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1. Introduction 

The chip complexity of a computation is concerned with 

the chip area, A, and the time, T, required to perform the 

computation when implemented on a chip. An area-time 
product AT e~, for 0¢ ~ O, is used as a complexity measure. A 

particular value of ~, which is chosen by the u~t}r, reflects the 

relative importance between A and T. This paper derives 

lower and upper bounds on the area-time complexity for chips 

that implement binary arithmetic, assuming a model of 

computation which is intended to approximate, current and 

anticipated LSI or VLSI technology. 

In Section 2 we describe our computational model and basic 

assumptions. Section 3 establishes for any n-bit multiplication 

chip a general lower bound 

AT 2= - ~(n t+¢¢) (1.1) 

which is valid for all = ( [0,1]. The case = = 1 was established 

independently using a more restrictive model than ours, by 

[Abelson and Andreae 80] (see also ([Savage and Swamy 78]). 

In Section 4 we sketch a design for n-bit mtdtiplication that 

gives 

AT 2= - O(n t*¢¢ Ig t*2e¢ n), (1.2) 

for all O~Z0. Thus the exponent 1 + = o f  n in (1.1) and (1.2) 
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is tight for e¢ ( [0,1]. The chip complexity of binary addition is 

studied in Section 5. We show that for any ! S w _< n, n-bit 

numbers can be added in time 0(n/w + Ig w), using area 

O(w Ig w + |), if the input bits from each operand are 

available w at a time. |n Section 6 we compare the chip 

complexity for binary multiplication and addition; we conclude 

that multiplication is harder than addition, for all complexity 
measures AT 2=, ¢~ 20. 

The results of this paper mainly draw on two papers by the 

authors ([Brent and Kung 79a, Brent and Kung 79b]). 

2. The Computational Model and Basic 
Assumptions 

We assume the existence of circuit elements or "gates" 

which compute a logical function of two inputs in constant time 

and occupy at least a constant minimum area. Gates are 

connected by wires which have constant minimum width 

(equivalently, the wires must be separated by at least some 

minimal spacing). Our measure of the cost of a design is the 

ares rather than the number of gates required. This is an 

important difference between our model and earlier models of 

[Winograd 65], [Brent 70] and others. For motivation and 

discussion of models similar to ours, see [Thompson 

79, Leiserson 80~ 

For proving the results of this paper, various subsets of the 

following assumptions AI through A8 are used. Comments and 

justif ication are given following the statement of each 

assumption. 

A| .  The computation is performed in a conve~¢ planar 
region R of area A. 

Because of heat-dissipation, packing and testing 
requirements, a two-dimensional planar model is 
reasonable. The convexity assumption is not 
restrictive in the sense that almost all existing 
chips or useful modular designs do have convex 
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boundaries for packaging or modularity reasons. 
(The convexity assumption can be removed for 
part  of Theorem 3.1 below by using a different 
proof.) 

A2. Wires have minimal width ~ • 0. 

is assumed constant, but in applications of our 
results it will of course depend on the tecllnology. 
We also assume R has width at least ~ in every 
direction. 

A3. At most ~ ~ 2 wires can overlap (or intersect) at 
any point in R. 

A chip may consist of v layers. Wire crossings 
through different layers are allowed. In fact, 
transistors are typically formed by cross-overs of 
wires. Since v _> 2, the graph of wires (edges) 
and gates (nodes) need not be planar in a 
graph-theoret ic sense. 

A4. I/O ports each contain a ), x ~ square ~nd thus 
have area at least /0_>)2 An [ /0 port can be 
mult iplexed to handle more than one input or 
output variable. 

]f R is a complete chip, p will be large compared 
to ~2. ]f R is only part of a chip and | /0 is to 
other regions on the chip, D could be of order ~z. 
We do not require each input (or output) variable 
to appear in a distinct input (or output) port, as 
required in [Thompson 79]. So ] /0 port may be 
mult iplexed as they often are in practice. 

AS. A bit requires minimal time /" • 0 to propagate 
along a wire or to transmit through an | /0 port. 
The time for one gate computation and an 
arb i t rary  fan-out of the result is included in 'r. 

Since dimensions are limited by the minimal 
w i re-w id th  ~ and minimal gate area, a minimal 
propagation time is reasonable. We do not need 
to assume that the propagation time increases 
wi th the length of the wire. With the (small) sizes 
of chips we now have or anticipate for thn future, 
the propagation lime, which is the time needed to 
charge or discharge a wire, is limited by the wire 
capacitance rather than the velocity of light. A 
longer wire will generally have a larger 
capacitance~ and thus require a larger driver to 
maintain constant propagation time, but Ihe driver 
area need not exceed a fixed percentage of the 
wire area, so can be ignored if ~ is increased 
slightly; see [Mead and Conway 80]. Although it 
would be reasonable to assume bounded fanout, 
we do not need this assumption for proving lower 
bounds. When proving upper bounds, we do 
assume bounded fanout. 

A6. The times and locations at which input and output 
bits are available are fixed and independent of 
the values of the input bits. 

When proving upper bounds in Sections 4 and 5, 
we further assume that if a~ and aj are any two 
bits in an operand such that a I is more significant 
than a,, then a i is not input (or output) to the chip 
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before aj, but they are allowed to be input (or 
output )  to the chip in parallel. This assumption 
holds for all the arithmetic circuits that the 
authors know. 

A7. Storage for one bit of information fakes area at 
least ,/3 • O. 

is typical ly several times larger than ~2. 

A8. Each input bit is available only once. 

There is no free memory outside R. If the same 
input bit is required at different times, it must be 
stored within R, taking area at least/3 (see A7). 

3. Lower Bound Results for Multiplication 

Let p = P2n "" Pl be the 2n-bit product of n-bit integers 

a - e  n . . .a  t e n d b - b  n . . .b  1. 

3 .1  L o w e r  bounds for shifting circuits 

When b = 2J, p is a shifted j bits to the left. Thus, any 

mult ipl ier circuit must also be a shifting circL=it capable of 

per forming j -b i t  shifts for all 0 S j S n- | .  

Theorem 3.1: Under assumptions AJ to A6 of Section 2, 

any chip that is capable of performing the shifts as described 

a b o v e  must satisfy 

AT 2 z Kin2, (3.1) 

AT ~: KzLn (3.2) 

w h e r e  

K~. - 2[~,'r(9 - 4,51/2)/v] ~, (3.3) 

K 2 = )a'(9 - 4"51/z)/(~rv), 

and L is the perimeter of the chip. 

Before proving Theorem 3.], we need two Lemmas. 

Lamina 3...J.: For any convex planar figure with area A, 

per imeter  L, diameter D, and chord of length C perpendicular 
to a chord whose length is the diameter D, 

A Z CD/2, (3.4) 

and 

A z CL/2w. (3.5) 

P.roof: The results follow from well-known inequalities for 

convex figures. For a proof (and a definition of "diameter" 
etc.) see, for example, [Yaglom and Boltyanskii 6]].  • 

L-emma 3~2: 

rain Osr<] max(2r, (1-r)2/8) . ,  2(9 - 4'5t/2). 

P.roof: ]t is easy to veri fy that the minimum occurs when 
1 6 r -  ( l - r )  z and the only root of this equation in [0,1] is 
r - 9 - 4"5112 • 



Proof of Theorem 3.[ :  Consider any chip that can perform 

j -b i t  shifts for all 0 S j S n- [ .  By assumption A1., the chip 

forms a convex region R. Let D be the diameter of R, and Y a 

chord of length D. 

Let S - {P2,-t, "", P,}, and let M be the maximum number of 

elements of S sharing or multiplexing one output port of the 
chip. By assumption A4, an 1/0 port has area at least p z ~z. 

We represent  each 1/O port by an infinitesimal point on the 

port .  Based on these represent|yes of i /0  port% we partition 

the chip by a chord X perpendicular to Y as follows• The 
chord X divides S into two subsets S! and S z such that 

represent ives of the output ports for elements of S z lie on 

one side of X and those for elements of S 2 lie on the other 

side of X. (Since representives of t/O ports are of infinitesimal 

size, we can assume that by an infinitesimal perturbation from 

the perpendicular to Y, X does not intersect any of them.) By 

"sl iding" the intersection of X and Y along Y, we can arrange 

that  

IS~ s [(n + M)/2J (3.6) 

for  i - It and 2. For notational convenience, we use d to 
denote L(n + M)/2J. When the j-bit  shift is performed, P~,I 

takes the value .of a r For dS i_<n ,  the ith row in Table 3-1. 

indicates the pl's that take the value of a I under j-bit  shifts for 

all n-i  S j S n - l .  

ai \ J 0 I " '  n - d  " "  n-2 n-t  
. . . . . . . . . .  a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a d 

ad+l  

an-I 

a n 

Pn " "  Pn+d-2 Pn+d-1 

• " ' Pn+d- l Pn+d 

Pn 

Pn " ' "  P2n-3 P2n-2 

Pn+l  " "  P2n-2 P2n-1 

Table 3 - | :  The dependence of the pl's on the a0's 
under various shifts. 

Note that in the table all the pi's belong to S, which is divided 

into two parts by the chord X. By (3.6), in the ith row of the 
table there are at most d of the pt's for which the 

represent ives of the output ports lie on the same side of X as 
the representat ive of the input port for a r Consequently, in 

the ith row there are at least i-d of the po's for which the 

representat ive of the output ports do not lie on the same side 
of X as the representive of the input port for a r For all rows 
In the table, there are a total of at least 
X d s i s n  ( i  - d) z (n : M)2/8 such p;s• This implies that one of 

the n columns in the table, say, the jth column, must have at 
least (n - M)Z/8n such pl's. In other words, if 

then 

, .  {i I i({d, d+ l ,  ..., n} and the representative of 
the input port  for a 0 does not lie on the same 
side of X as that of the output port for pj.j}, 

I11 z (n - M)2/Sn. 

For i([, the input port  for ai or the output port for PI•j may 

intersect the chord X, although their represenlatives do not. 

Define 

|' i {i I i(|, and the chord X intersects the input 

por t  for a 0 or the output port for PI*j, or both}• 

Then 

I - I '  = {i I i({d, d+1. ..... n}, and the input porl for 

a I and the output port for Pi+j do not inter[,ect 
X and they lie on different sides of X}• 

Consider the computation of the j-bit  shift• Note thai the j-bit  
shift, which maps a I to PI*I for i =  I,..., n, is an identity 

mapping. Hence, before the shift is complete, at least It-t1 bits 
of information about ai, i(I-I ' ,  must cross X for computing p~.j 

for  i ( I - I ' ,  and a t  least Ii'l bits of information about ai, i(I', must 

input to or output from some I/O ports intersecting with X for 
computing Pi+j for i(l ' . Suppose that the chord X is of length 

C. Then by assumptions A2, A3 and A4, at most vC/~ wires or 

I /O ports cross X. Thus, by assumption A5, lhe time T to 

per form the j -b i t  shift must satisfy the inequality: 

(uC/X)(T/'r) a 1|41 + I|1 
-I11 
2 (n - M)2/gn, 

or 

T z (~'r/vC)n'(1-r)2/8 (3.7) 

where  r = M/n. Since M outputs come throul;h one output 

por t ,  assumption A5 gives 

T ~ M'r = 'rnr. (3.8) 

Suppose M < n. Then at least one wire or one | /0 port 

crosses X, and assumptions A2 and A4 give 

C ~ ~. (3.9) 

By assumption A3, v Z 2. Combining this with (3.8) and (3.9) 

gives 

T ~ 1'nr - (2C'/'/2C)nr >_ (~'r/vC)n'2r (3.1.0) 

From (3.7) and (3.1.0) it follows by Lemma 3.2 that 

T Z (2K0/C)n, (3A 1.) 

where  

K 0 = X7"(9 - 4"51/2)/v, 

sO by (3.4), 

AT 2 Z (CD/2)(2Ko/C)2n2 _> 2Ko2n2, (3.12) 

since D Z C .  Suppose that M = n .  Then r = L Since there is 

at least one output port, assumption A4 gives A Z p ~ ~z  so 

by (3.8) 
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AT2 Z (~'rn) 2 • 2KO 2n2. (3.13) 

Result (3.1) follows from (3.J2) and (3,13). Result (3.2) follows 

in a similar way. If M < n, the combining (3.[1) with (3.5) 
gives 

AT ~ (CL/2w')(2K0/C)n = K2Ln. (3.14) 

Suppose that M - n. Since by assumption A2, R has width at 
least ~ in every direction, we can choose a chord that is of 

length C ~ ~ and is perpendicular to Y. By (3.5) and (3.8) with 

r - 1, we have 

AT ~ (CL/2'wX/'n), 

which gives 

AT ;~ K2Ln. 

Since any circuit that performs integer multiplications must 

also be able to perform shifts, (3.1) and (3.2) hold for any 

n-bi t  multiplication chip. 

Result (3.2) can sometimes give useful lower bounds which 

are based on the [ /0 characteristics of a mt,ltiplication or 

shtftinl~ chip. If at one time the chip inputs or outputs a total 
of z b,ts along its boundary, then by assumptions A3 and A4 
L ~ z~/~ and (3.2) gives AT ~ K2(~z/v)n. Thus for any 
multiplication scheme that accepts, say ~(n t/2) input bits 

simultaneously along the chip boundary, we know immediately 
that AT - ~(n 3/2) (cf. the multiplication scheme in Section 4). 

Result (3.1) (with a smaller constant for K 1) could have been 

established by a proof parallel to that used by Thompson [79] 

for  the discrete Fourier transform problem. In fact, using his 

result that relates the area of a graph to its minimum bisection 

width, one can derive (3.1) without the convexity assumption 

in AI .  Our proof, above, represents a new approach that 

incorporates geometric properties of the chip boundary in the 

lower bound proof. We feel that the extra convexity 

assumption we make is not restrictive, since most existing 

chips do have convex boundaries for packaging reasons. 

Furthermore, we note that the convexity assumption is needed 

for establishing results such as (3.2) that relate AT to 

perimeter L. In [Brent and Kung 79c], under a similar 

convexi ty assumption, light lower bounds on the minimum area 

required to layout complete binary (or t-ary) trees are 

obtained. 

An interesting corollary of Theorem 3.1 is that lower 

bounds in (3.1) and (3.2) hold for chips that pc,rform floating 

point additions, for which shifts are needed to equalize 

exponents. This explains why the area-time requirements for 

f loating point addition are much higher than those for integer 
addition, as observed in practical implementation. (Charles 

Leiserson at CMU first pointed out to one of the authors the 

application of Theorem 3,1 to floating point addition.) 

3 . 2  A lower  bound on the area for mult ip l ier  circuits 

In Theorem 3.| we gave lower bounds on AT 2 and AT for 

shift ing circuits. Now, using different techniques, we give a 

lower bound on A for multiplier circuits. 

Theorem 3.2: Under assumptions A4, and A6 to A8, any 

n-bi t  multiplication must satisfy 

A ~ Aon, 

where 

A 0 = (5/6)[13p/(~+p)]. (3.15) 

Let ~n = {ij I 0 S i < n, 0 s j < n} be the set of all integers 

which can be written as a product of two factors, each less 
than n; and let //.(n)= I~J be the cardinality of '~n" For 

example, ~4 " {0, 1, 2, 3, 4, 6, 9} and #(4)., 7. Before proving 

Theorem 3.2, we need lower bounds on F(n) and a related 

function, 

~(n) - rig F(2") + l -n] /n.  (3.16) 

Lemma 3..__3.: 

pin) a er(n), 

where o(n) - X i ( P n _  ! i and Pn-! is the set of prime numbers 

smaller than n. 

Proof: The numbers pj are distinct !f 2 _<p < n,.p prime: 
a n d ~ ' j  S p. Thus, the result follows from me oerinmon ot 

#(n). • 

Lemma 3.4: For all n Z 4, 

#(n) ~ nZ/(2 In n). 

Proof= Using a slight modification of Theorem I and 

equation (4.13) of [Rosser and Schoenfeld 62], we can show 

that for all n ~ 348, 

o'(n) • n2/(2 In n). 

Thus, the result for n ;c 348 follows from Lemma 3.3; For 

4 ~; n S 347, the result may be verified by a straightforward 

computation. • 

Lemma 3.5: If ~(n) is defined by (3.16), then for all n ~ 1, 

8(n) ~ 516. 

Proof: From Lemma 3.4 

~(n) ~ rn - Ig(n In 2)I/n, (3.17) 

and it is easy to verify that the right side of (3.].7) is at least 

5 /6  for all n ~  18. (There is equality for n -  18 and n=24. )  
For 1 ~ n ~ 17, direct computation shows that ~(n) ~ 9/10. • 
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We conjecture that 

limn..~o o [(F(n) Ig Ig n)/n z] " 1, 

and 

~(n) z 9110 
for  all n z 1. Empirical data that support this conjecture are 

presented in [Brent and Kung 79b]. 

Proof of Theorem 3.2: 

If n - 1 there is at least one output port, so A ~ p, and the 

result holds. Hence, suppose that n ~ 2. 

Consider the state of the computation just before the last 

input bit(s) are accepted. Let m be the number of input bits 

stil l to be accepted, so 1 S m ~ 2n. 

It is easy to show that there are some inputs a and b such 
that the output bits PZn' ""  P, are not determined by the 2n-rn 

input bits already accepted. Thus, by assumption A6, at most 

n - I  bits, PPt, " ,  Pt, have been output. 

Suppose that s bits of information are stored in R at this 

instant. Then we must have by assumption A8 

p.(Z") S 2 "÷( ' l )+s,  

or the circuit could not produce all p.(2") possible outputs, and 

would fail for certain inputs, Thus 

m + s Z Jig p(2")+t-n] m rig(n). 

and, from Lemma 3.5, 
m + s ~ 5n/6. (3.18) 

By assumption A7, 

A Z ~gs. (3.19) 

Since a port can accept only one bit at a time, the last m bits 

must be input through m different ports, so assumption A4 

gives 

A z pro. (3.20) 

The result follows easily from (3.18), (3.19) and (3.20). • 

3.3 General lower bounds for the chip complexity of 
binary multiplication 

Theorems 3.1 and 3.2 are the extreme ca..,es = - 1  and 

a - 0 of the following result. 

Theorem 3.3: Under assumptions AI to A8, any n-bit 

multiplication chip must satisfy 

(A/A 0) (T/T0)z= Z n t÷o¢, (3.21) 

for  ell = ( [0,1]. Here A 0 is given by (3.15), 

T O - (Ki/A0)1/2, 

and K 1 is given by (3.3). 

Proof: From Theorem 3.1, 

(A/A o) (T/To)2 ~ n 2, 

so 

(A/Ao)¢¢ (T/To)ZOo ~ n z=. (3.22) 

From Theorem 3.2, since = ( [0,1], 

(A/Ao)t '= ;~ n t '=. (3.23) 

Mult iplying (3.22) and (3.23) gives the result. • 

The following corollary of Theorem 3.3 seems worth stating 

separately, for AT is often used as a complexity measure (see, 

for  example, [Mead and Rem 79]). 

Corol lary .~.J.: Under assumptions AI to AS, any n-bit 

multiplication chip must satisfy 

AT ~ K3 n3/2, 

where 

K 3 - AoT 0 - (AoKI) 1/2. 

4. Upper Bound Results for Multiplication 

It is easy to design practical n-bit multipliers with area 

A - O(n) and time T - O(n), so 

AT2¢¢, 0(nt+Ze¢). (4.1) 

For example, the "serial pipeline multipliers" typically used in 

the implementation of digital filters and signal processors 

achieve these area and time bounds (see, for example, 

[Jackson et al. 68, Lyon 76]). In this section we sketch the 
design of a multiplier with A = 0(n Ig n) and T - 0(n t/z Ig n), 

giving 

AT 2= - O(n t+= Ig t+2= n), (4.2) 

which is asymptotically better than (4.1). The design uses the 

convolut ion Theorem to compute the product of two integers 

in a complex way, and consequently its implementation 

appears to be difficult. Nevertheless, the design is 
theoret ical ly interesting because it shows that the exponent 

1 + e¢ of n in Theorem 3.3 is tight. We do not know if there is 
any practical design having AT 2= -o (n  1.2=) for = (  [0, 1]. 

Straightforward implementations of "fast" algorithms, for 

example, the Schonhage-Strassen algorithm [$chonhage and 

Strassen 71], or the "3-2 reduction" algorithm [Ofman 
62, Wallace 64] seem to require area at least order n z. 

]n the remainder of this section we assume: 

(a) n - k 2 is a perfect square, and 

(b) a j - b j - O i f  j > n / 2 .  

(If not, n may be increased sufficiently without affecting the 

asymptotic results.) Let p be the smallest prime of the form 
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nq + i ,  Cl ~ 1, Fp the finite field of integers rood p. It is known 

that Ig p - 0(Ig n) (see [Linnik 44, Wagstaff 79]), and that Fp 
has an n-th root of unity w (see [8onneau 73]). Let w - u k, so 

w is e k-th root of unity. Note that in any circuit n is fixed, so 

we are not concerned with the complexity of finding p, u, w 

etc: they wilt be encoded into the circuit. In particular, for 
facil itating arithmetic in Fp, we assume that a 2flog 2 p]-bit 
approximation to | / p  is encoded into the circuit. 

In Steps ] -5  below, all arithmetic is done in Fp. In Steps 
1-3 we compute the discrete Fourier transform ~ of 

(al, ..., a n) and b._~ of (b 1 ..... b n) over Fp, that is, 

ulJ a j+l I ~ 1 : 0  al*l 
for j - 0 , . . . ,  n - l ,  etc. In Step 4 we multiply the Fourier 

transforms. In Step 5 we take the inverse transform, and in 

Step 6 the final result is computed. 

Step I 

Let A, B, U, and W be k by k matrices with elements 

Aij = a(i_l)k+j, 
Bij - b(i_l)k+ j, 

Ulj " g ( i ' l ) ( j -Z )  

W U - w ( i - l X j - l )  

Perform k by k matrix multiplications to compute 

A' - WA and B' - WB, 

using a "systolic array" of [Kung and Leiserson 79]. All 

computations are performed in Fp, so each processing element 

of the systolic array needs to perform multiplication and 

addition in Fp. Using a serial pipeline multiplier and a serial 

adder, a multiplication and addition step in Fp requires no 

more than area 0(Ig p) and time 0(Ig p). Thus, Step I can be 
done with area O(n Ig n) and time 0(n t/z 18 n). 

Step 2 

Compute A"  i A'oU and B" - B'oU, where o denotes 

componentwise multiplication. 

Step 3 

Compute A "  - A"W and B "  - B"W using the same method 
as for Step 1. It may be shown that A S" and 8 "  contain the 
Fourier transforms of (al, ..., a,) and (bl,._, b,); in fact for 

1 :~ i , j  Sk,  

Bij b(j- l)k+l. 

Step 4 

Compute C "S - A " o B " .  

Step 5 

Compute C-W'I(U'o(C"W'I) )  as in Steps l-3. Here 

IJ~j - u - ( i - lX j - l ) .  The matrix C represents the inverse Fourier 

transform of C".  Define cl's by 

c,j = c ( i _ l ) k +  j 

Then by the convolution Theorem and our assumption (a) 

above, 

Cj I alb j + e2bp1 + ... + ajb I for ! s j ~; n. 

Thus, 

X L'i - P, 2~'1 ~ - 1  c, 2~'1" 

Group the terms in the right hand side into n t/2 groups so that 
the cl's in each row of the matrix C belong to one group. We 

obtain 

where 

R| I Xjk:l C(|.l~4.j~J~l" 

Given that the cl's are outputs of the syslolic array that 
computes the matrix C, all the Rl's can be formed in area 

0(n Ig n) end time 0(n 1/2 Ig n), using the upper bound result 

regarding addition in Section 5. Thus the problem of 
computing P2,, "", Pl has been reduced to the problem of 
summing k -  n 1/2 terms in the right-hand side of Equation 

(4.3). Hence, the final step In the computation is: 

Step 6 

Compute P2,' " '  Pl from the Ri's. The pi's can be computed, 
n 1/2 of them at a time, in area 0(n 18 n) and time O(n 1/2 Ig n), 

again using the result in Section 5. 

This completes our outline of the multiplier with area 
A - O ( n l ~ . n )  and time T - 0 ( n l ~ l g n ) .  eiving AT 2 ~ -  

O(n 1÷~ Ig 1+2~ n). t!lllalllBIIIl~ll~llll 1+2~¢ of 18 n can certainly be 

reduced by using probably a still more complicated design 

than the one outlined above, but we do not know what its 
minimal value is. For ¢ • |, a design based on the "3-2 

reduction" algorithm seems to give AT 2¢ - 0(n 218 ~ n) for some 

~i • O, which is a better upper bound than the one in (4.2). 
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5. Upper Bound Results for Addition 

Let anan. 1 ... a I and b.b~l ... b I be n-bit binary numbers 

w i th  sum s,+ts . ... s 1. The usual method for addition computes 

the Sl% by 

C o - O, 

c I = Ca! A b I) v (a! ^ el.  1) v (b I ^ ct.1), 

S I ,- a l@ b l e  Cpl , i  - 1,..., n, 

Sn+ 1 = On, 

where  • means the sum rood 2 and c I is the carry from bit 

posi t ion L 

It Is wel l -known that the c!'s can be determined using the 

fo l lowing scheme: 

C o - O, 
cl " gl v (p! ^ o H ) ,  (5.1)  

where  

gl " al ^ b t, 

and 

Pl " al • b I, 

for  i - 1, 2, ..., n. One can view the gi and Pi as the co.try 

B enerate and carry propaRate conditions at bit position i. The 
relat ion (5.1) corresponds to the fact that the carry c i is either 
generated by a i and b i or propaRated from the previous carry 

ci_ 1. This is i l lustrated in Figure 5-1. 

( I" "'" ( ' "'' ~ 

gn,Pn gi,Pi gl,Pl 

Figure 5 - h  The carry chain. 

In this section we present a regular and area-efficient layout 

design for computing all the carries in parallel assuming that 
the gl's and p!'s are given. Using this layout design for the 

car ry  computation, one can' design a parallel adder in a 

s t ra ight forward way (see [Brent and Kung 79a]). The basis of 

our  method is the reduction of carry computation to a prefi~ 

computat ion, as described in the following subsection. 

Although the same idea was used by [Ladner and Fischer 77], 

the i r  results are not directly applicable because, they ignored 

fanout restrict ions, and used the gate count rather than area 

i s  a complexi ty measure. 

5 .1  Re fo rmu la t i on  of the Car ry  Chain Computat ion 

We define an operator "o" as follows: 

(g,  p )  o (g',  p ' )  - (g v (p ^ g'), p ^ p'), 

for  any Boolean variables g, p, g' and p'. 

I.emma .~.[: Let 

~ ( g l ,  Pl ) if i - 1, 
(% p,). 

L (gl' Pl) O (Gi..t, Ppl ) if 2 S i _< n. 

Then 

c! - G! for i - 1, 2, ..., n. 

proof:  

We prove the Lemma by induction on i. Since c o - 0, (5.1) 

gives 

c t = g ,  v (p ,  ^ O) - g ,  = G 1, 

so the result holds for i - 1. If i • 1 and cpl = Gl.. t, then 

(Gp Pit = (gl, P,) o (Gpl, PH) 

" (gp pl) 0 (Ci.I, Phi ) 
- (g! v (p! ^ c1.1) , pj ^ PH) .  

Thus 

Gt " gl v (P0 h C H)  

and, from (5J) ,  we have 

G i - c  I, 

The result now follows by induction. I I  

From the definit ion of the operator o, it is straightforward 

to show that the operator is associative. Thus, by Lemma 5.1, 
to compute cl's it suffices to compute all the (G,, Pit's, and 

(Gp Pit - (g¢, Pl) o (g~-l, P~-t ) o ... o (gu PI) 

can be evaluated in any order from the given gl's and pl,s. 

( Intui t ively,  G! may be regarded as a "block carry generate" 

condit ion, and PI as a "block carry propagate" condition.) 

5 . 2  A l ayou t  fo r  the  ca r r y  chain computat ion 

Consider f irst the simpler problem of computing the (% Pat 

for  i - n only, Since the operator "o" is associative, (Gn, Pn) 

can be computed in the order defined by a binary tree. This 

is i l lustrated in Figure 5-2 for the case n = 16. In the figure, 

each black processor performs the function defined by the 

opera to r  "o" and each white processor simply transmits data. 

The whi te and black processors are depicted in Figure 5-3. 

Note that for Figure 5-2 each processor is required to 

produce only one of its two identical outputs, and the units of 

t ime are such that one computation by a black processor and 

propagat ion of the results takes unit time. 

Consider now the general problem of computing the (Gl, P|) 

for  all 1 S i S n. This computation can be performed by using 
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(c16 ,Pi6 ) 

A 
I 

T=4 

I = I 

i \  '\ ~\ 1\ ,\ ; \  i \  i \  

I i I I / I I I I I I = I I 
l I I i I = I I I I I I ! I ! 

F i g u r e ,  5 - 2 :  The  c o m p u t a t i o n  o f  (G,s, Pis) us ing a t r e e  
s t r u c t u r e .  

(%.,' Poor ) (go.,, Po., ) (%u,, Po°, ) (gou,, Poo, ) 

I 
f 
I 

(g in  . Pin ) (g in  Pin ) ('gin P '  

gou, = gi. go., = g , .  v (B. 

Pout = Pin Pout = Pin A Pi. 

(a)  (b )  

^ g',°) 

F i g u r e  5 - 3 :  (a )  T h e  w h i t e  processor, and  (b) the  b lack  
processor 

the  t ree  structure of Figure 5 - 2  once more, this time in the 

r e v e r s e  order.  We illustrate the computation, for the case 

n -  16, in Figure 5 -4 .  It is easy to check that, at time T - 7 ,  
all the (Gp Pi) are computed along the top boundary of the 

ne twork .  As the final outputs, we only keep the G I which are 

the  carries c r 

Cl5 Cl4 Cl3 c12 Cll clO c 9 c 8 c 7 c 6 c 5 c 4 c 3 

A A A  A A A A A  A A A A A 

T = 7  

T = 6  

c16 

A 
i I 

I I 
I 
I 

L I 
I I 

I i 
I ! 

T=5 

I I J I I I 

9 9 
\~ ~\, \, \, '\, 
-V I \, ~5 V ~ \i 

I I I \  I 

\ ,  ¢ 
I I I I \  

I 
I 

I I 

c 2 c 1 

I 

I 

6 
I ! 
I ! 
I | 

© 0 
I I 

i t 

I , I I J , I I I • I x I ' P 
T=4 r~ ¢ ! ,  , , ,  , , , , , ,  r 

i 2 S - dJ_ , ; ; , I ;  ' 
= . 6 ¢ 6 d d q ~ ~ l , '  ' " 6 - '  ' 

I ', i " k  , ' , I ', , , " x .  I , ' 
~ 6 6 6 ~  ' -  " ' ' ' " '  6 ' ¢ 
\, I\~ . ' \ 1  I J l\J f ~ i , .< , i 4 ; i i '~ 

, i \ ' I I \I I ' \' l I L ' I 

~-~¢~o~oto o=o~ ,, o 
I I I i \ !  i \  !\ ; I \  ~1 l\ ix ~ 

I ' I I I ' I ! ~! ;\; ;\: ;\: \: :\}, 
I t I t I I I I I I I 

I I ~ ~ ~ ~ ~ ~ I f ~ I = 

Fi l lure 5 - 4 :  The computation of all the carries for n = .I.6. 

In deriving the layout of Figure 5-4 we used only one 

distr ibut ive  law, Thus, the layout could be usod to evaluate 

arithmetic expressions of the form 

Sn + Pn{gn-1 + Pn- t [ " "  P3(g2 + P2gl  ) " ] }  (5 .2)  

w h e r e  gl, Pl a r e  n u m b e r s  and the  b lack  p r o c e s s o r  in F igu re  

5 - 3  n o w  c o m p u t e s  g o u t  " g in  + Ping~n and Pout  = PinP~n" No te  

t h a t  t h e  c a s e  P2 . . . .  - p .  = x o f  (5 .2)  is the  po l ynomia l  

gn + g n - t  x + "" + g t  xn*I"  
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Y=7 

The layout shown in Figure 5-4 implies that all the carries 

in an n-bi t  addition can be computed in time 0(I 8 n) and area 

O(n Ig n), and therefore so can the addition itself. We show 

that this result is a special case of Theorem 5.1 below. 

We define the width w or a parallel adder to be the number 

of bits it accepts at one time from each operand. For the 

paral lel adder corresponding to the netwrok in Figure 5-4, 

W - 1 6 .  We have hitherto assumed that the width of s 

ne twork  is equal to the number n of bits in each operand. 

Here we consider the case w < n. We show that this case can 

be handled eff iciently using a pipeline scheme on a network 

which is a modification of the one depicted in Figure 5-4. 

For simplicity, assume that n is divisible by w. One can 

par t i t ion an n-bit  integer into n/w segments, each consisting 

of w consecutive bits. To illustrate the idea, suppose that 

w - 16. Then the carry chain computation corresponding to 

each segment can be done on the network in Figure 5-4, and 

the computations for all the segments can be pipelined, 

star t ing from the least significant segment. The results coming 

out from the top of the network are not the final solutions, 

though. Results corresponding to the i th least significant 
segment (i > 1) have to be modified by applying 

(G(~t)w, P(v.4)w) on the right using the operator "o." To 

faci l i tate this modification, we superimpose another tree 

st ructure on the top half of the network, as shown in Figure 

5-5.  Using this additional tree, the contents of the "square" 
processor (denoted by '[3") are broadcast to all the leaves, 

which are black processors. The square processor, shown in 

Figure 5-6,  is an accumulator which initially has value 
(g, p) - (0, 1), and successively has values 

(g, p) - (G(v.i)w, P(i.i)w ) for i = 2, 3 . . . . .  At the time when a 

part icular (G(i.t)w, P(pl)w ) reaches the leaves, it is combined 

wi th  the results just coming out from the old network there. 

By this pipeline scheme, we have the followin 8 result: 

Theorem 5..~..: Let 1 _< w ~ n. Then all the carries in an n-bit 

addit ion can be computed in time proportional to (n/w) + log w 

and in area proport ional to w log w + 1, and so can the 

addition. 

When w - 1 ,  the method outlined in this section is 

essential ly the usual serial carry-chain computation. 

A A A A A ~ ~ 
I ~ I ! I i 

I ] I n 

T=6 

T=5 

T=4 

I 

I 
t 

5 . 3  Genera l  u p p e r  bounds fo r  the ch ip  complex i ty  of 

b i n a r y  add i t i on  

~This is the same left-most processor at level T=4 of the 
network as in Figure 5-~ 

F i g u r e  5-5:  The additional tree structure to be superimposed 
on the top half of the network in Figure 5-4. 

(gout '  Pout ) (gout '  Pout ) 

P) Pout = Pin ^ ~ 

(~,~) = (gout,Pout) 
[delayed] 

(gln,Pin) 

F i g u r e  5-6:  The "square" processor that accumulates 
(G(i-t)w, P(i- l )w ). 

From Theorem 5.1, we have the following 

Corol lary .~d.: The area-tlme product for n-bit addition is 
O(n Ig w + w Ig z w + t), which is O(n Ig 2 n) when w = n, and 

O(n Ig n) when w - n/Ig n, and O(n) when w is a constant. 

One can similarly obtain an upper bound on AT = for any 

= ;¢ O, and for each = one can choose a w to minimize the 

upper  bound. 

_ 
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6. Concluding Remarks References 

Let MULT20~(n) and ADDzo~(n) be the area-time complexity 

AT 20~ for n-bit integer multiplication and addition, respectively. 

Note that the serial adder gives ADD2=(n)= O(n2=), and that 
for = > 1 MULT2a(n) = ~(n 2) since 

A(T/~) 20~ > A(T/'r) 2 _> Kz(n/'r)2. These together with Theorems 

3.3 and 5.1 establish the following result: 

Theorem 6.1: Under assumptions AI to A8 of Section 2, 

~ ( n  t'=) for 0_<#<_l/2, 

MULT2=(n)/ADD2=(n) = l~(n=/Ig2= n) for [/2<=_<1, 
~(n/ Ig 2~ n) for ~31. 

Thus for any = Z 0, the area-lime product for multiplication is 

asymptotically larger than that for addition. W~ can say that 

multiplication is harder than addition as far a; the area-time 

complexity is concerned. 

For binary division, it is easy to deduce a lower bound of 

the same form as (3.21), using the method of [!]rent 76], and 
an upper bound AT 2= = 0(n l*~x Ig t*2= n), u...ing Newton's 

method. 

Computer arithmetic is a subject that has rec(,ived intensive 

study in the past (see, for example, [T,ng 72, Garner 

76, Savage 76, Kuck 78]). Much attention has been paid to the 

tradeoff between time and the number of F.~tes, but until 

recently little attention has been paid to the problem of 

connecting the gates in an economical and regular way to 

minimize chip area and design costs. We hope that the results 

of this paper should help in formalizing this new research 

direction of computer arithmetic, and in understanding 

area-time tradeoffs in the designing process. 

In Section 3, we derived lower bounds on AT 2~, ~([O,1], for 
binary multiplication. Similar lower bounds on AT 2 have been 

obtained for computation of the discrete Fourier transform by  

[Thompson 79], and for that of matrix multiplication by 

[Savage 79]. It seems that area-time complexity is, in general, 

a useful measure for establishing the complexity hierarchy of 

many classes of problems, because it captures important 

attributes of a computation such as time and space, as well as 

communication. One should expect that more rm, ults along this 

line will be obtained in the near future. 
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