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Abstract

A stabilized parallel algorithm for direct-form recursive filters is obtained using
a new method of derivation in the Z domain. The algorithm is regular and modular,
so very efficient VLSI architectures can be constructed to implement it. The degree
of parallelism in these implementations can be chosen freely, and is not restricted to
be a power of two.

1. Introduction

Recursive filtering is one of the most important techniques in digital signal pro-
cessing. To achieve high-sampling rate computation of this kind of problems, a lot
of efforts has been made in the past a few years, for example, [1][5][6][7] and [10].
The two-level pipeline, first introduced by Kung and his colleagues[2][3], is a good
method for not only achieving high-sampling rate computation, but also reducing a
great amount of area in VLSI implementation. An efficient pipelined, or two-level
pipelined, architecture for the recursive filters of state-variable form was recently in-
troduced by Parhi and Messerschmitt[7]. They use first the look-ahead computation
to obtain the pipelined algorithm and then the decomposition technique to reduce the
number of multiplications in the pipelined algorithm. They also show that the block
(or parallel) processing can be combined with the pipelining to further increase the
sampling rate.

The look-ahead computation concept may be applied to the direct-form imple-
mentation of recursive filters to achieve parallel computation[8][9][11][12]. However, it
can cause numerical instability if the effect of finite wordlength is taken into consider-
ation. Thus this paper will introduce a stablized algorithm for computing direct-form
recursive filters. It leads to a more efficient two-level pipelined structure. (Although
the pipeline and parallel processing is achievable, we only deal with the pipelining in
this paper.) We shall see that this algorithm can save a number of multiplications
and that the corresponding structure is more regular than the one described in [7].
Thus it is more suitable for VLSI implementation.
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In Section 2, an example is given to show that the look-ahead computation
may cause numerical instability in the direct-form implementation of recursive fil-
ters. Therefore, we derive a stablized algorithm and then the corresponding two-level
pipelined structure in Section 3 and 4, respectively. Section 5 analyses the stability
and compexity of the derived algorithm. In Section 6 we compare our method with
one in [7].

2. Applying The Look-Ahead Computation To
Direct-Form Recursive Filters

In the look-ahead technique, the given recursion is iterated as many times as
desired to create the necessary concurrency and then the concurrency created can
be used to obtain pipelined and/or parallel implementation of recursive systems[7].
In the following, we give an example to show that this concept may cause numercal
instability in direct-form recursive filters if the effect of finite wordlength in practice
is considered.

A second-order direct-form recursive filter can be expressed as

yi =
2∑
j=0

wjxi−j +
2∑
j=1

rjyi−j (1)

where wj and rj are coefficients and xi and yi are input and output, respectively.
According to (1), we write yi−1 explicitly as

yi−1 =
2∑
j=0

wjxi−1−j +
2∑
j=1

rjyi−1−j (2)

Letting j′ = j + 1, then

yi−1 =
3∑

j′=1

wj′−1xi−j′ +
3∑

j′=2

rj′−1yi−j′ (3)

To apply the look-ahead computation concept, we substitute (3) into (1). Then

yi =
2∑
j=0

wjxi−j + r1yi−1 + r2yi−2

=
2∑
j=0

wjxi−j + r1(
3∑
j=1

wj−1xi−j +
3∑

J=2

rj−1yi−j) + r2yi−2

=
3∑
j=0

w′jxi−j +
3∑
j=2

r′jyi−j

(4)

where w′0 = w0, w′1 = w1 + r1w0, w′2 = w2 + r1w1, w′3 = r1w2, r′2 = r2
1 + r2 and

r′3 = r1r2.
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Since yi in (4) depends upon yi−2 and yi−3, two outputs can be computed simul-
tanously.

To analyse the stability of the modified algorithm, we transform (4) into the Z
domain as

Y (z) =
3∑
j=0

w′jX(z)z−j +
3∑
j=2

r′jY (z)z−j (5)

We then obtain the impulse response function as

H ′(z) =
Y (z)
X(z)

=

∑3
j=0 w

′
jz
−j

1−
∑3
j=2 r

′
jz
−j

=
w0 + (w1 + r1w0)z−1 + (w2 + r1w1)z−2 + r1w2z

−3

1− (r2
1 + r2)z−2 − r1r2z−3

=
(w0 + w1z

−1 + w2z
−2)(1 + r1z

−1)
(1− r1z−1 − r2z−2)(1 + r1z−1)

= H(z)
1 + r1z

−1

1 + r1z−1

(6)

where H(z) and H ′(z) are the impulse response function before and after the modi-
fication, respectively.

From (6) we see that, to obtain a parallel algorithm, we have multiplied both
numerator and denominator of the original impulse response by a factor 1 + r1z

−1.
Suppose that the two poles of H(z) are in the unit circle, say, 0.7 and 0.8. The
denominator of H(z) can be given as 1 − 1.5z−1 − 0.56z−2, that is, r1 = 1.5 and
r2 = 0.56. However, the root of 1 + r1z

−1 is −1.5, which is outside the unit circle. If
the effect of finite wordlength in practice is taken into consideration, this will definitely
cause instability.
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3. Algorithm
In this section, we derive a new parallel algorithm. This algorithm is not only cost-
effective in VLSI implementation, but is guaranteed to be stable. if the original
(serial) algorithm is stable.

The impulse response of an N th order recursive filter, H(z), can be expressed as

H(z) =
Y (z)
X(z)

=

∑N
j=0 wjz

−j

1−
∑N
j=1 rjz

−j
(7)

where X(z) and Y (z) represent the Z transformations of input and output, respec-
tively.

We introduce an N ×N matrix B as follows

B =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
rN rN−1 rN−2 . . . r1

 (8)

In the matrix B, the elements on the first superdiagonal are all equal to one and the
jth element on the last row is rj , the coefficient of the denominator in (7), but all
other elements are equal to zero.

In the following lemma, we prove that, by using the matrix B, the denominator
of the impulse response in (7) can be defined as a matrix form.

Lemma 1: Given B as that in (8), we then have

1−
N∑
j=1

rjz
−j = det(I −Bz−1) (9)

where det(x) denotes the determinant of the matrix x.

Proof : First , if N = 2, then

I −Bz−1 =
(

1 0
0 1

)
−
(

0 1
r2 r1

)
z−1

=
(

1 −z−1

−r2z
−1 1− r1z

−1

)
We have

det(I −Bz−1) = 1− r1z
−1 − r2z

−2 = 1−
2∑
j=1

rjz
−j

By induction, assume that (9) holds for N = K − 1, that is,

det(I −Bz−1) = det


1 z−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −z−1

−rK−1z
−1 −rK−2z

−1 . . . −r2z
−1 1− r1z

−1


= 1−

K−1∑
j−1

rjz
−j

(10)
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For N = K, we have

I −Bz−1 =


1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

rK rK−1 rK−2 . . . r1

 z−1

=


1 −z−1 0 . . . 0
0 1 −z−1 . . . 0
...

...
...

. . .
...

−rKz−1 −rK−1z
−1 −rK−2z

−1 . . . 1− r1z
−1


(11)

By expanding det(I −Bz−1) with respect to the first column, we have

det(I −Bz−1) = det


1 −z−1 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

−rK−1z
−1 −rK−2z

−1 . . . −r2z
−1 1− r1z

−1

+

+ (−1)K+1(−rKz−1)det


−z−1 0 . . . 0 0

1 −z−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −z−1


(12)

The second cofactor of B on the right-hand side of (12) is a banded triangular matrix,
and we have

det


−z−1 0 . . . 0 0

1 −z−1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −z−1

 = (−z−1)K−1 (13)

Substitute (10) and (13) into (12), we then obtain

det(I −Bz−1) = 1−
K−1∑
j=1

rjz
−j + (−1)K+1(−rKz−1)(−z−1)K−1

= 1−
K−1∑
j=1

rjz
−j + (−1)2K+1rKz

−K

= 1−
K∑
j=1

rjz
−j

In order to obtain a parallel algorithm, we make the following modification.
Multiplying both numerator and denominator of (7) by a factor det(

∑M−1
j=0 Bjz−j),
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giving

H(z) =
(
∑N
j=0 wjz

−j)det(
∑M−1
j=0 Bjz−j)

(1−
∑N
j=1 rjz

−j)det(
∑M−1
j=0 Bjz−j)

=
(
∑N
j=0 wjz

−j)det(
∑M−1
j=0 Bjz−j)

det(I −Bz−1)det(
∑M−1
j=0 Bjz−j)

=
(
∑N
j=0 wjz

−j)det(
∑M−1
j=0 Bjz−j)

det((I −Bz−1)(
∑M−1
j=0 Bjz−j))

(14)

It is known that

(I −Bz−1)(
M−1∑
j=0

Bjz−j) = I −BMz−M (15)

Substituting (15) into (14), we obtain

H(z) =
(
∑N
j=0 wjz

−j)det(
∑M−1
j=0 Bjz−j)

det(I −BMz−M )
(16)

To analyse the above modified algorithm, we divide (16) into two parts:

H(z) =
Y (z)
U(z)

U(z)
X(z)

= H2(z)H1(z) (17)

In the above equation, U(z) is an intermediate variable, H2(z) and H1(z) are the Z
transformations of the impulse response of recursive convolution and linear convolu-
tion, respectively, which are defined as follows

H2(z) =
1

det(I −BMz−M )
(18)

and

H1(z) = (
N∑
j=0

wjz
−j)det(

M−1∑
j=0

Bjz−j) (19)
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3.1. Recursive convolution

We first analyze the recursive convolution part H2(z). We show that the denominator
of H2(z) is an NM th order polynomial with only N + 1 terms and that there are N
multiplications required for implementing H2(z).

Lemma 2. Suppose that B is an N ×N matrix, det(I−BMz−M ) can be expressed
as an NM th order polynomial with only N + 1 terms, that is,

det(I −BMz−M ) = 1−
N∑
j=1

bjz
−jM (20)

where bj is a combination of some elements in BM .

Proof : Since B is an N ×N matrix, the product of M matrices B is also an N ×N
matrix. Letting λ = zM , then

det(I −BMz−M ) = det(I −BMλ−1) (21)

from Lemma 1, we have

det(I −BMλ−1) = 1−
N∑
j=1

bjλ
−j (22)

where bj is a combination of some elements in BM .
Substituting zM for λ in (22), we then obtain

det(I −BMz−M ) = 1−
N∑
j=1

bjz
−jM

Form (18) and (20), we have

H(z) =
Y (z)
U(z)

=
1

1−
∑N
j=1 bjz

−jM
(23)

Converting (23) into the time domain, we obtain

yn =
N∑
j=1

bjyn−jM + un (24)

It is easy to see, from (24), that the number of multiplications required for computing
the recursive convolution by the modified algorithm is N . Because yn in (24) depends
only on yn−jM for j = 1 to N , M outputs can be computed simultanously. That is
why we call our modified algorithm a parallel algorithm.

In the following, we give an example with N = 2.
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Suppose that BM =
(
b11 b12

b21 b22

)
. Then

I −BMz−M =
(

1− b11z
−M −b12z

−M

−b21z
−M 1− b22z

−M

)
(25)

We have

det(I −BMz−M ) = (1− b11z
−M )(1− b22z

−M )− b12b21z
−2M

= 1− (b11 + b22)z−M − (b12b21 − b11b22)z−2M

= 1− tr(BM )z−M − (−det(BM ))z−2M

= 1−
2∑
j=1

bjz
−jM

(26)

where tr(BM ) denotes the trace of BM , b1 = tr(BM ) and b2 = −det(BM ).
Since H2(z) = Y (z)

U(z) = 1

1−
∑2

j=1
bjz−jM

, then

yn = b1yn−M + b2yn−2M + un (27)

3.2. Linear convolution
We now analyse the linear convolution part.

Lemma 3. Suppose B is an N × N matrix, det(
∑M−1
j=0 Bjz−j) is an N(M − 1)th

polynomial.

Proof : From Lemma 2, det(I − BMz−M ) is an NM th order polynomial. We
have also known, from Lemma 1, that det(I − Bz−1) is an N th roder polynomial.
However, we have det(I − BMz−M ) = det(I − Bz−1)det(

∑M−1
j=0 Bjz−j). The order

of det(
∑M−1
j=0 Bjz−j) must be NM −N = N(M − 1).

Since det(
∑M−1
j=0 Bjz−j) is an N(M −1)th order polynomial, N(M −1) multipli-

cations are required for implementing it. Therefore, extra N(M − 1) multiplications
have been introduced in the modified algorithm. It is not very practical if either N
or M is large. By using the decomposition technique[7], however, this number of
multiplications can greatly be reduced. In [7], the decomposition technique was used
only in the case when M is a power of two, that is, M = 2K . The following four
lemmas extend the use of this technique to more general cases.

Lemma 4. If M = m1m2, where m1 and m2 are integers, then
∑M−1
j=0 Bjz−j can

be expressed as

M−1∑
j=0

Bjz−j = (
m2−1∑
j=0

(Bz−1)jm1)(
m1−1∑
j=0

(Bz−1)j) (28)

where B0 = I.
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Proof : We arrange M terms of
∑M−1
j=0 Bjz−j into m2 groups with m1 terms each

as follows

M−1∑
j=0

Bjz−j = [I +Bz−1 + · · ·+ (Bz−1)m1−1]+

+ [(Bz−1)m1 + (Bz−1)m1+1 + · · ·+ (Bz−1)2m1−1] + · · ·
+ [(Bz−1)(m2−1)m1 + (Bz−1)(m2−1)m1+1 + · · ·+ (Bz−1)m2m1−1]

(29)

Letting

Q = I +Bz−1 + · · ·+ (Bz−1)m1−1 =
m1−1∑
j=0

(Bz−1)j (30)

for the ith group in (29) we have

(Bz−1)(i−1)m1 + (Bz−1)(i−1)m1+1 + · · ·+ (Bz−1)im1−1 = (Bz−1)(i−1)m1Q (31)

We then obtain

M−1∑
j=0

Bjz−j = Q+ (Bz−1)m1Q+ · · ·+ (Bz−1)(m2−1)m1Q

= [I + (Bz−1)m1 + · · ·+ (Bz−1)(m2−1)m1 ]Q

= (
m2−1∑
j=0

(Bz−1)jm1)Q

= (
m2−1∑
j=0

(Bz−1)jm1)(
m1−1∑
j=0

(Bz−1)j)

Lemma 5. If M =
∏K
k=1mk, where mk is an integer number, then

M−1∑
j=0

Bjz−j =
K∏
k=1

(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi) (32)

where B0 = I and mi’s are not necessarily distinct.

Proof : It follows by induction on K from Lemma 4.

We give an example with M = 12. Since 12 can be expressed as a product of
three prime numbers 3, 2 and 2, we have

11∑
j=0

Bjz−j = (I +Bz−1 +B2z−2) + (B3z−3 +B4z−4 +B5z−5)+

+ (B6z−6 +B7z−7 +B8z−8) + (B9z−9 +B10z−10 +B11z−11)

= (I +Bz−1 +B2z−2)((I +B3z−3) + (B6z−6 +B9z−9))

= (I +Bz−1 +B2z−2)(I +B3z−3)(I +B6z−6)

(33)
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From the above example, it is easy to see that a large polynomial has been
decomposed into a product of three small polynomials. Then

∑11
j=0B

jz−j can be im-
plemented on a three-stage cascaded structure with only 4N multiplications, instead
of 11N multiplications, where we suppose B is an N ×N matrix. This reduction of
the number of multiplications can be formally expressed by the following two lemmas.

Lemma 6. Suppose that B is an N ×N matrix and q and p are constants, then

det(
q−1∑
j=0

(Bz−1)jp) = 1 +
(q−1)N∑
j=1

bjz
−jp (34)

where B0 = I and bj is a combination of some elements in Bp,· · · B(q−1)p.

Proof : Letting zp = λ, then

det(
q−1∑
j=0

(Bz−1)jp) = det(
q−1∑
j=0

Bjpλ−j) (35)

From Lemma 3, we know that det(
∑q−1
j=0 B

jpλ−j) is an N(q− 1)th order polynomial.
It can then be expressed as

det(
q−1∑
j=0

Bjpλ−j) =
(q−1)N∑
j=0

bjλ
−j (36)

where bj is a combination of some elements in Bp, · · · B(q−1)p.
Since the coefficient of λ0 is one both in det(I −BMλ−M ) and in det(I −Bλ−1)

(see Lemma 1 and 2), the coefficient of λ0 in (36) must also be one. Then

det(
q−1∑
j=0

Bjpλ−j) = 1 +
(q−1)N∑
j=1

bjλ
−j (37)

Replacing λ by zp in (37), we then obtain

det(
q−1∑
j=0

(Bz−1)jp) = 1 +
(q−1)N∑
j=0

bjz
−jp

We see, from Lemma 6, that there are only N(q − 1) multiplications required to
implement det(

∑q−1
j=0(Bz−1)jp) although it is an Np(q − 1)th order polynomial. By

extending this result, we have Lemma 7.

Lemma 7. If M =
∏K
k=1mk, there are N(

∑K
k=1mk −K) multiplications required

for implementing det(
∑M−1
j=0 Bjz−j) by using the decomposition technique, where B

is an N ×N matrix.
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Proof : From Lemma 5, we may have

det(
M−1∑
j=0

Bjz−j) = det(
K∏
k=1

(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi))

=
K∏
k=1

det(
mk−1∑
j=0

(Bz−1)j
∏k−1

i=1
mi)

(38)

We see, from the above equation, that det(
∑M−1
j=0 Bjz−j) can be expressed as a prod-

uct of K small polynomials. It can then be implemented on a K-stage cascaded struc-
ture. From Lemma 6, however, there are N(mk − 1) multiplications required in the
kth stage. For K stages, the total number of multiplications is then

∑K
k=1N(mk− 1)

or N(
∑K
k=1mk −K).

4. Structure

In this section, we give the pipelined structure associated with the algorithm that
we derived in the previous section. We first introduce the structure for the recursive
convolution and show that our modified algorithm can be easily used for pipelining.
Then we describe the structure for the linear convolution. Since there is no feed-back
in the linear convolution, we can use a uni-directional structure. The uni-directional
structures can have as many second-level pipelined stages as desired[2]. Therefore,
the two structures can be easily matched with the same sampling rate.

4.1. Recursive convolution

For convenience, we rewrite (24) as follows

yn =
N∑
j=1

bjyn−jM + un (39)

It is easy to construct a structure for computing this algorithm, as shown in Fig. 1†.
Since yn depends only on yn−jM for j = 1, 2, · · ·N , NM delays are evenly distributed
in the system. By using the cut theorem[2][4], a two-level pipeline with M stages can
easily be obtained. Therefore the sampling rate is M times higher than that of the
structure for computing the unmodified algorithm.

† Figures are omitted from this version.
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4.2. Linear convolution

From (19), (34) and (38), the impulse response of linear convolution in the modified
algorithm H1(z) can be expressed as a product of K + 1 polynomials as

H1(z) = (
N∑
j=0

wjz
−j)

K∏
k=1

(1 +
(mk−1)N∑

j=1

b
(k)
j z−j

∏k−1

i=1
mi) (40)

A K + 1 stage cascaded structure may then be used for implementing this algorithm.
In the following, we only consider one stage, that is,

U(z)
X(z)

= 1 +
(q−1)N∑
j=1

bjz
−jp (41)

where q and p is a constant and X(z) and U(z) are the Z transformations of input
and output, respectively.

Converting (41) into the time domain, we have

un = xn +
(q−1)N∑
j=1

bjxn−jp (42)

The above equation can then be computed by using an uni-directional array, as shown
in Fig. 2. Since the structure in Fig. 2 is uni-directional, as mentioned before it can
have as many second-level pipelined stages as desired. Therefore, we can easily make
Fig. 2 match Fig. 1 with the same sampling rate.
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5. Stability and Complexity
We rewrite (16) as

H(z) =
(
∑N
j=0 wjz

−j)det(
∑M−1
j=0 Bjz−j)

det(I −BMz−M )

=
z−N (

∑N
j=0 wjz

N−j)det(z−(M−1)(
∑M−1
j=0 BJzM−1−j))

det(z−M (IzM −BM ))

(43)

Since we have assumed that B is an N ×N matrix, then

det(z−M (IzM −BM )) = z−NMdet(IzM −BM ) (44)

and

det(z−(M−1)(
M−1∑
j=0

BjzM−1−j)) = z−N(M−1)det(
M−1∑
j=1

BjzM−1−j) (45)

Substituting (44) and (45) into (43), we then have

H(z) =
(
∑N
j=0 wjz

N−j)det(
∑M−1
j=1 BjzM−1−j)

det(IzM −BM )
(46)

Suppose that the original algorithm before the modification is stable. Then the
roots of det(Iz −B) are all in the unit circle. This means that the eigenvalues of B,
zi’s, are all in the unit circle. It is clear that the eigenvalues of BM , which are zMi ’s,
are also in the unit circle and closer to the origin than their corresponding zi’s. The
stability of our modified algorithm is obvious.

In the previous discussion, we have shown that, after the modification, the
pipelined structure increases the sampling rateM times. Here we compute the number
of multiplications required in the structure for an N th order recursive filter.

Suppose that B is an N ×N matrix and M =
∏K
k=1mk, where mk is a integer

number. We know, from Lemma 2, that N multiplications are required for implement-
ing det(I −BMz−M ), and from Lemma 7, that N(

∑K
k=1mk −K) multiplications for

det(
∑M−1
j=0 Bjz−j). It is easy to see that, for implementing

∑N
j=0 wjz

−j , we need
N + 1 multiplications. Therefore, the total number of multiplications required for an
N th order recursive filter is

N +N(
K∑
k=1

mk −K) +N + 1 = N(
K∑
k=1

mk −K + 2) + 1 (47)

When mk is not a prime number and can be expressed as a product of some prime
numbers, the small polynomial on the right-hand side of (38) can be further decom-
posed. Therefore, in the best case when M =

∏K′

k=1 pk where pk is a prime number,
the total number of multiplications can be reduced to N(

∑K′

k=1 pk −K ′ + 2) + 1. If
M is a power of two, then the total number of multiplications is

N +N log2M +N + 1 = N(log2M + 2) + 1 (48)
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6. Comparison
In this section, we compare our pipelined algorithm and structure with those described
in [7]. In [7], the authors use the look-ahead computation to obtain a pipelined algo-
rithm for a first-order recursive filter of state-variable form and then the decomposition
technique to reduce the number of multiplications involved in that algorithm. The
method can of course be extended to high-order cases. For convenience, we briefly
describe this method below.

The state-variable form of an N th order recursive filter can be expressed in two
equations, that is, the state update equation

X(n+ 1) = AX(n) +Bu(n) (49)

and the output equation
y(n) = CTX(n) + du(n) (50)

where A is an N×N matrix, B and C are N×1 vectors, d is a scalar, X(n) represents
an N × 1 state-variable vector and u(n) and y(n) are input and output, respectively.

In the above two equations, only the state update equation contains recursion.
To obtain a pipelined algorithm, the look-ahead computation needs to be applied to
that equation. Iterating (49) itself M ′ times, we have

X(n+M ′) = AM
′
X(n) +AM

′−1Bu(n) + · · ·+Bu(n+M ′ − 1)

= AM
′
X(n) +

M ′−1∑
j=0

AM
′−1−jBu(n+ j)

(51)

where A0 = I.
Since it can be precomputed, AM

′−1−jB is just an N × 1 vector. Therefore,
to compute the sum on the right-hand side of (51) requires NM ′ multiplications.
However, this number of multiplications can be reduced by using the decomposition
technique. It is described as follows.

Transforming (51) into the Z domain,then

X(z)zM
′

= AM
′
X(z) +

M ′−1∑
j=0

AM
′−1−jBU(z)zj (52)

or
X(z)
U(z)

=

∑M ′−1
j=0 AM

′−1−jBzj−M
′

I − z−M ′AM ′
(53)

where X(z) and U(z) are the Z transformations of state-variable vector and input,
respectively.

For the numerator of (53), we have

M ′−1∑
j=0

AM
′−1−jBzj−M

′
= (

M ′−1∑
j=0

AM
′−1−jz−(M ′−1−j))Bz−1

= (
M ′−1∑
j=0

Ajz−j)Bz−1

(54)
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From Lemma 5,
∑M ′−1
j=0 Ajz−j can be expressed as a product form. Suppose, for

simplicity, that M ′ is a power of two. Then

M ′−1∑
j=0

AM
′−1−jBzj−M

′
= (

log2 M
′∏

k=1

(
1∑
j=0

(Az−1)j2
k−1

))Bz−1

= (I +Az−1)(I +A2z−2) · · · (I +AM
′/2z−M

′/2)Bz−1

(55)

From (50), (53) and (55), we can calculate the total number of multiplications
required in the pipelined implementation of an N th order recursive filter in the state-
variable form.

First we assume that A is an N×N full matrix. To implement the recursive part
of (53), I − z−M ′AM ′ , N2 multiplications are required because it involves matrix-
vector multiplications. In order to obtain an M stage two-level pipeline, however, M ′

should be equal to NM . This is because we have to distribute M ′ delays evenly to all
basic processing elements in the system. (It can easily be proved by drawing a diagram
and then using the cut theorem.) To implement the non-recursive part of (53), that
is, the equation in (55), we need log2M

′ + 1 cascaded stages. However, it requires
N2 multiplications to implement I + Aiz−i. Then the number of multiplications for
this computation is

N2 log2M
′ +N = N2 log2(NM) +N (56)

To compute the output equation, there are N+1 multiplications required. Therefore,
the total number of multiplications is

N2 +N2 log2(NM) +N +N + 1 = N2(log2(NM) + 1) + 2N + 1 (57)

This number is much greater than that in our direct-form implementation, which is
N(log2M + 2) + 1.

The total number of multiplications can be decreased if A is not a full matrix.
We consider the best case when A is a block-diagonal matrix with block size 2 by 2.
(Note that A can not be a diagonal matrix in most cases. Otherwise complex numbers
will appear in the computation.) For implementing the recusive part of (53), there are
2N multiplications required. M ′ is now only 2M and 2N multiplications are required
for implementing I+Aiz−i in the non-recursive equation of (55). Therefore, the total
number of multiplications becomes

2N + 2N log2(2M) +N +N + 1 = 2N(log2M + 3) + 1 (58)

This number is still greater than that in our implementation.
We can see, from (48) and (58), that the best case in the state-variable form

implementation still requires twice the number of multiplications as our direct-form
implementation. Furthermore, our structure is more regular. Thus it is more suitable
for VLSI implementation.
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7. Conclusions

Although the look-ahead computation is a good technique for obtaining the pipeline
and/or parallel algorithm of an N th order recursive filter in state-variable form, it may
cause instability in the direct-form implementation. In this paper, we have used a
new method for deriving a stablized algorithm of the direct-form recursive filter. This
algorithm is not only guaranteed to be stable, but also leads directly to an efficient
pipelined structure.(This algorithm can also leads to an efficient pipeline and parallel
architecture[13].) We have shown that, to achieve the same sampling rate, our direct-
form implementation of an N th order recursive filter requires less multiplications than
the state-variable form countpart. Our structure is also more regular and modular.
Therefore, it is more suitable for VLSI implementation.

9. Postscript

We have recently learned that Parhi K. K. and Messerschmitt D. G.[14] have obtained
a similar result using a different approach. The disadvantage of their method is that
the decomposition technique can be applied only when M is a power of two. However,
our method does not have this limitation.
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