
The Chip Complexity of Binary Arithmetic

R. P. Brent
Department of Computer Science
Australian National University
Canberra, A. C. T. 2600
Australia

H. T. Kung
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
U.S.A.

1. Introduction

The chip complexity of a computation is concerned with

the chip area, A, and the time, T, required to perform the

computation when implemented on a chip. An area-time
product AT e~, for 0¢ ~ O, is used as a complexity measure. A

particular value of ~, which is chosen by the u~t}r, reflects the

relative importance between A and T. This paper derives

lower and upper bounds on the area-time complexity for chips

that implement binary arithmetic, assuming a model of

computation which is intended to approximate, current and

anticipated LSI or VLSI technology.

In Section 2 we describe our computational model and basic

assumptions. Section 3 establishes for any n-bit multiplication

chip a general lower bound

AT 2= - ~(n t+¢¢) (1.1)

which is valid for all = ([0,1]. The case = = 1 was established

independently using a more restrictive model than ours, by

[Abelson and Andreae 80] (see also ([Savage and Swamy 78]).

In Section 4 we sketch a design for n-bit mtdtiplication that

gives

AT 2= - O(n t*¢¢ Ig t*2e¢ n), (1.2)

for all O~Z0. Thus the exponent 1 + = o f n in (1.1) and (1.2)

IThi . roeelrch w n supported in part by the National Science Foundation
under Grant MCS 78-236-76 and the Office of Naval Research under Contrects
N 0 0 0 | 4 - 7 6 - C - 0 3 7 0 end N00014-80-C-0236. Most of th*s work wle clrrled
out I t the Ausireliln National Univereity while H T. KunlI was vilitin$ there as e
Vili 'tlnt Fellow durin| Mey ig7g.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1980 A C M 0 - 8 9 7 9 1 - 0 1 7 - 6 / 8 0 / 0 4 0 0 / 0 1 9 0 $00.75

is tight for e¢ ([0,1]. The chip complexity of binary addition is

studied in Section 5. We show that for any ! S w _< n, n-bit

numbers can be added in time 0(n/w + Ig w), using area

O(w Ig w + |), if the input bits from each operand are

available w at a time. |n Section 6 we compare the chip

complexity for binary multiplication and addition; we conclude

that multiplication is harder than addition, for all complexity
measures AT 2=, ¢~ 20.

The results of this paper mainly draw on two papers by the

authors ([Brent and Kung 79a, Brent and Kung 79b]).

2. The Computational Model and Basic
Assumptions

We assume the existence of circuit elements or "gates"

which compute a logical function of two inputs in constant time

and occupy at least a constant minimum area. Gates are

connected by wires which have constant minimum width

(equivalently, the wires must be separated by at least some

minimal spacing). Our measure of the cost of a design is the

ares rather than the number of gates required. This is an

important difference between our model and earlier models of

[Winograd 65], [Brent 70] and others. For motivation and

discussion of models similar to ours, see [Thompson

79, Leiserson 80~

For proving the results of this paper, various subsets of the

following assumptions AI through A8 are used. Comments and

justif ication are given following the statement of each

assumption.

A| . The computation is performed in a conve~¢ planar
region R of area A.

Because of heat-dissipation, packing and testing
requirements, a two-dimensional planar model is
reasonable. The convexity assumption is not
restrictive in the sense that almost all existing
chips or useful modular designs do have convex

190

boundaries for packaging or modularity reasons.
(The convexity assumption can be removed for
part of Theorem 3.1 below by using a different
proof.)

A2. Wires have minimal width ~ • 0.

is assumed constant, but in applications of our
results it will of course depend on the tecllnology.
We also assume R has width at least ~ in every
direction.

A3. At most ~ ~ 2 wires can overlap (or intersect) at
any point in R.

A chip may consist of v layers. Wire crossings
through different layers are allowed. In fact,
transistors are typically formed by cross-overs of
wires. Since v _> 2, the graph of wires (edges)
and gates (nodes) need not be planar in a
graph-theoret ic sense.

A4. I/O ports each contain a), x ~ square ~nd thus
have area at least /0_>)2 An [/0 port can be
mult iplexed to handle more than one input or
output variable.

]f R is a complete chip, p will be large compared
to ~2.]f R is only part of a chip and | /0 is to
other regions on the chip, D could be of order ~z.
We do not require each input (or output) variable
to appear in a distinct input (or output) port, as
required in [Thompson 79]. So] /0 port may be
mult iplexed as they often are in practice.

AS. A bit requires minimal time /" • 0 to propagate
along a wire or to transmit through an | /0 port.
The time for one gate computation and an
arb i t rary fan-out of the result is included in 'r.

Since dimensions are limited by the minimal
w i re-w id th ~ and minimal gate area, a minimal
propagation time is reasonable. We do not need
to assume that the propagation time increases
wi th the length of the wire. With the (small) sizes
of chips we now have or anticipate for thn future,
the propagation lime, which is the time needed to
charge or discharge a wire, is limited by the wire
capacitance rather than the velocity of light. A
longer wire will generally have a larger
capacitance~ and thus require a larger driver to
maintain constant propagation time, but Ihe driver
area need not exceed a fixed percentage of the
wire area, so can be ignored if ~ is increased
slightly; see [Mead and Conway 80]. Although it
would be reasonable to assume bounded fanout,
we do not need this assumption for proving lower
bounds. When proving upper bounds, we do
assume bounded fanout.

A6. The times and locations at which input and output
bits are available are fixed and independent of
the values of the input bits.

When proving upper bounds in Sections 4 and 5,
we further assume that if a~ and aj are any two
bits in an operand such that a I is more significant
than a,, then a i is not input (or output) to the chip

191

before aj, but they are allowed to be input (or
output) to the chip in parallel. This assumption
holds for all the arithmetic circuits that the
authors know.

A7. Storage for one bit of information fakes area at
least ,/3 • O.

is typical ly several times larger than ~2.

A8. Each input bit is available only once.

There is no free memory outside R. If the same
input bit is required at different times, it must be
stored within R, taking area at least/3 (see A7).

3. Lower Bound Results for Multiplication

Let p = P2n "" Pl be the 2n-bit product of n-bit integers

a - e n . . .a t e n d b - b n . . .b 1.

3 .1 L o w e r bounds for shifting circuits

When b = 2J, p is a shifted j bits to the left. Thus, any

mult ipl ier circuit must also be a shifting circL=it capable of

per forming j -b i t shifts for all 0 S j S n- | .

Theorem 3.1: Under assumptions AJ to A6 of Section 2,

any chip that is capable of performing the shifts as described

a b o v e must satisfy

AT 2 z Kin2, (3.1)

AT ~: KzLn (3.2)

w h e r e

K~. - 2[~,'r(9 - 4,51/2)/v] ~, (3.3)

K 2 =)a'(9 - 4"51/z)/(~rv),

and L is the perimeter of the chip.

Before proving Theorem 3.], we need two Lemmas.

Lamina 3...J.: For any convex planar figure with area A,

per imeter L, diameter D, and chord of length C perpendicular
to a chord whose length is the diameter D,

A Z CD/2, (3.4)

and

A z CL/2w. (3.5)

P.roof: The results follow from well-known inequalities for

convex figures. For a proof (and a definition of "diameter"
etc.) see, for example, [Yaglom and Boltyanskii 6]]. •

L-emma 3~2:

rain Osr<] max(2r, (1-r)2/8) . , 2(9 - 4'5t/2).

P.roof:]t is easy to veri fy that the minimum occurs when
1 6 r - (l - r) z and the only root of this equation in [0,1] is
r - 9 - 4"5112 •

Proof of Theorem 3.[: Consider any chip that can perform

j -b i t shifts for all 0 S j S n- [. By assumption A1., the chip

forms a convex region R. Let D be the diameter of R, and Y a

chord of length D.

Let S - {P2,-t, "", P,}, and let M be the maximum number of

elements of S sharing or multiplexing one output port of the
chip. By assumption A4, an 1/0 port has area at least p z ~z.

We represent each 1/O port by an infinitesimal point on the

port . Based on these represent|yes of i /0 port% we partition

the chip by a chord X perpendicular to Y as follows• The
chord X divides S into two subsets S! and S z such that

represent ives of the output ports for elements of S z lie on

one side of X and those for elements of S 2 lie on the other

side of X. (Since representives of t/O ports are of infinitesimal

size, we can assume that by an infinitesimal perturbation from

the perpendicular to Y, X does not intersect any of them.) By

"sl iding" the intersection of X and Y along Y, we can arrange

that

IS~ s [(n + M)/2J (3.6)

for i - It and 2. For notational convenience, we use d to
denote L(n + M)/2J. When the j-bit shift is performed, P~,I

takes the value .of a r For dS i_<n , the ith row in Table 3-1.

indicates the pl's that take the value of a I under j-bit shifts for

all n-i S j S n - l .

ai \ J 0 I " ' n - d " " n-2 n-t
. a .

a d

ad+l

an-I

a n

Pn " " Pn+d-2 Pn+d-1

• " ' Pn+d- l Pn+d

Pn

Pn " ' " P2n-3 P2n-2

Pn+l " " P2n-2 P2n-1

Table 3 - | : The dependence of the pl's on the a0's
under various shifts.

Note that in the table all the pi's belong to S, which is divided

into two parts by the chord X. By (3.6), in the ith row of the
table there are at most d of the pt's for which the

represent ives of the output ports lie on the same side of X as
the representat ive of the input port for a r Consequently, in

the ith row there are at least i-d of the po's for which the

representat ive of the output ports do not lie on the same side
of X as the representive of the input port for a r For all rows
In the table, there are a total of at least
X d s i s n (i - d) z (n : M)2/8 such p;s• This implies that one of

the n columns in the table, say, the jth column, must have at
least (n - M)Z/8n such pl's. In other words, if

then

, . {i I i({d, d+ l , ..., n} and the representative of
the input port for a 0 does not lie on the same
side of X as that of the output port for pj.j},

I11 z (n - M)2/Sn.

For i([, the input port for ai or the output port for PI•j may

intersect the chord X, although their represenlatives do not.

Define

|' i {i I i(|, and the chord X intersects the input

por t for a 0 or the output port for PI*j, or both}•

Then

I - I ' = {i I i({d, d+1. n}, and the input porl for

a I and the output port for Pi+j do not inter[,ect
X and they lie on different sides of X}•

Consider the computation of the j-bit shift• Note thai the j-bit
shift, which maps a I to PI*I for i = I,..., n, is an identity

mapping. Hence, before the shift is complete, at least It-t1 bits
of information about ai, i(I-I ' , must cross X for computing p~.j

for i (I - I ' , and a t least Ii'l bits of information about ai, i(I', must

input to or output from some I/O ports intersecting with X for
computing Pi+j for i(l ' . Suppose that the chord X is of length

C. Then by assumptions A2, A3 and A4, at most vC/~ wires or

I /O ports cross X. Thus, by assumption A5, lhe time T to

per form the j -b i t shift must satisfy the inequality:

(uC/X)(T/'r) a 1|41 + I|1
-I11
2 (n - M)2/gn,

or

T z (~'r/vC)n'(1-r)2/8 (3.7)

where r = M/n. Since M outputs come throul;h one output

por t , assumption A5 gives

T ~ M'r = 'rnr. (3.8)

Suppose M < n. Then at least one wire or one | /0 port

crosses X, and assumptions A2 and A4 give

C ~ ~. (3.9)

By assumption A3, v Z 2. Combining this with (3.8) and (3.9)

gives

T ~ 1'nr - (2C'/'/2C)nr >_ (~'r/vC)n'2r (3.1.0)

From (3.7) and (3.1.0) it follows by Lemma 3.2 that

T Z (2K0/C)n, (3A 1.)

where

K 0 = X7"(9 - 4"51/2)/v,

sO by (3.4),

AT 2 Z (CD/2)(2Ko/C)2n2 _> 2Ko2n2, (3.12)

since D Z C . Suppose that M = n . Then r = L Since there is

at least one output port, assumption A4 gives A Z p ~ ~z so

by (3.8)

192

AT2 Z (~'rn) 2 • 2KO 2n2. (3.13)

Result (3.1) follows from (3.J2) and (3,13). Result (3.2) follows

in a similar way. If M < n, the combining (3.[1) with (3.5)
gives

AT ~ (CL/2w')(2K0/C)n = K2Ln. (3.14)

Suppose that M - n. Since by assumption A2, R has width at
least ~ in every direction, we can choose a chord that is of

length C ~ ~ and is perpendicular to Y. By (3.5) and (3.8) with

r - 1, we have

AT ~ (CL/2'wX/'n),

which gives

AT ;~ K2Ln.

Since any circuit that performs integer multiplications must

also be able to perform shifts, (3.1) and (3.2) hold for any

n-bi t multiplication chip.

Result (3.2) can sometimes give useful lower bounds which

are based on the [/0 characteristics of a mt,ltiplication or

shtftinl~ chip. If at one time the chip inputs or outputs a total
of z b,ts along its boundary, then by assumptions A3 and A4
L ~ z~/~ and (3.2) gives AT ~ K2(~z/v)n. Thus for any
multiplication scheme that accepts, say ~(n t/2) input bits

simultaneously along the chip boundary, we know immediately
that AT - ~(n 3/2) (cf. the multiplication scheme in Section 4).

Result (3.1) (with a smaller constant for K 1) could have been

established by a proof parallel to that used by Thompson [79]

for the discrete Fourier transform problem. In fact, using his

result that relates the area of a graph to its minimum bisection

width, one can derive (3.1) without the convexity assumption

in AI . Our proof, above, represents a new approach that

incorporates geometric properties of the chip boundary in the

lower bound proof. We feel that the extra convexity

assumption we make is not restrictive, since most existing

chips do have convex boundaries for packaging reasons.

Furthermore, we note that the convexity assumption is needed

for establishing results such as (3.2) that relate AT to

perimeter L. In [Brent and Kung 79c], under a similar

convexi ty assumption, light lower bounds on the minimum area

required to layout complete binary (or t-ary) trees are

obtained.

An interesting corollary of Theorem 3.1 is that lower

bounds in (3.1) and (3.2) hold for chips that pc,rform floating

point additions, for which shifts are needed to equalize

exponents. This explains why the area-time requirements for

f loating point addition are much higher than those for integer
addition, as observed in practical implementation. (Charles

Leiserson at CMU first pointed out to one of the authors the

application of Theorem 3,1 to floating point addition.)

3 . 2 A lower bound on the area for mult ip l ier circuits

In Theorem 3.| we gave lower bounds on AT 2 and AT for

shift ing circuits. Now, using different techniques, we give a

lower bound on A for multiplier circuits.

Theorem 3.2: Under assumptions A4, and A6 to A8, any

n-bi t multiplication must satisfy

A ~ Aon,

where

A 0 = (5/6)[13p/(~+p)]. (3.15)

Let ~n = {ij I 0 S i < n, 0 s j < n} be the set of all integers

which can be written as a product of two factors, each less
than n; and let //.(n)= I~J be the cardinality of '~n" For

example, ~4 " {0, 1, 2, 3, 4, 6, 9} and #(4)., 7. Before proving

Theorem 3.2, we need lower bounds on F(n) and a related

function,

~(n) - rig F(2") + l -n] /n. (3.16)

Lemma 3..__3.:

pin) a er(n),

where o(n) - X i (P n _ ! i and Pn-! is the set of prime numbers

smaller than n.

Proof: The numbers pj are distinct !f 2 _<p < n,.p prime:
a n d ~ ' j S p. Thus, the result follows from me oerinmon ot

#(n). •

Lemma 3.4: For all n Z 4,

#(n) ~ nZ/(2 In n).

Proof= Using a slight modification of Theorem I and

equation (4.13) of [Rosser and Schoenfeld 62], we can show

that for all n ~ 348,

o'(n) • n2/(2 In n).

Thus, the result for n ;c 348 follows from Lemma 3.3; For

4 ~; n S 347, the result may be verified by a straightforward

computation. •

Lemma 3.5: If ~(n) is defined by (3.16), then for all n ~ 1,

8(n) ~ 516.

Proof: From Lemma 3.4

~(n) ~ rn - Ig(n In 2)I/n, (3.17)

and it is easy to verify that the right side of (3.].7) is at least

5 /6 for all n ~ 18. (There is equality for n - 18 and n=24.)
For 1 ~ n ~ 17, direct computation shows that ~(n) ~ 9/10. •

193

We conjecture that

limn..~o o [(F(n) Ig Ig n)/n z] " 1,

and

~(n) z 9110
for all n z 1. Empirical data that support this conjecture are

presented in [Brent and Kung 79b].

Proof of Theorem 3.2:

If n - 1 there is at least one output port, so A ~ p, and the

result holds. Hence, suppose that n ~ 2.

Consider the state of the computation just before the last

input bit(s) are accepted. Let m be the number of input bits

stil l to be accepted, so 1 S m ~ 2n.

It is easy to show that there are some inputs a and b such
that the output bits PZn' "" P, are not determined by the 2n-rn

input bits already accepted. Thus, by assumption A6, at most

n - I bits, PPt, " , Pt, have been output.

Suppose that s bits of information are stored in R at this

instant. Then we must have by assumption A8

p.(Z") S 2 "÷(' l)+s,

or the circuit could not produce all p.(2") possible outputs, and

would fail for certain inputs, Thus

m + s Z Jig p(2")+t-n] m rig(n).

and, from Lemma 3.5,
m + s ~ 5n/6. (3.18)

By assumption A7,

A Z ~gs. (3.19)

Since a port can accept only one bit at a time, the last m bits

must be input through m different ports, so assumption A4

gives

A z pro. (3.20)

The result follows easily from (3.18), (3.19) and (3.20). •

3.3 General lower bounds for the chip complexity of
binary multiplication

Theorems 3.1 and 3.2 are the extreme ca..,es = - 1 and

a - 0 of the following result.

Theorem 3.3: Under assumptions AI to A8, any n-bit

multiplication chip must satisfy

(A/A 0) (T/T0)z= Z n t÷o¢, (3.21)

for ell = ([0,1]. Here A 0 is given by (3.15),

T O - (Ki/A0)1/2,

and K 1 is given by (3.3).

Proof: From Theorem 3.1,

(A/A o) (T/To)2 ~ n 2,

so

(A/Ao)¢¢ (T/To)ZOo ~ n z=. (3.22)

From Theorem 3.2, since = ([0,1],

(A/Ao)t '= ;~ n t '=. (3.23)

Mult iplying (3.22) and (3.23) gives the result. •

The following corollary of Theorem 3.3 seems worth stating

separately, for AT is often used as a complexity measure (see,

for example, [Mead and Rem 79]).

Corol lary .~.J.: Under assumptions AI to AS, any n-bit

multiplication chip must satisfy

AT ~ K3 n3/2,

where

K 3 - AoT 0 - (AoKI) 1/2.

4. Upper Bound Results for Multiplication

It is easy to design practical n-bit multipliers with area

A - O(n) and time T - O(n), so

AT2¢¢, 0(nt+Ze¢). (4.1)

For example, the "serial pipeline multipliers" typically used in

the implementation of digital filters and signal processors

achieve these area and time bounds (see, for example,

[Jackson et al. 68, Lyon 76]). In this section we sketch the
design of a multiplier with A = 0(n Ig n) and T - 0(n t/z Ig n),

giving

AT 2= - O(n t+= Ig t+2= n), (4.2)

which is asymptotically better than (4.1). The design uses the

convolut ion Theorem to compute the product of two integers

in a complex way, and consequently its implementation

appears to be difficult. Nevertheless, the design is
theoret ical ly interesting because it shows that the exponent

1 + e¢ of n in Theorem 3.3 is tight. We do not know if there is
any practical design having AT 2= -o (n 1.2=) for = ([0, 1].

Straightforward implementations of "fast" algorithms, for

example, the Schonhage-Strassen algorithm [$chonhage and

Strassen 71], or the "3-2 reduction" algorithm [Ofman
62, Wallace 64] seem to require area at least order n z.

]n the remainder of this section we assume:

(a) n - k 2 is a perfect square, and

(b) a j - b j - O i f j > n / 2 .

(If not, n may be increased sufficiently without affecting the

asymptotic results.) Let p be the smallest prime of the form

194

nq + i , Cl ~ 1, Fp the finite field of integers rood p. It is known

that Ig p - 0(Ig n) (see [Linnik 44, Wagstaff 79]), and that Fp
has an n-th root of unity w (see [8onneau 73]). Let w - u k, so

w is e k-th root of unity. Note that in any circuit n is fixed, so

we are not concerned with the complexity of finding p, u, w

etc: they wilt be encoded into the circuit. In particular, for
facil itating arithmetic in Fp, we assume that a 2flog 2 p]-bit
approximation to | / p is encoded into the circuit.

In Steps] -5 below, all arithmetic is done in Fp. In Steps
1-3 we compute the discrete Fourier transform ~ of

(al, ..., a n) and b._~ of (b 1 b n) over Fp, that is,

ulJ a j+l I ~ 1 : 0 al*l
for j - 0 , . . . , n - l , etc. In Step 4 we multiply the Fourier

transforms. In Step 5 we take the inverse transform, and in

Step 6 the final result is computed.

Step I

Let A, B, U, and W be k by k matrices with elements

Aij = a(i_l)k+j,
Bij - b(i_l)k+ j,

Ulj " g (i ' l) (j -Z)

W U - w (i - l X j - l)

Perform k by k matrix multiplications to compute

A' - WA and B' - WB,

using a "systolic array" of [Kung and Leiserson 79]. All

computations are performed in Fp, so each processing element

of the systolic array needs to perform multiplication and

addition in Fp. Using a serial pipeline multiplier and a serial

adder, a multiplication and addition step in Fp requires no

more than area 0(Ig p) and time 0(Ig p). Thus, Step I can be
done with area O(n Ig n) and time 0(n t/z 18 n).

Step 2

Compute A" i A'oU and B" - B'oU, where o denotes

componentwise multiplication.

Step 3

Compute A " - A"W and B " - B"W using the same method
as for Step 1. It may be shown that A S" and 8 " contain the
Fourier transforms of (al, ..., a,) and (bl,._, b,); in fact for

1 :~ i , j Sk,

Bij b(j- l)k+l.

Step 4

Compute C "S - A " o B " .

Step 5

Compute C-W'I(U'o(C"W'I)) as in Steps l-3. Here

IJ~j - u - (i - lX j - l) . The matrix C represents the inverse Fourier

transform of C". Define cl's by

c,j = c (i _ l) k + j

Then by the convolution Theorem and our assumption (a)

above,

Cj I alb j + e2bp1 + ... + ajb I for ! s j ~; n.

Thus,

X L'i - P, 2~'1 ~ - 1 c, 2~'1"

Group the terms in the right hand side into n t/2 groups so that
the cl's in each row of the matrix C belong to one group. We

obtain

where

R| I Xjk:l C(|.l~4.j~J~l"

Given that the cl's are outputs of the syslolic array that
computes the matrix C, all the Rl's can be formed in area

0(n Ig n) end time 0(n 1/2 Ig n), using the upper bound result

regarding addition in Section 5. Thus the problem of
computing P2,, "", Pl has been reduced to the problem of
summing k - n 1/2 terms in the right-hand side of Equation

(4.3). Hence, the final step In the computation is:

Step 6

Compute P2,' " ' Pl from the Ri's. The pi's can be computed,
n 1/2 of them at a time, in area 0(n 18 n) and time O(n 1/2 Ig n),

again using the result in Section 5.

This completes our outline of the multiplier with area
A - O (n l ~ . n) and time T - 0 (n l ~ l g n) . eiving AT 2 ~ -

O(n 1÷~ Ig 1+2~ n). t!lllalllBIIIl~ll~llll 1+2~¢ of 18 n can certainly be

reduced by using probably a still more complicated design

than the one outlined above, but we do not know what its
minimal value is. For ¢ • |, a design based on the "3-2

reduction" algorithm seems to give AT 2¢ - 0(n 218 ~ n) for some

~i • O, which is a better upper bound than the one in (4.2).

195

5. Upper Bound Results for Addition

Let anan. 1 ... a I and b.b~l ... b I be n-bit binary numbers

w i th sum s,+ts s 1. The usual method for addition computes

the Sl% by

C o - O,

c I = Ca! A b I) v (a! ^ el. 1) v (b I ^ ct.1),

S I ,- a l@ b l e Cpl , i - 1,..., n,

Sn+ 1 = On,

where • means the sum rood 2 and c I is the carry from bit

posi t ion L

It Is wel l -known that the c!'s can be determined using the

fo l lowing scheme:

C o - O,
cl " gl v (p! ^ o H) , (5.1)

where

gl " al ^ b t,

and

Pl " al • b I,

for i - 1, 2, ..., n. One can view the gi and Pi as the co.try

B enerate and carry propaRate conditions at bit position i. The
relat ion (5.1) corresponds to the fact that the carry c i is either
generated by a i and b i or propaRated from the previous carry

ci_ 1. This is i l lustrated in Figure 5-1.

(I" "'" (' "'' ~

gn,Pn gi,Pi gl,Pl

Figure 5 - h The carry chain.

In this section we present a regular and area-efficient layout

design for computing all the carries in parallel assuming that
the gl's and p!'s are given. Using this layout design for the

car ry computation, one can' design a parallel adder in a

s t ra ight forward way (see [Brent and Kung 79a]). The basis of

our method is the reduction of carry computation to a prefi~

computat ion, as described in the following subsection.

Although the same idea was used by [Ladner and Fischer 77],

the i r results are not directly applicable because, they ignored

fanout restrict ions, and used the gate count rather than area

i s a complexi ty measure.

5 .1 Re fo rmu la t i on of the Car ry Chain Computat ion

We define an operator "o" as follows:

(g, p) o (g', p ') - (g v (p ^ g'), p ^ p'),

for any Boolean variables g, p, g' and p'.

I.emma .~.[: Let

~ (g l , Pl) if i - 1,
(% p,).

L (gl' Pl) O (Gi..t, Ppl) if 2 S i _< n.

Then

c! - G! for i - 1, 2, ..., n.

proof:

We prove the Lemma by induction on i. Since c o - 0, (5.1)

gives

c t = g , v (p , ^ O) - g , = G 1,

so the result holds for i - 1. If i • 1 and cpl = Gl.. t, then

(Gp Pit = (gl, P,) o (Gpl, PH)

" (gp pl) 0 (Ci.I, Phi)
- (g! v (p! ^ c1.1) , pj ^ PH) .

Thus

Gt " gl v (P0 h C H)

and, from (5J) , we have

G i - c I,

The result now follows by induction. I I

From the definit ion of the operator o, it is straightforward

to show that the operator is associative. Thus, by Lemma 5.1,
to compute cl's it suffices to compute all the (G,, Pit's, and

(Gp Pit - (g¢, Pl) o (g~-l, P~-t) o ... o (gu PI)

can be evaluated in any order from the given gl's and pl,s.

(Intui t ively, G! may be regarded as a "block carry generate"

condit ion, and PI as a "block carry propagate" condition.)

5 . 2 A l ayou t fo r the ca r r y chain computat ion

Consider f irst the simpler problem of computing the (% Pat

for i - n only, Since the operator "o" is associative, (Gn, Pn)

can be computed in the order defined by a binary tree. This

is i l lustrated in Figure 5-2 for the case n = 16. In the figure,

each black processor performs the function defined by the

opera to r "o" and each white processor simply transmits data.

The whi te and black processors are depicted in Figure 5-3.

Note that for Figure 5-2 each processor is required to

produce only one of its two identical outputs, and the units of

t ime are such that one computation by a black processor and

propagat ion of the results takes unit time.

Consider now the general problem of computing the (Gl, P|)

for all 1 S i S n. This computation can be performed by using

196

(c16 ,Pi6)

A
I

T=4

I = I

i \ '\ ~\ 1\ ,\ ; \ i \ i \

I i I I / I I I I I I = I I
l I I i I = I I I I I I ! I !

F i g u r e , 5 - 2 : The c o m p u t a t i o n o f (G,s, Pis) us ing a t r e e
s t r u c t u r e .

(%.,' Poor) (go.,, Po.,) (%u,, Po°,) (gou,, Poo,)

I
f
I

(g in . Pin) (g in Pin) ('gin P '

gou, = gi. go., = g , . v (B.

Pout = Pin Pout = Pin A Pi.

(a) (b)

^ g',°)

F i g u r e 5 - 3 : (a) T h e w h i t e processor, and (b) the b lack
processor

the t ree structure of Figure 5 - 2 once more, this time in the

r e v e r s e order. We illustrate the computation, for the case

n - 16, in Figure 5 -4 . It is easy to check that, at time T - 7 ,
all the (Gp Pi) are computed along the top boundary of the

ne twork . As the final outputs, we only keep the G I which are

the carries c r

Cl5 Cl4 Cl3 c12 Cll clO c 9 c 8 c 7 c 6 c 5 c 4 c 3

A A A A A A A A A A A A A

T = 7

T = 6

c16

A
i I

I I
I
I

L I
I I

I i
I !

T=5

I I J I I I

9 9
\~ ~\, \, \, '\,
-V I \, ~5 V ~ \i

I I I \ I

\ , ¢
I I I I \

I
I

I I

c 2 c 1

I

I

6
I !
I !
I |

© 0
I I

i t

I , I I J , I I I • I x I ' P
T=4 r~ ¢ ! , , , , , , , , , , r

i 2 S - dJ_ , ; ; , I ; '
= . 6 ¢ 6 d d q ~ ~ l , ' ' " 6 - ' '

I ', i " k , ' , I ', , , " x . I , '
~ 6 6 6 ~ ' - " ' ' ' " ' 6 ' ¢
\, I\~ . ' \ 1 I J l\J f ~ i , .< , i 4 ; i i '~

, i \ ' I I \I I ' \' l I L ' I

~-~¢~o~oto o=o~ ,, o
I I I i \ ! i \ !\ ; I \ ~1 l\ ix ~

I ' I I I ' I ! ~! ;\; ;\: ;\: \: :\},
I t I t I I I I I I I

I I ~ ~ ~ ~ ~ ~ I f ~ I =

Fi l lure 5 - 4 : The computation of all the carries for n = .I.6.

In deriving the layout of Figure 5-4 we used only one

distr ibut ive law, Thus, the layout could be usod to evaluate

arithmetic expressions of the form

Sn + Pn{gn-1 + Pn- t [" " P3(g2 + P2gl) "] } (5 .2)

w h e r e gl, Pl a r e n u m b e r s and the b lack p r o c e s s o r in F igu re

5 - 3 n o w c o m p u t e s g o u t " g in + Ping~n and Pout = PinP~n" No te

t h a t t h e c a s e P2 - p . = x o f (5 .2) is the po l ynomia l

gn + g n - t x + "" + g t xn*I"

197

Y=7

The layout shown in Figure 5-4 implies that all the carries

in an n-bi t addition can be computed in time 0(I 8 n) and area

O(n Ig n), and therefore so can the addition itself. We show

that this result is a special case of Theorem 5.1 below.

We define the width w or a parallel adder to be the number

of bits it accepts at one time from each operand. For the

paral lel adder corresponding to the netwrok in Figure 5-4,

W - 1 6 . We have hitherto assumed that the width of s

ne twork is equal to the number n of bits in each operand.

Here we consider the case w < n. We show that this case can

be handled eff iciently using a pipeline scheme on a network

which is a modification of the one depicted in Figure 5-4.

For simplicity, assume that n is divisible by w. One can

par t i t ion an n-bit integer into n/w segments, each consisting

of w consecutive bits. To illustrate the idea, suppose that

w - 16. Then the carry chain computation corresponding to

each segment can be done on the network in Figure 5-4, and

the computations for all the segments can be pipelined,

star t ing from the least significant segment. The results coming

out from the top of the network are not the final solutions,

though. Results corresponding to the i th least significant
segment (i > 1) have to be modified by applying

(G(~t)w, P(v.4)w) on the right using the operator "o." To

faci l i tate this modification, we superimpose another tree

st ructure on the top half of the network, as shown in Figure

5-5. Using this additional tree, the contents of the "square"
processor (denoted by '[3") are broadcast to all the leaves,

which are black processors. The square processor, shown in

Figure 5-6, is an accumulator which initially has value
(g, p) - (0, 1), and successively has values

(g, p) - (G(v.i)w, P(i.i)w) for i = 2, 3 At the time when a

part icular (G(i.t)w, P(pl)w) reaches the leaves, it is combined

wi th the results just coming out from the old network there.

By this pipeline scheme, we have the followin 8 result:

Theorem 5..~..: Let 1 _< w ~ n. Then all the carries in an n-bit

addit ion can be computed in time proportional to (n/w) + log w

and in area proport ional to w log w + 1, and so can the

addition.

When w - 1 , the method outlined in this section is

essential ly the usual serial carry-chain computation.

A A A A A ~ ~
I ~ I ! I i

I] I n

T=6

T=5

T=4

I

I
t

5 . 3 Genera l u p p e r bounds fo r the ch ip complex i ty of

b i n a r y add i t i on

~This is the same left-most processor at level T=4 of the
network as in Figure 5-~

F i g u r e 5-5: The additional tree structure to be superimposed
on the top half of the network in Figure 5-4.

(gout ' Pout) (gout ' Pout)

P) Pout = Pin ^ ~

(~,~) = (gout,Pout)
[delayed]

(gln,Pin)

F i g u r e 5-6: The "square" processor that accumulates
(G(i-t)w, P(i- l)w).

From Theorem 5.1, we have the following

Corol lary .~d.: The area-tlme product for n-bit addition is
O(n Ig w + w Ig z w + t), which is O(n Ig 2 n) when w = n, and

O(n Ig n) when w - n/Ig n, and O(n) when w is a constant.

One can similarly obtain an upper bound on AT = for any

= ;¢ O, and for each = one can choose a w to minimize the

upper bound.

_

I

i

I

I

I

I

I

|

I

q

I

198

6. Concluding Remarks References

Let MULT20~(n) and ADDzo~(n) be the area-time complexity

AT 20~ for n-bit integer multiplication and addition, respectively.

Note that the serial adder gives ADD2=(n)= O(n2=), and that
for = > 1 MULT2a(n) = ~(n 2) since

A(T/~) 20~ > A(T/'r) 2 _> Kz(n/'r)2. These together with Theorems

3.3 and 5.1 establish the following result:

Theorem 6.1: Under assumptions AI to A8 of Section 2,

~ (n t'=) for 0_<#<_l/2,

MULT2=(n)/ADD2=(n) = l~(n=/Ig2= n) for [/2<=_<1,
~(n/ Ig 2~ n) for ~31.

Thus for any = Z 0, the area-lime product for multiplication is

asymptotically larger than that for addition. W~ can say that

multiplication is harder than addition as far a; the area-time

complexity is concerned.

For binary division, it is easy to deduce a lower bound of

the same form as (3.21), using the method of [!]rent 76], and
an upper bound AT 2= = 0(n l*~x Ig t*2= n), u...ing Newton's

method.

Computer arithmetic is a subject that has rec(,ived intensive

study in the past (see, for example, [T,ng 72, Garner

76, Savage 76, Kuck 78]). Much attention has been paid to the

tradeoff between time and the number of F.~tes, but until

recently little attention has been paid to the problem of

connecting the gates in an economical and regular way to

minimize chip area and design costs. We hope that the results

of this paper should help in formalizing this new research

direction of computer arithmetic, and in understanding

area-time tradeoffs in the designing process.

In Section 3, we derived lower bounds on AT 2~, ~([O,1], for
binary multiplication. Similar lower bounds on AT 2 have been

obtained for computation of the discrete Fourier transform by

[Thompson 79], and for that of matrix multiplication by

[Savage 79]. It seems that area-time complexity is, in general,

a useful measure for establishing the complexity hierarchy of

many classes of problems, because it captures important

attributes of a computation such as time and space, as well as

communication. One should expect that more rm, ults along this

line will be obtained in the near future.

[Abelson and Andreae 80]
Abelson, H. and Andreae, P.
Information Transfer and Area-Time

Tradeoffs for VLSI Multiplication.

Communications of the ACM 23:20-23,
January, 1980.

[Bonneau 73] Bonneau, R.J.
A Class of Finite Computation Structures

Supporting the Fast Fourier Transform.
Technical Report MAC Techni(al

Memorandum 31, Massachusetts
Institute of Technology, Project MAC,
March, 1973.

[Brant and Kung 79a]
Brent, R.P. and Kung, H.T.
A Regular Layout for Parallel Adders.
Technical Report, Carnegie-Mellon

University, Department of Computer
Science, June, 1979.

[Brant and Kung 79b]
Brent, R.P. and Kung, H.T.
The Area-Time Complexity of Binary

Multiplication.
Journal of the ACM (to appem), 1979.
Also available as a CMU Corr, puter Science

Department technical report, July 1979.

[Brent and Kung 79c]
Brent, R.P. and Kung, H.T.
On the Area of Binary Tree Layouts.
Technical Report TR-CS-79-07, The

Australian National University,
Department of Computer Science, July,
1979.

[Brent 70] Brent, R. P.
On the addition of binary numbers.
IEEE Transactions on. Computers

C-19:758-579, 1970.

[Brent 76] Brent, R.P.
The Complexity of Multiple-precision

Arithmetic.
In Anderssen, R.S. and Brent, R.P., editors,

The Complexity of Comf:utational
Problem Solving, pages 126-165.
University of Queensland Press,
Brisbane, Australia, 1976.

[Garner 76] Garner, HI.
A Survey of Some Recent Contributions to

Computer Arithmetic.
IEEE Transactions on Compttters

C-15:1277-1282, 1976.

[Jackson etal. 68] Jackson, L.B., Kaiser, S.F. and McDonald, H.S.
An Approach to the Implementation of

Digital Filters.
IEEE Trans. Audio and Electroacoust.

AU-16:413-421, Septembt:r, 1968.

[Kuck 78] Kuck, D.J.
The Structure of Computers artd

Computations.
John Wiley & Sons, New York, 1978.

199

[Kung and Leiserson 79]
Kung, H.T. and Leiserson, C.E.
Systolic Arrays (for VLSI).

In Duff, |. S. and Stewart, G. W., editor,
Sparse Matriz Proeeedinizs 1978, pages
256-282. Society for Industrial and
Applied Matilematics, 1979.

A slightly different version appears in
Introduction to VLS[Syst('ms by C. A.
Mead and L. A. Conway,
Addison-Wesley, 1980, Section 8.3.

[Ladner and Fischer 77]
Ladner, R.E. and Fischer, M.J.
Parallel Prefix Computation.
In 1977 International Conferettce on

ParaUel Processing, pages 213-223.
IEEE, 1977.

[Leiserson 80] Leiserson, C.E.
Area-Efficient Graph Layouts (for VLSI).
Technical Report, Carnegie-M,)llon

University, Department of Computer
Science, February, 1980.

[Linnik 44] Linnik, U.V.
On the Least Prime in an Arithmetic

Progression. 1. The Basic Theorem.
Ree. Math. 15:139-178, 1944.

[Lyon 76] Lyon, R.F.
Two's Complement Pipeline Multipliers.
IEEE Transactions on Communications

COM-24(4):418-425, April, 1976.

[Mead and Conway 80]
Mead, C.A. and Conway, L.A.
introduction to VLSI Systems.
Addison-Wesley, Reading, Massachusetts,

1980.

[Mead and Rein 79]
Mead, C.A. and Rein, M.
Cost and Performance of VLSI Computing

Structures.
IEEE Journal of Solid Stare Circuits

SC-14(2):455-462, April, 1979.

[Ofman 62] Ofman, Y.
On the Algorithmic Complexity of Discrete

Functions.
DokL Akad. Nauk SSSR 145:4~-51, 1962.
In Russian.

[Rosser and Schoenfeld 62]
Rosser, J.B, and Schoenfeld, L.
Approximate Formulas for Some Functions

of Prime Numbers.
Illinois J. Math. 6:64-94, 1962.

[Savage and Swamy 78]
Savage, J.E. and Swamy, S.
Space-Time Tradeoffs for Oblivious Sorting

and Integer Multiplication.
Technical Report 37, Brown University,

Department of Computer ~cience, 1978.

[Savage 76] Savage, J.E.
The Complezity o f Computing.
John Wiley & Sons, New York, 1976.

[Savage 79] John E. Savage.

Area-Time Tradeoj'[s for Matri.z
Multiplication and Relatq,d Problems in
VLSI ModeLs.

Technical Report CS-50, Brown University,
Department of Computer Science,
August, 1979.

[Schonhage and Strassen 71]
Schonhage A. and Strassen, V.
Schnelle Multiplikation grosset Zahlen.
Computing 7:281-292, 1971.

[Thompson 79] Thompson, C.D.
Area-Time Complexity for Vl..ql.
In Prec. Eleuenth Annual ACM Symposium

on Theory of Computing, pages 8,1-88.
ACM, May, 1979.

[Tung 72] Tung, C.
Arithmetic.
In Cardenas, A.F., Press, L. and Marin, M.A.,

editors, Computer Science.
Wiley-lnterscience, New York, 1972.

[Wagstaff 79] Wagstaff, S.S., Jr.
Greatest of the Least Primes in Arithmetic

Progressions Having a Given Modulus.
Math. Comp. 33:1073-1083, 1979.

[Wallace 64] Wallace, C.S.
A Suggestion for a Fast Multiplier.
IEEE Trans. Elec. Comp. EC-13:14-17, 1964.

[Winograd 65] Winograd, S.
On the Time Required to Perform Addition.
Journal oJ" the ACM 12(2):277-285, 1965.

[Yaglom and Boltyanskii 61]
Yaglom, I.M. and Boltyanskii, V.G.
Comlez Figures.
Holt, Rinehart and Winston, New York, 1961.
Translated by P.J. Kelly and L.F. Walton.

200

