
IMPROVED TECHNIQUES FOR LOWER BOUNDS
FOR ODD PERFECT NUMBERS

R. P. Brent, G. L. Cohen and H. J. J. te Riele

Abstract. If N is an odd perfect number, and qk k N , q prime, k even,
then it is almost immediate that N > q2k. We prove here that, subject to
certain conditions veri�able in polynomial time, in fact N > q5k=2. Using
this and related results, we are able to extend the computations in an
earlier paper to show that N > 10300.

1. Introduction. A natural number N is perfect if �(N) = 2N , where � is the
positive divisor sum function. It is not known whether odd perfect numbers exist. In
an earlier paper [2], the �rst two authors described an algorithm for demonstrating
that there is no odd perfect number less than a given bound K, and applied it with
K = 10160.

That paper, and others referenced in it, are dependent on the simple
observation that if N is an odd perfect number and qk k N , where q is prime
and k is even, then N � qk�(qk) > q2k. Methods based on this observation require
the explicit factorisation of �(qk) for large values of qk, which imposes a practical
limit on their e�ectiveness. Fewer factorisations would be required if it were known
that N > ql for l > 2k. We shall prove below that, under certain conditions which
are readily tested computationally and easily satis�ed in the cases to be considered,
we in fact have N > q5k=2 (Theorem 2, below). In some cases the exponent on q
can be raised almost to 3k (Theorem 3).

The main result of this paper (Theorem 1) is still heavily dependent on the
algorithm in [2], and we assume familiarity with that paper. It was stated at the end
of that work that to continue the algorithm to obtain any substantial improvement of
the earlier result required the factorisation of the 81-decimal-digit composite number
�(1372); this factorisation has been completed and the result given in a postscript
to [2]. But as our targeted lower bound increased, numerous other \unattainable"
factorisations appeared to bar our way. One example is the factorisation of
�(316936), a composite number of 127 digits; since 31695�36=2 = 316990 > 10315,
this factorisation could be avoided by application of Theorem 2. This approach was
still not su�cient in some instances, but more powerful results along the same lines
allowed us to avoid these factorisations as well.

We have thus been able to prove

Theorem 1. There is no odd perfect number less than 10300.
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To prove Theorem 1, there were nine cases, all detailed in Section 4, requiring
special attention. Apart from these, the original algorithm of [2], with the \q2k "
result, was su�cient.

A preliminary version of the present work is contained in [3]. There, the lower
bound 10200 was obtained.

To describe the new method, we need the de�nition below. For each � � 0, f�
is a function de�ned on the positive integers and satisfying 1 � f�(n) � 2� (so in
particular f0(n) = 1). We shall choose f� as appropriate later.

Definition. Let q be an odd prime and k a positive integer. De�ne

E�(q; k) = f p� j p odd prime, � � 2; � even or � � p � 1 (mod 4),
(9j)(0 < j � k; p�=f�(p) < q2j and qj k �(p�)) g

and
��(q; k) =

X
p�2E�(q;k)

logq(q
2jf�(p)=p�):

(The value of j in the sum is that for which qj k �(p�).)
Write � for �0.

We can compute an upper bound on ��(q; k) in time polynomial in q and k by
an e�cient \lifting" algorithm, described in Hardy and Wright [7, Theorem 123].
Usually, � = 0 and �(q; k) is quite small; numerical results will be given in Section 3.

We assume in the following that N is an odd perfect number. According to
Euler, we may write

N = qk
jY
i=1

p�ii ;

where q and the pi are distinct odd primes, p1 � �1 � 1 (mod 4) and k � �2 �� � � � �j � 0 (mod 2). It is easy to show that j � 2, and we make implicit use of
this below; in fact, it is known that j � 7 (Hagis [6]). Each p�ii , and qk, are called
components of N .

Our new results follow.

Theorem 2. Let N , qk and �(q; k) be as above. Then, provided k � 6�(q; k)
and �(qk) is not a square and has no prime factors less than 1

2q
�(q;k), we have

N > q5k=2.

Theorem 3. Let N , qk, �(q; k) and p1 be as above. Let M be a unitary divisor
of N (that is, M j N and gcd(M;N=M) = 1), such that q - M , q - �(M) and
p1 -M . Then

N > 1
2Mq3k�k1��(q;k);

where qk1 k p1 + 1.

2. Proofs of Theorems 2 and 3. The proofs depend on a number of lemmas,
some of which will also be used independently in the proof of Theorem 1.
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Lemma 1. If p and q are odd primes with p j �(qk) and qm j p + 1, then
k � 3m.

Proof. Since qm j p + 1, we have p + 1 = 2aqm for some a > 0. Then, since
p j �(qk) = (qk+1 � 1)=(q � 1),

qk+1 � 1 = (2aqm � 1)R;

where R > 0, and this implies k � m. From the preceding equation, we have R � 1
(mod qm), so R = bqm + 1 say, and clearly b > 0.

Thus
qk+1 � 1 = (2aqm � 1)(bqm + 1); (1)

so qk+1 > aqm � bqm � q2m, from which k � 2m.
We also have

qk+1�m = 2abqm + 2a� b;
so b = 2a + �qm, where � = 2ab � qk+1�2m, the latter implying � 6= 0. Then we
cannot have both b < qm and 2a < qm, since in that case

j�j = jb� 2aj
qm

< 1;

a contradiction. Hence, b � qm or 2a > qm.
From (1), if 2a > qm, then

qk+1 � 1 > (q2m � 1)(qm + 1);

so qk+1 > q3m + q2m � qm � q3m; and if b � qm, then

qk+1 � 1 � (2qm � 1)(q2m + 1);

so qk+1 � 2q3m + 2qm � q2m > q3m. Either way, we infer that k � 3m, as required.

The example p = 5, q = 3, k = 3, m = 1 shows this result to be best possible.

Lemma 2. Let q be an odd prime and let S be any nonempty set of prime powers
p�, with p odd and � at least 2 and either even or satisfying � � p � 1 (mod 4).
For each p�ii 2 S, suppose qki k �(p�ii ) and k �P ki. Then

logq
Y
p�ii 2S

�(p�ii )
f�(pi)

> 2
X

ki � ��(q; k):

Proof. We have quite generally that

�(p�ii )
f�(pi)

>
p�ii

f�(pi)
= q2ki�(2ki�logq(p

�i
i =f�(pi))) = q2ki�logq(q

2kif�(pi)=p
�i
i );
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while if p�ii 2 SnE�(q; k), then p�ii =f�(pi) � q2ki . Thus, where E� = E�(q; k),

logq
Y
p�ii 2S

�(p�ii )
f�(pi)

> 2
X

ki � X
p�ii 2S\E�

logq(q
2kif�(pi)=p�ii )

� 2
X

ki � X
p�ii 2E�

logq(q
2kif�(pi)=p�ii )

� 2
X

ki � ��(q; k);

as required.

We remark that Lemmas 1 and 2 require no reference to odd perfect numbers.

Lemma 3. Let N , qk and p�1
1 be as in Section 1.

(i) If �1 > 1 then

N > 1
2q

3k���(q;k)
jY
i=1

f�(pi):

(ii) If �1 = 1 then

N > q3k�k1���(q;k)
jY
i=2

f�(pi);

where qk1 k p1 + 1.

Proof. (i) Apply Lemma 2 with S equal to the set of components of N=qk.
Then, in Lemma 2,

P
ki = k and

2N = �(N) = �(qk)
jY
i=1

�(p�ii )
f�(pi)

jY
i=1

f�(pi)

> qk � q2k���(q;k) �
jY
i=1

f�(pi):

(ii) We again apply Lemma 2, this time with S equal to the set of components of
N=qkp1. Then

P
ki = k � k1 and

2N = �(N) = �(qk)�(p1)
jY
i=2

�(p�ii )
f�(pi)

jY
i=2

f�(pi)

> qk � (p1 + 1) � q2(k�k1)���(q;k) �
jY
i=2

f�(pi):

Since p1 + 1 � 2qk1 , the result follows.

Corollary 1. Let N , qk and p�1
1 be as above. If either (i) �1 > 1, or

(ii) �1 = 1 and p1 j �(qk), then

N > q8k=3��(q;k):
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Proof. Take � = 0 in Lemma 3. (i) Since k � 2 and q � 3, we have qk=3 > 2
and the result follows from Lemma 3 (i). (ii) From Lemma 1, k � 3k1 so the result
follows from Lemma 3 (ii) since 3k � k1 � 3k � k=3 = 8k=3.

Lemma 4. Let N , qk and p1 be as in Section 1. Suppose that �(qk) is not a
perfect square and is not divisible by p1 or any prime number less than B. Then

N2 > 2Bq5k���(q;k)
jY
i=2

f�(pi):

Proof. We shall prove this lemma in the case where q j p1 + 1 and p1 k N .
(Minor adjustments are needed for the other cases.) Suppose qk1 k p1 + 1. Since
�(qk) is not a perfect square, there is a prime, p2 say, but not p1, which divides
�(qk) to an odd power and so divides N to a higher (even) power. Also p1+1 � 2qk1

and p2 � B, so

N � qk�(qk)p1p2

� qk � qk(1 + q�1) � 2qk1(1� 1
2q
�k1) �B

> 2Bq2k+k1 :

From Lemma 3 (ii), we also have N > q3k�k1���(q;k)Qj
i=2 f�(pi). Hence

N2 > 2Bq5k���(q;k)
jY
i=2

f�(pi);

as required.

Proof of Theorem 2. Take � = 0. Since k � 6�(q; k), we have 8k=3� �(q; k) �
5k=2, and the theorem follows from Corollary 1, unless �1 = 1 and �(qk) is not
divisible by p1. But then the result follows from Lemma 4, with B � 1

2q
�(q;k).

Proof of Theorem 3. As in the proof of Lemma 3, we consider two cases. If
�1 > 1 then apply Lemma 2 with S equal to the set of components of N=Mqk.
Then

P
ki = k, since q - �(M), and

2N = �(N) = �(M)�
�
N
M

�
= �(M)�(qk)

jY
i=1
pi-M

�(p�ii )

> M � qk � q2k��(q;k) = Mq3k��(q;k):

If �1 = 1, then apply Lemma 2 with S equal to the set of components of N=Mqkp1.
Then

P
ki = k � k1 and

2N = �(M)�(qk)�(p1)
jY
i=2
pi-M

�(p�ii )

> M � qk � 2qk1 � q2(k�k1)��(q;k) = 2Mq3k�k1��(q;k):
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The result follows.

3. Computation of ��(q; k). Theorem 2 is useful because an upper bound
on ��(q; k) can be computed in time which is bounded by a low degree polynomial
in q and k. We �rst outline an algorithm for this computation, and then give a
numerical example.

Suppose p� 2 E�(q; k), where E�(q; k) is de�ned in Section 1. Since p � 3
and p� < 2�q2k, we have � < �+ 2k log3 q. Thus, to establish the polynomial-time
result, it is su�cient to suppose that � is �xed.

De�ne F (x) = 1+x+x2+� � �+x� . We can enumerate the set Sj of least positive
residues modulo qj of F (x) � 0 (mod qj) by the \lifting" algorithm described
in [7, x8.3]. If j = 1, we can simply check all possible solutions 1, 2, : : : , q � 1
(although faster methods, using a primitive root (mod q), are preferable if q is
large). If j > 1, we apply Theorem 123 of [7] to obtain Sj from Sj�1, using what
is essentially an application of Newton's method. Since F (x) is a polynomial of
degree �, the number jSj j of solutions is bounded by �.

De�ne Tj = f s + �qj j s 2 Sj ; � � 0; (s + �qj)� < f�(s + �qj)q2j g. Clearly,
jTj j � �2�=�� jSj j. Since p� 2 E�(q; k), there is some j, 0 < j � k, such that
qj k �(p�) and p� < f�(p)q2j . Thus, to enumerate such p� , we need only check the
elements of T1, T2, : : : , Tk for primality. In order to obtain an upper bound on
��(q; k), it is su�cient to use a polynomial-time probabilistic primality test, for the
inclusion of a composite p will only increase the computed sum

P
logq(q2jf�(p)=p�).

In practice, below, the upper bounds on each ��(q; k) are in fact exact results,
rounded up if not zero, since each p used was shown to be prime.

Example. To illustrate the algorithm, consider the computation of �(3169; 36).
If � = 2, F (x) = 1 + x + x2, so S1 = f97; 3071g is the set of solutions of
F (x) � 0 (mod 3169). We construct the sets S2, S3, : : : , S36 as in [7, x8.3], and in
each case jSj j = 2. (In this example � = 0 so Tj = Sj ; in general we would add a
small number of multiples of qj to the elements of Sj in order to obtain the set Tj .)
Applying a probabilistic primality test to the elements of T1, T2, : : : , T36 rules out
all but three possible odd prime p such that 3169j k �(p2):

j = 1; p = 97;
j = 3; p = 5875516237; and
j = 11; p = 266602399893630549086712579594816998201:

The contributions log3169(31692j=p2) from these three pairs (j; p) are respec-
tively bounded above by 0.8651, 0.4192, and 0.0482.

For � � 4, we proceed similarly, but we �nd no solutions satisfying all the
constraints. (This is typical, since it is unlikely that the constraint p� < f�(p)q2j

will be satis�ed if � � 4.) We conclude that only the three pairs given above can
contribute to �(3169; 36), so �(3169; 36) � 1:3325.

Table 1 gives the details of all nonzero contributions to ��(q; k) in the cases
relevant to the proof of Theorem 1. Note that there is only one case with � > 2.
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Table 1. Nonzero contributions to ��(q; k), qj k �(p�)

� q k j � logq(q2jf�(p)=p�) p (see below)

0 7 172 8 2 0.5496 : : : 3376853
19 2 0.0607 : : : 10744682090246617
25 2 0.3689 : : : 936579478224094047977
61 2 1.7036 : : : 6778 : : :

119 2 1.0771 : : : 1292 : : :
150 2 0.3796 : : : 4020 : : :

0 3221 42 1 4 0.8125 : : : 11
0 612067 22 1 2 0.3398 : : : 63601

17 2 0.2253 : : : 5291 : : :
0 3169 36 1 2 0.8650 : : : 97

3 2 0.4191 : : : 5875516237
11 2 0.0481 : : : 2666 : : :

221 3 240 1 2 0.9380 : : : 37

Large primes p occurring above

677822686658425215407071060694728215733634249273881
1292705670586158487568763039916765694399830534390031

9630427909162956962804028786608263511417448696587
40205637668275700485119982296550937753326347643003642516228059494

71752457774955475739650336310509313359098137765181615640612833
52915283185303600217046163660913353511950087333134

106429889256916343584191707324489815681786937851
266602399893630549086712579594816998201

4. Proof of Theorem 1. Except for the nine cases to be discussed below,
the proof is a straight-forward extension of the algorithmic method given in [2]. In
particular, it is still valid that the theorem will follow once the primes 127, 19, 7, 11,
31, 13, 3 and 5 are eliminated as possible divisors of N . (As in [2], the elimination
of these primes was carried out in the order given.)

The computer output towards the proof of Theorem 1 has 12655 lines. Some
relevant extracts are shown below. In these, D means the indicated divisor has
already been considered; for details, see [2]. The cases requiring special attention
are the following.

(i) Line 7343 concerns the possibility that 322142 k N . Note that �(322142) =
c148, a composite number with 148 decimal digits, unable to be factorised at this
time. We have �(3221; 42) = log3221(32212=114) � 0:8126 (see Table 1); the
conditions of Theorem 2 are satis�ed, so

N > 3221105 > 10368:

(Such discussions will subsequently be much abbreviated.)
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(ii) Line 7163, �(7172) = c146, �(7; 172) � 4:1400. By Theorem 2,

N > 7430 > 10363:

(iii) Line 7985, �(61206722) = c128, �(612067; 22) � 0:5652. By Theorem 2,

N > 61206755 > 10318:

(iv) Line 8866, �(316936) = c127, �(3169; 36) � 1:3324. By Theorem 2,

N > 316990 > 10315:

(v) Line 4479, �(46746) = c123. We apply Lemma 3, with � = 0. The
antecedents of this case (see Figure 1) show that p1 = 2801 and k1 = 1. Since
�(467; 46) = 0,

N > 467137 > 10365:

Figure 1. �(46746)

4340: 72 ) 19 : : : , D
4341: 74 ) 2801
4342: 28011 ) 3 � 467
4343: 4672 ) 19 : : : , D

(some lines omitted)
4479: 46746 ) c123, case (v)

(vi) Line 9527, �(19146) = c105. See Figure 2. Lemma 3, with � = 0, p1 = 30941,
k1 = 1 and �(191; 46) = 0, gives

N > 191137 > 10312:

(vii) Line 11343, �(3638922) = c101. Observing the antecedents of this case
(Figure 3), we may apply Theorem 3 with M = 3�2 � 318, p1 = 363889, k1 = 1 and
�(36389; 22) = 0. (Since 3 is a primitive root (mod 36389) and �2 is even, we know
that 36389 - �(3�2).) Then

N > 1
2 � 3183638965 > 10304:

Figure 2. �(19142) and �(19146)

8653: 131 ) 7, D
8654: 132 ) 3 � 61

(some lines omitted)
9473: 134 ) 30941
9474: 309411 ) 34 � 191
9475: 1912 ) 7 : : : , D

(some lines omitted)
9526: 19142 ) c96, case (viii)
9527: 19146 ) c105, case (vi)
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(viii) Line 9526, �(19142) = c96. The antecedents of this case (Figure 2) show that
p1 = 30941 and 191 k �(p1). Then, in Lemma 3, k1 = 1 and f�(p1) � 1, so that

N > q3k�1���(q;k)
jY
i=2

f�(pi);

with q = 191, k = 42. The bound obtainable from Lemma 3 with � = 0 is not quite
good enough, so (for the �rst time) we need to take � > 0. For any prime p, we set

f�(p) =

8<:
�

p
p� 1

��
if p j N; p 6= 191 or 30941;

1 otherwise.

Since

2 =
�(N)
N

<
Y
pjN

p
p� 1

=
191
190

30941
30940

jY
i=2

pi
pi � 1

;

we have
jY
i=2

f�(pi) >
�

2 � 190
191
� 30940

30941

��
:

We need to take � large enough that
Qj
i=2 f�(pi) is large but not so large that

��(191; 42) > 0. After some experimentation, we �nd that with � = 50 we have
�50(191; 42) = 0 and

N > 191125
�

2 � 190
191
� 30940

30941

�50

> 10300:

Figure 3. �(3638922)

10615: 32 ) 13, D
(some lines omitted)

11214: 318 ) 1597 � 363889
11215: 3638891 ) 5 � 36389
11216: 363892 ) 1429 � 926659

(some lines omitted)
11343: 3638922 ) c101, case (vii)

(ix) Line 12201, �(3240) = c115. Since �(3; 240) = 0 and

38�240=3 = 3640 > 10305;

by Corollary 1 we may assume that �1 = 1 and p1 - �(3240). Then, from
Lemma 3 (ii),

N > 3720�k1 > 10300
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if k1 � 91. Thus we may assume further that k1 � 92, so that p1 > 392. For any
prime p, we set

f�(p) =

8<:
�

p
p� 1

��
if p j N; p 6= 3 or p1;

1 otherwise.

Then, as in (viii),
jY
i=2

f�(pi) >
�

2 � 2
3
� p1 � 1

p1

��
:

We �nd that with � = 221 we have �221(3; 240) � 0:9381. (It is relevant for this
calculation that 7, 13, 19, 31 are \forbidden" divisors. Otherwise, there would be
contributions from these primes to the sum de�ning �221(3; 240).) Using Lemma 4
with B = 1, we have

N2 > 2 � 31200�0:9381
�

2 � 2
3
� 392 � 1

392

�221

> 10600:

This completes the proof of Theorem 1.

The entire computer output is printed in [4]. A copy has been deposited in the
UMT �le of this journal.

We should mention that the size of the task precluded us from being as
fastidious as we were in [2]. The proof contains 199 partial factorisations. We
estimate that at most 1658 lines would have been saved if those factorisations were
completed. In most cases, the extra lines result from expanding the proof tree using
a smaller prime than would be available if the complete factorisation at the relevant
line were known. In ten cases, the program had to backtrack from an assumed
prime divisor q to another in the same or an earlier branch in order to avoid a
composite �(qk) for which we could �nd no useful factors. The nine special cases
(i){(ix) arose because this option was not available or was impractical. (This can
be seen in Figures 1 and 2.) On the other hand, there were three cases where the
proof was shortened by branching on a prime smaller than the largest available (but
there was no systematic search for such possibilities).

The program for the proof of Theorem 1 di�ers from that used in [2] in that,
besides calculating bounds named B1, B2 and B3 there, it also calculates, when
necessary, \bounds" named B25 and B30, which are blog10 q5k=2c and blog10 q3kc,
respectively, for the current assumed component qk. However, the B25 and
B30 \bounds" need not exceed 10300, and the program does not incorporate the
calculation of values of ��, so that they are not rigorous and are used only to ag
the need for special discussions, such as those above.

A supplement published with [2] contained the output for that proof. In [4], we
include a list of factors of pn� 1 for p prime, 13 � p < 10000, and those values of n
(all prime) which arose in our work. This complements the lists in [5] and should
prove similarly useful. We take this opportunity to announce the availability of a
machine-readable database of factors [1], including all those necessary for the proof
of Theorem 1.
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