Ris} = E-Qi[pltg},...,Pk_lts}]*Fkisii:

we obtain by induction that for h > 3,

coMp(n) = of{n"  M{n}},
and by (2.86),
REV(n) = O{n" TM(n)).

4. BIVARIATE COMPOSITIONS
AMD REVERSIOHNS

In this section, we congider the
case when the power series we want to
compute are bivraiate (i.e., the case
when % = 2 in the notation of Section
2). To avoid using subscripts in this

we shall write
L

seckion,

1

nE
s,k, mod {s+t] for 54155, mad 5n+

respectively. The following two
lemmas give some basic results concern-
ing the multipliecation and division of

bivariate power series.

Lemma 4.1.

Let A(s,t) and B{s,t) be two
given bivariate peolynomials. IE
deg A £ a, deg B £ b and the degree of

B with respect to A is < a, then

n+l

Als,t)*Bl(s,t} mod {s+t) can be com-

puted in M,{a,bin} operations, where

F



M {a,bin} = Min+e-min(f,n}},

e = minf{a,n} +min(b,n},

f = a+minfa,b).

Broof
It suffices toa econsider

A (5,t) = Als,t) mod (s+t)""! ang
B (s,t) = B(s,t) mod (s+t)™ 1, Let
C = An'En' Then deg C ¢ e, and the
degree of C with respoet ko t is £ £,
where £'= min{a,n)] + min{a,b,n). It is
easgy to see that the coefficients in
C{s,t) are one-to-one correspondent to

thesa in the univariate polynomial
def

e+l]. Let tsitj be anp

C(s)“'cis,s
arbitrary term in C(s,t) med (s+£)P*E,
Then the degree of the correspondent
term in C(s) satisfies:

def(es® (8*V I} o ju(esrl)

£ n+e.-min( £ ,n).
Hence it is sufficient te compute

nte.min( f' ,n}+1
H

C(5) mod s using

C(s) = B (s}-B (s) where A {s} =

e+ly | The

e+l T oiey —
a (8,57 °7) and B (s) = B (s,s
lemmza follows by noting that

min{£',n} = min{f,n). -

Lemma 4,2,

Let A(s,t) and B(s,t) be two given
bivariate power series. If ard B = 0O,
then € = A/B exists and C(s,t) mod
(s+t}™*! can be computed in O(M{n2))
operations.

Proof

Since ord B = 0, the reciprocal
D of B exists. Using the Newton-like
iteration [kung [6]), one can compute

D{s,t) mod {E+t}“+1 in Uiﬂzin,n:nl +

sznfz,nfz;nfz}+,.. ) aperations, i.e.,
in U[M{nz}J operations by lLemma 4.1.

cis,t) mod (s+t)"*! can be obtained by

n+l
a

multiplying A{=,t) mod (s+t) nd

1 in D{HEnjl}

n+
Di{s+t] mod {s+t)
operaticns. B

4,1, 5.t} = Pl .t Vis. t =

cis,t)
Suppose that

{4.1) P{s,t} = tB{s,t) where r & 1
and ord f = 0. We can assume that

r < n orf the composition problem would

be trivial. 1In the following we shall
generalize algorithm 2,2 of Brent and

Kung [2] to compute the bivariate

polynomial Ris,t) mod fs+t}n+l.

Write
P=2pr 4 i i
- Pr where F, 1s a polynomial of

degree m with m < n and E. is a power

series with ord P. g mil. (The value
of m will be determined later.) By the
Taylor series expansion, we hawe
Q{e) = QP +P.)
= QP ) + Q' (p)-p_ +
P A
Let &= fﬁj+ Since ord {Pr}5+i > n+l
for any i > 0O,
a(e(s,t)) mod (s+t)"*?
= [Q(e (s,0)) + o0+ 2alP e (s,00)
cp_{s,t) ) mod (s+t) 7L,
Therefore, the following algorithm

computes Ris,t] mod {s+t}“+l:

Algorithm 4.1.

1. Compute {Qthfs,t}} mad
{ﬂ+t}n+£r+1.
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(1}

Z. Compute Q {Pm[s.tj} mod
{E+t}n+[L—i}r+1' for i =1,
vee, L

. Compute Pr{s,tji rod {s+t]h+1,

for i = 1,-=-, 4,

4. Compute %?{i}{Fmia,tJ}-Pr{E,t}i
n+l

mad [s+t) y fTor i= 1,+"*,L,
5., Eum the results cbtained from
step 4.
It is easy to cheek that steps 3, 4

and 5 =an all be done in

T, = of £M(n2}) = o (M/mIM(n?))

1

cperations., If m £ r, then

Pm{s,tj = 0 and steps ! and 2 become
trivial. In the following we assume
that r £ m.

{4.2)

Hence for O £ i ¢ £,
n+{li)r+l € n+im+l £ 3p+l,
Lemma 4. 3,

Q(r, (s,t)) mod (s+t)™*1 can be
computed in O:mm(nzll operations.
Proof

Without loss of generality, we
assume that @ is a polynomial of
degree n and that n is a power of two.
We may write

e _{s,t)) = GL{Pmis,t}J *

p (s, 00200 (s,0))
whera Ql and Dz are polynomials of
degree n/2, Thizo relation gives a
recursive procedure for computing
QfEmfs,t}}. Let T{j) he the number
of operations needed to ecompute both

n+l
o

pﬂ:s,t}sz mod (s+k) nd

Q(P_(s,t)) mod (s+t)™*! with deg @ = 3.
Then by the recursive pracedure and by
Lemma 4.1, we have

T{3) £ 27(3/2}+0(M, (jm/2, jm/2;n) )

< 2T({j/2) +0{M(n+min{im, 2n}.
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min{jm,n)})
Let g by the largest integer i such
that mn/2" > n. We have

D{M{Enz

T{n) = +n) +-+ - +29.
M{2n24n) ) 4298 g 29t
= o({mM{n?} ) +2mT{n/291L)
Using our assumptions on M{n} and the
mn{2q+1 < n, we have

o(n/29Th

fact that

= O{M{n+{mn/29%1) 2} 4
2M(n+(mn/29%2) 2y 4.

= D{Min+n2}+2H[n+n2j22]+
aM{n+nZ/a2) 4. )

= o(u(n?) +nu(n))

= o(M(n?)).

@

apd (4.2}, step 1 of

Henge T(n) = G{menz}}+
By Lemma 4.3
Algorithm 4.1 can be done in

T

, = olm(n))

operations, Let H{s,t} = D{Pm{a,t}}.

We have
&tH{s,tl = Q'thts,t}j~ath[s.tl-

By (4.1), 3B _(s,t) = tr“lﬁm[s,t} where

ord mes,t] = 0. Henco BtH{s,tJ is

divisible by L EtH{E,t} =
tr'lﬁ{s,tl. Then

fifs,t) = Q' (P (5,8} -8 {s,¢).

Hence by Lemma 4,2, Q'{Em{s,tjl meod

n+{ A= 1} r+l

{=+k] edn be computed in

D[M{nz}} operations from f{s,t) mod

{5+tj"+{£_ljr+l

}n+{£-1]r+l_

and Pmts,t} mad
{s+t The latker two
polynemials can clearly ke computed in
ﬂtnzl cperations from the result af
step 1 and from P_(s,t). Similarly,
Q" (P (s,t)] mad (gt P2 o e
computed in OEM{HEJ] cparations. Thus,

step 2 takes ntTl} operations,



Taking m~fn, we conclude that if (4.1}
holds then Algorithm 4.1 takes
G{J?mtnz:l cperations.

Change of Wariahles

We now consider the case when
(4.1} is not satisfied. Let
ord P(s,t) = r, r > 1. It is easy to
sga that there exists a ¢&X such that
the minimal degree terms in B(s,t)9ef
P(s+ot,t] inelude cltr for some non-
Zero ¢, €K, Making another change of

1
variables s = Et, we define F{E,t} =
P{st,t). Then cltr is the unigue
minimal degree term in ?{E,t) and all
other terms in P(s,t) are divisible by
t".  Hence Fis,t) satisfies (4.1).

Define R{s,t) = R{s+ct,t) and
R(3,t) = R(5t,t). Then R{s,t) =
Q(F(s,t)). We have the following
algorithm for computing Ris,t) mod

{s+tjn+1.

Algorithm 4.2.

1. Compute P(3,t) mod (a+t)2"t1,

2. Compute P(s,t) mod {§+t}2n+l+
3, Compute R(s,t) mod t§+t}2“+l,
using R(5,t) = Q(B(s,t)}.

4. Compute R(s,t) mod (s+t)"*l,

using E{E,t] = ﬁ{a!t,t}.
5. Compute R{s,t) mod {s+t]n+1,
using R{s,t) = R{s-et,t).
One can check that the algerithm is
well-defined, namely, each step can be
carried out after its previpus step is
finished. By Lemma 4.4 below with
m= 1, steps 1 and 5 can be done in
0{{log nJH{nz}J operaticns. Steps 2

and 4 amount tochanging indices of

coefficients; they need no operations

defined by the field K. Since

F(E,t) satisfies (4.1}, step 2 ean be
cemputed by Algorithm 4.1 and thus
takes G{»Eh[nﬂll operations.
Therefore, Algorithm 4.2 takes

O {M(n®)) operations and we have the
follewing theorem.

Theorem 4.1.

For the composition problem
Ri{s,t] = Q{P(s,t) and the associated
reversion problem, we have

coMr (n} = 0{4ﬁﬁinz}},
REV (n) = o{AM(n?)),
4.2, Ris.t) = Qis,P(s,t}),
Qis,V{s,t}} = C{s,.t)

Suppose that

{4.3) B{s,t) = t*B(s,t)
where r > 1 and ord £ = 0. Algorithm
4.1 can be used to compute Ris,t] mod
(s5,t), except that coefificients of ¢

are now power series in s instead of

constants. Corresponding to Lemma
4.3, we have the following lemma:
Lemma 4.4,

Q(s,P_(s,t)} mod (s+e)HL

can be
computed in O(m(log n)H{nz}J opera-
tions.
Proof
The recurrence for the eost of

camputing Q{s,Pm{a.t}} i5:

T(3) £ 2T(3/2)+0[M;(im/4, jm /4 ;n) +

M, (im/2,n:n}).
This implies that T{n) = O(m{log n)

Min?)). =
Thus, Algorithm 4.1 now takes
O{m({log nJH{n2}ﬁ+0£fnfm}an2}l opera-
tions. Taking m~{n/log n]%} we

conclude that if (4.3 holds then



Bis,t) mod ia+tj“+1 can be done in
of{n log n}th{nz}} operations.

Change of VYariahles

We consider the case when (4,3) is

not satisfied. The change of variablea
technigue used in 4.1 can again be
applied, except that we should now

choose © to bhe nonzero and that we

have

il

(E,t) = @{5t+ct,B(s,t)},

where ?t;,t} satisfies (4.3). Making

another change of variables & =

{c+5) " 1F, we define B(5,0) =
(3, (cs5) 710 anda R(ED =

R(E, (e+2)"1E). Then

®i{s,D) = ao(E,F(s,8).

We can use the following algorithm to

i+l

compute Ri{s,t) mod (s+t)

Algorithm 4.3.

1. Compute P{s,t} mod [E@t}2n+1:
using P(s,t) = P(s+ct,t).

2, Compute ﬁ(:,t} e Talsl {E*t)2n+lp
using B({5,t) = B{st,t)

3. Compute B(3,t) mod t§+E}2n+l,

B(E, (cem) " 1T,

mad {§+$ﬁ2n+1,

Q(t,B(s,%)).

mod {§+t]2n+l)

5. Compute E{E,tj

using &(s,t) = RS, (c+s)t).

6. Compute R{s,t) mod (;+t1n+l;
using R(s,t) = R{s/t,t).
7. Compute R{s,t) mod {3*t]n+l,

using Ris,t) = Ri{s-at,t).

Let Bs, k) = alrjj t+A2{'EJt2+--+
-1

Then

B(s,B) = B(E,(c+3) ™D
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=[A {3} /tevs) | E+
(A, (3)/(e+3) 21T 4ee
Hence step 3 can be done in ©(nM(n)}
operations. Since P(s,t) satisfies
(4.3), Bstep 4 canJPa done by Algorithm
4.1 in O{(n log nP H{nE}J pperations.
let f(5,E) = B_(5)+8,(8)E+-- .

Then

(5, (cts)t)

B_(5)#B, (3} (ct8) theor .
This implies that step 5 can be done
in a{nM{n}) operations. By the argu-
ments used in analyzing the cost of
Algorithm 4.2, we see that steps 1, 2,
& and 7 can be done in O{(log n}H[nEl}

cperations, Therefore Algorithm 4.3

takes O{({n log n}éﬁ{nz}l aperations and
we have the following theoxrem:
Thaorem 4.2,

For the composition problem

Ri{s,t) = 0(s,P(s,t)) and the associated

reversion problem, we hawve

hy
COME (n) Of{n log niiﬂinz}},

REV {n) of{n log nIZMEnzil-

Ri{s,t) = Q{P,{s,t}, P,y{s,t}},
Ql{vlis,ti, ?z{s,tl}

4.d.

\

position problem to that

= Eliﬂ-;tig

Q4 (Vy(s,t), v;[s,t}]l = cyls,t)

We shall reduge the present com-
considered in
(4.2, by the change of variables
technigue used in 3.3, Suppose that
(4.4)  Py(s,t) = t'B (s,t)
where £ > 1 and El has a nonzero
canstant term o. We make the change

of variables cu® = Fl{s.t}. Then
a = Fo(s,0)%ERleat), 1y

" tﬁlj_?l_:} y e



One can easlly chock that the rever-
gsion problem 3l[s,vts,u}1 =y sAtis-
fies the hypotheses of Theorem 2. 1.

Henee there exists Vis,u) such that

t = V(s,u}). We have

Ri{s,v(s,u}) = E{s,u}dgf
Q{cur,Pz{s,vfs,uIJ],
R(s,t} = R(s,V(8,F (s,t))) =
Q(s,F (s,t)).

Therefore, R{s,t) mod ts+t]“+1 can be

computad by the following algorithm:

Algorithm 4.4,

1. Compute Flis,t} mea {s+t)n+1.
‘2, Compute V{s,u} mod {s+u}n+l.
3. Compute Pjis,v{s,u]} mad

[s+u]n+l.

4. Compute Qi{s,u) mod {3+uin+1.

5. Compute E{S,Elts,t}} med
{s+e) L

By Theorem 4.2 it is easy to see that

the algorithm takes o(({n log n} M:nzj}

operations.

For the case when the condition
(4.4) does not hold, the change of
variables used in 4.2 can be applied
and it takes 0(({log n}M[nEJ] ocpera-
tione. Therefore we have established
the following theorem:

Theorem 4. 3.
For the composition problem

R(s,t) = Q(P,(s,t}, Py(s5,t)) and the

assoeciated reversion problem, we have
Y

CoMP (n) = O((n log n}im{nzn.
REV (n) = O({n log n)°M{n°)}).
4.4. R{s,t) = Q[P (s,t},--.,

Pija.til,
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Qis,t;Vi{s,tly= Cis,t} an

By the change of variable tech-
nigue used in 4.3, the composition
problem R{s,t) = D{Pl[E:t},---;
Ph{s,tj] can he reduced to Ri{s,t) =
Q{S,Pzﬂs,t},---

Ris,t) = Q{s.t,P3{5,t},'--,Ph(s,n}}.

,Phts,t}} and again to

For h = 3, the last composition
preblem can clearly be done in
G{HM{HE}] pperations, hence so can the
first two problems. The h = 4, we can
salve the last composition problem
according to
R(s,t) = 0, (8,8,P4(s,t)) B, (s,t) %,
in G{nzm{nzlj operations, henco the
first two ecan also be done in
D[nzﬂ{nz}l gperations. In general,
for h » 3, we have
COMEF (n) =
(n}) =

5, MULTIVARIATE COMPOSITIONS AND
REVEREIONS - A SUMMARY

Qinh'zﬂtnzl}:

REV o(nh‘zmtn2l}.

The technigues used in previous
sections have been generalized to
chtain results for more than two
variables, In table 5.1 we give a
surmary of the new results together
with the best previously known results,
for some typical composition problems.
The pronfs of new results for more
than two wvariabkles are not given in
the paper. The reader who understands
those algorithms used for the
bivariate case chould have no diffi-
culty to generate his or her own
proofsa.

Eince each reversion prablem

is associated with a compasition



problem, results in Table 5.1 can be

immediately translated into result

on the corresponding reversion prob-

lower

Fer the results in Table 5.1, M(n)

is taken to be O(n log n) and the

bounds are obtained by counting

lems. coefficients in input power series.
Table 5.1
Bounds on the Number of Operations needed
to Solve Composition Problems
Compoaicion Problems Best Previously | Hew Upper Bounds Lower Bounds
known Upper
Bounds
Qi{P({s)] D(n2 lag n) Of({n log n}3fzjf ﬂ(ni
QB () 4ee1,B, (1)) 131 o™ 1og w3 | o 1oz n) otaPy
"""""""""""""""""""" T s T 2
QP(5,,5,)) o(n” log n) o(n®*> 1og n) ote)
Q3,5 Pl5,5,0) o(n> log n) ofnZ > lug:'z 1) o)
2. '
Q{Pl{s].szhl’ziﬂl.ﬂzﬂ D{nﬁ log n) 0" "> leg' "Im) nfnh}
h
QUE, (8745,) 1 2v- 1B (5,58,)) o2 1oz n) | O(n" log m) o™
h>2
QCe(g)) 0™ 1og m) | 0™ 108 n) 0t
- ket 1.5 k
Qsyreea8 5Py (8) 0P (8] oa?*d 10z ny |03 108! P ofn")
ﬂ"—"jék-ll 'E' = {ﬂlp-ri--!.’k) h+k h h
Q(Plfg}u---aﬁhtﬁ}l ofn log m) ofn log n) ofn 3
h>k, g = {sl,...,ak}
t This zesult was previcusly obtained in Brent and Kumg [2].
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