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Abstract

We present two new algorithms, ADT and MDT, for solving order-n Toeplitz systems of linear
equations Tz = b in time O(n log2 n) and space O(n). The fastest algorithms previously known,
such as Trench’s algorithm, require time Ω(n2) and require that all principal submatrices of T
be nonsingular. Our algorithm ADT requires only that T be nonsingular.

Both our algorithms for Toeplitz systems are derived from algorithms for computing entries
in the Padé table for a given power series. We prove that entries in the Padé table can be
computed by the Extended Euclidean Algorithm. We describe an algorithm EMGCD (Extended
Middle Greatest Common Divisor) which is faster than the algorithm HGCD of Aho, Hopcroft
and Ullman, although both require time O(n log2 n), and we generalize EMGCD to produce
PRSDC (Polynomial Remainder Sequence Divide and Conquer) which produces any iterate in
the PRS, not just the middle term, in time O(n log2 n). Applying PRSDC to the polynomials
U0(x) = x2n+1 and U1(x) = a0 + a1x + · · · + a2nx2n gives algorithm AD (Anti-Diagonal), which
computes any (m, p) entry along the antidiagonal m + p = 2n of the Padé table for U1 in time
O(n log2 n).

Our other algorithm, MD (Main-Diagonal), computes any diagonal entry (n, n) in the Padé
table for a normal power series, also in time O(n log2 n). MD is related to Schönhage’s fast
continued fraction algorithm. A Toeplitz matrix T is naturally associated with U1, and the
(n, n) Padé approximation to U1 gives the first column of T−1. Thus, the Padé table algorithms
AD and MD give O(n log2 n) Toeplitz algorithms ADT and MDT. Trench’s formula breaks down
in certain degenerate cases, but in such cases a companion formula, the discrete analog of the
Christoffel-Darboux formula, is valid and may be used to compute z in time O(n log2 n) via the
fast computation (by algorithm AD) of at most four Padé approximants.

We also apply our results to obtain new complexity bounds for the solution of banded Toeplitz
systems and for BCH decoding via Berlekamp’s algorithm.

Comments

Only the Abstract is given here. The full paper appeared as [1]. For related work and more
recent references, see [2, 3, 4].
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