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Abstract

We present a numerical stability analysis of the Bareiss and Levinson algorithms for
solving a symmetric positive definite Toeplitz system of linear equations.

0 Introduction

Our interest is in analysis of numerical stability of algorithms for solving a linear system

Tx = b (0.1)

where T is an n × n positive definite Toeplitz matrix and b is an n × 1 vector. We solve this
system in floating point arithmetic with relative precision ε.

We adopt from [14] the following defintions of numerical stability and good-behavior.
Definition 0.1: We say that an algorithm for solving the equation (0.1) is numerically

stable if the computed solution x̃ satisfies

||x− x̃|| ≤ c1εcond(T )||x̃|| (0.2)

where the constant c1 may depend on the dimension n of the system, and cond(T ) = ||T || ||T−1||
is the condition number of T .

Definition 0.2: We say that an algorithm for solving the equation (0.1) is well-behaved if
the computed solution x̃ satisfies

||T x̃− b|| ≤ c2ε||T || ||x̃|| (0.3)

where the constant c2 may depend on the dimension n of the system.
The concepts of numerical stability and good behavior are related to those of weak and

strong stability as presented in [7]. The reader is referred to [17] for in depth treatment of
roundoff analysis of matrix algorithms.

It is known that an algorithm is well-behaved iff there exists a matrix ∆T such that

(T + ∆T )x̃ = b , ||∆T || ≤ c3||T || . (0.4)
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Note that in our definitions we do not require that for a Toeplitz matrix T the perturbation ∆T
be also Toeplitz.

It is also well known that good-behavior implies numerical stability but not vice versa. This
is manifested by the size of the residual vector. Most direct methods for solving a general system
of linear equations are well-behaved while most iterative methods are only numerically stable
[14].

The roundoff error analysis of Toeplitz systems solvers was presented by Cybenko in [9], and
by Sweet in [18]. Cybenko showed that Levinson-Durbin algorithm produces the residual which,
under the condition that all so called reflection coefficients are positive, is of comparable size to
that produced by the well behaved Cholesky method. Next he hypothesised that the same is
true even if the reflection coefficients are not all positive. This would indicate that numerical
quality of the Levinson-Durbin algorithm is comparable to that of the Cholesky method.

In his PhD thesis Sweet [18] presented a roundoff error analysis of a variant of Bareiss
method [2] and concluded that the method is well-behaved. In this paper we generalize both
earlier results on stability of Levinson, and Bareiss algorithms.

We show that that a class of Bareiss type algorithms for solving a positive definite Toeplitz
system of linear equations is well-behaved. We also show that Levinson algorithm is numerically
stable. Numerical experiments suggest that a standard implementation of Levinson algorithm
is not well behaved [19].

Our approach is the following. We treat Bareiss and Levinson algorithms as matrix decom-
position algorithms and derive them as sequences of downdating operations [3]. Next we present
a first order analysis by bounding the first term in an asymptotic expansion for the error in
powers of ε, [17]. By analyzing the propagation of the error of the first order in the sequence of
downdatings that define the algorithms we obtain bounds on the perturbations of the factors in
the decompositions. The bounds conform with the Definition 1.1 and Definition 1.2 for Levinson
and Bareiss algorithms respectively.

1 Notation.

Unless it is clear from the context, all vectors will be real and of dimension n. Likewise, all
matrices are real and their default dimension is n × n. For a ∈ <n, ‖a‖ denotes the usual
Euclidean norm and if T ∈ <n×n,

‖T‖ = max
a∈<n

‖Ta‖
‖a‖

.

Our primary interest is in symmetric positive definite Toeplitz matrices T whose i, jth entry
is

tij = t|i−j|.

We denote by ek, k = 1, . . . , n the unit vector whose elements, with the exception of the kth
element which is one, are all zero.

Z =
n−1∑
k=1

ek+1eT
k

J =
n−1∑
k=0

ek+1eT
n−k

Z0 = I
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Zk = Zk

Jk = JZn−k

Ek = ZT
n−kZn−k

The matrix H(θ) ∈ <2×2 is defined by

H(θ) =
1

cos θ

[
1 − sin θ

− sin θ 1

]
(1.1)

and we note that it has eigenvalues

λ1(θ) = λ−1
2 (θ) = sec θ − tan θ.

2 Elementary Downdating.

In this Section we introduce the concept of elementary downdating. In the subsequent sections
Bareiss and Levinson algorithms will be derived in terms of a sequence of downdating steps. The
numerical properties of the two algorithms will then be related to the properties of the sequence
of elementary downdating steps.

Suppose that we have uk, vk ∈ <n that satisfy

eT
j uk = 0 , j < k (2.1a)

eT
j vk = 0 , j ≤ k (2.1b)

and we wish to find uk+1, vk+1 ∈ <n that satisfy

uk+1uT
k+1 − vk+1vT

k+1 = ZukuT
k ZT − vkvT

k (2.2a)

and

eT
j uk+1 = 0 , j < k + 1 (2.2b)

eT
j vk+1 = 0 , j ≤ k + 1 (2.2c)

We refer to this problem as the elementary downdating problem. This problem is a special
subproblem of a more general problem that arises in Cholesky factorization of a positive definite
difference of two outer product matrices, see [6], [5], [1].

Clearly, the elementary downdating problem will have a unique solution (up to obvious sign
changes) if

|eT
k uk| > |eT

k+1vk|

in which case (
uT

k+1

vT
k+1

)
= H (θk)

(
uT

k ZT

vT
k

)
(2.3)
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where

sin θk = eT
k+1vk/eT

k uk (2.4a)

cos θk =
√

1− sin2 θk (2.4b)

It is easy to verify that

eT
j uk+1 = 0 , j < k + 1 (2.5a)

eT
j vk+1 = 0 , j ≤ k + 1 (2.5b)

The calculation of uk+1, vk+1 via (2.3), (2.4) can be performed in the obvious manner.
Following common usage such algorithms will be referred to as hyperbolic downdating. However,
some computational advantages may be obtained by rearranging (2.3).

For example, we may rewrite (2.3) as

vk+1 = (vk − sin θkZuk)/ cos θk (2.6a)
uk+1 = − sin θkvk+1 + cos θkZuk (2.6b)

which is obtained by using the second component of (2.3) to eliminate vk in the first component
of (2.6). It is of course possible to construct an alternative algorithm by using the first component
of (2.3) to eliminate Zuk in the second component of (2.3). It is easily seen that a single step
of (2.3) or (2.6) requires roughly 4(n− k) + O(1) multiplications.

The relations (2.4a,b), (2.6a,b) form the basis for an alternative mixed algorithm for solving
the elementary downdating problem. Although the computational cost of the two approaches
are the same, it turns out that algorithms based on (2.4) (2.6) have superior stability properties
to algorithms based on the obvious implementation of (2.3) (2.4) (see [[5] ]). However, while
this superior stability is crucial in some applications such the downdating of a Cholesky decom-
position, it is of lesser importance in the construction of efficient algorithms for the solution of
symmetric positive definite Toeplitz system of equations.

It turns out that a substantial increase in efficiency can be achieved by considering the
following modified downdating problem. Given αk, βk and wk, xk ∈ <n that satisfy

eT
j wk = 0 , j < k (2.7a)

eT
j xk = 0 , j ≤ k (2.7b)

find αk+1, βk+1 and wk+1, xk+1 ∈ <n that satisfy

α2
k+1wk+1wT

k+1 − β2
k+1xk+1xT

k+1 = α2
kZwkwT

k ZT − β2
kxkxT

k (2.8a)

and

eT
j wk+1 = 0 , j < k + 1 (2.8b)

eT
j xk+1 = 0 , j ≤ k + 1 (2.8c)

If we make the identification

uk = αkwk

vk = βkxk
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we find that the modified elementary downdating problem is equivalent to the elementary down-
dating problem. However, the extra parameters in the problem can be chosen judiciously to
eliminate some multiplications. For example, if we take αk = βk, αk+1 = βk+1,

sin θk = eT
k+1xk/eT

k wk (2.9a)
αk+1 = αk/ cos θk (2.9b)

and

wk+1 = Zwk − sin θkxk (2.10a)
xk+1 = − sin θkZwk + xk (2.10b)

we obtain a basis for an algorithm which clearly requires about half the number of multiplications
as an algorithm based on (2.3) (2.4). Similarly, we can obtain a mixed modified algorithms via

sin θk = βkeT
k+1xk/αkeT

k wk (2.11a)
αk+1 = αk cos θk (2.11b)
βk+1 = βk/ cos θk (2.11c)

xk+1 = xk −
sin θkαk

βk
Zwk (2.12a)

wk+1 = −sin θkβk+1

αk+1
xk+1 + Zwk (2.12b)

The stability of modified mixed algorithms based on (2.11), (2.12) has been investigated in [13].

3 Cholesky Factorization.

Let us consider the following sequence of calculations. Given u, v ∈ <n with

vTe1 = 0,

let

u1 = u, v1 = v

and for k = 1, . . . , n− 1 solve the elementary downdating problem defined by (2.1) (2.2), which
we assume for the moment has a solution for each k. Now let

U =
n∑

k=1

ekuT
k (3.1)

and

T = UTU. (3.2)
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Equation (2.2a) is

uk+1uT
k+1 − vk+1vT

k+1 = ZukuT
k ZT − vkvT

k

and, on summing k from 1 to n− 1 we obtain

T − ZTZT = u1uT
1 − v1vT

1 − (ZunuT
nZT − vnvT

n )

If we now observe from (2.4.) that

Zun = vn = 0

we obtain

T − ZTZT = uuT − vvT (3.3)

In the terminology of Kailath, Kung and Morf [15], the matrix T has (+)− displacement rank
2. Furthermore, from (3.2), T is symmetric positive definite while from (2.1), (3.1) U is upper
triangular. Thus (3.2) is the Cholesky decomposition of T .

We now return to the question of existence of a solution to the elementary downdating
problem for each k = 1, . . . , n− 1. It is easy to verify that if T is positive definite and satisfies
(3.3) with

eT
1 v = 0

then

|eT
k uk| > |eT

k+1vk|, k = 1, . . . , n− 1.

Consequently, the elementary downdating problem then has a solution for each k = 1, . . . , n−1.
We have derived, albeit in a rather indirect manner, the basis of an algorithm for calculating

the Cholesky decomposition of a positive definite matrix T that satisfies (3.3). In summary, for
a positive definite matrix T satisfying

T − ZTZT = uuT − vvT

eT
1 v = 0

let

u1 = u, v1 = v

and for k = 1, . . . , n− 1 we calculate uk+1, vk+1 such that for k = 1, . . . , n− 1

uk+1uT
k+1 − vk+1vT

k+1 = ZukuT
k ZT − vkvT

k (3.4a)
eT

k+1vk+1 = 0 (3.4b)

Then,

T = UT U
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where

U =
n∑

k=1

ukuT
k .

It is clear from Section 2 that the above algorithm requires only O(n2) operations.
Note that if T is a Toeplitz matrix, then (3.3) holds with

uT = (t0, t1, . . . , tn−1)T /
√

t0

vT = (0, t1, . . . , tn−1)T /
√

t0

and thus the above yields an efficient means of calculation the Cholesky decomposition of a
positive definite Toeplitz matrix. On closer examination it is not difficult to see that the above
formulas are essentially equivalent to Bareiss algorithm [2] for calculating the Cholesky decom-
position of a positive definite Toeplitz matrix. In fact we have a class of the Bareiss type Toeplitz
solvers where each solver corresponds to a particular way of realizing the elementary downdat-
ing steps. For example, the connection with the modified elementary downdating problem is
straightforward. On making the identification

uk = αkwk

vk = βkxk

we obtain

α2
k+1wk+1wT

k+1 − β2
k+1xk+1xT

k+1 = α2
kZwkwT

k ZT − β2
kxkxT

k

eT
k+1xk+1 = 0

which is the modified elementary downdating problem. Then,

T = W T D2W

where

W =
n∑

k=1

ekwT
k

D =
n∑

k=1

αkekeT
k .

As noted previously, the modified elementary downdating problem has computational advantages
and therefore leads to more efficient algorithms for the factorization of a positive definite Toeplitz
matrix. However, in the sequel we will not dwell in the precise details of algorithms. Rather we
shall relate algorithms based on the modified elementary downdating problem to those based
on the elementary downdating problem. Thus for example if α̃k, β̃k w̃k and x̃k are the result of
(2.9), (2.10) or of (2.11), (2.12) we define

ũk = α̃kw̃k

ṽk = β̃kx̃k
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and then analyse the properties of

Ũ =
n∑

k=1

ekũT
k .

4 Analysis of Factorization Algorithms.

Here we present an analysis of the Cholesky factorization algorithm (3.4) for a positive definite
matrix satisfying (3.3). Next the result of the analysis is applied to the case when the matrix is
Toeplitz.

Let ũk, ṽk be the values of uk, vk that are essentially computed. We may assume that ũk,
ṽk will satify a perturbed version of (3.4). That is,

ũk+1ũT
k+1 − ṽk+1ṽT

k+1 = ZũkũT
k ZT − ṽkṽT

k + εGk + O(ε2) (4.1)

where ε is the machine relative precision and Gk depends on the precise specification of the
algorithm used. It is not difficult to show that

ũk = uk + O(ε), ṽk = vk + O(ε)

and the aim of this section is to provide a first order analysis of the error. By a first order
analysis we mean that we are bounding the first term in an asymptotic expansion for the error
in powers of ε. Thus, one has to think of ε → 0 while the problem remains fixed, see [17].

On summing (4.1) from k between 1 and n− 1 we obtain

T̃ − ZT̃ZT = ũ1ũT
1 − ṽ1ṽT

1 − (ZũnũT
nZT − ṽnṽT

n ) + ε
n−1∑
k=1

Gk + O(ε2).

where

T̃ = ŨT Ũ

Ũ =
n∑

k=1

ekũT
k

Since

Zũn = O(ε), ṽn = O(ε)

we find that

T̃ − ZT̃ZT = ũ1ũT
1 − ṽ1ṽT

1 + ε
n−1∑
k=1

Gk + O(ε2). (4.2)

Now define

Ẽ = T̃ − T. (4.3)
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Then using (3.3) and (4.2)

Ẽ − ZẼZT = ũ1ũT
1 − uuT + ṽ1ṽT

1 − vvT + ε
n−1∑
k=1

Gk + O(ε2).

from which it follows that

Ẽ =
n−1∑
j=0

Zj [(ũ1ũT
1 − u1uT

1 ) + (ṽ1ṽT
1 − v1vT

1 )]ZT
j + ε

n−1∑
j=0

n−1∑
k=1

ZjGkZ
T
j + O(ε2). (4.4)

We see therefore that the error consists of two parts – the first associated with initial errors and
the second associated with the fact that (4.1) contains an inhomogeneous term.

Now

‖ũ1ũT
1 − uuT ‖ ≤ 2‖u‖ ‖ũ1 − u‖+ O(ε2)

‖ṽ1ṽT
1 − vvT ‖ ≤ 2‖v‖ ‖ṽ1 − v‖+ O(ε2)

Furthermore, from (3.3)

Tr(T )− Tr(ZTZT ) = ‖u‖2 − ‖v‖2 > 0

and hence

‖
n−1∑
j=0

Zj [ũ1ũT
1 − uuT + ṽ1ṽT

1 − vvT ]ZT
j ‖ ≤ 2n‖u‖[‖ũ1 − u‖+ ‖ṽ1 − v‖] + O(ε2) (4.5)

This demonstrates that initial errors do not propagate unduly. To investigate the second term
we require a preliminary result.

Lemma 4.1

‖Zjvk‖ ≤ ‖Zj+1uk‖

Proof Let

Tk = T −
k∑

l=1

uluT
l

=
n∑

l=k+1

uluT
l

Then, it is easy to verify that

Tk − ZTkZ
T = ZukuT

k ZT − vkvT
k

and since Tk is positive semi-definite

Tr[ZjTkZ
T
j − Zj+1TkZ

T
j+1] = ‖Zj+1uk‖2 − ‖Zjvk‖2 ≥ 0
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2

We now demonstrate stability when the inhomogeneous term Gk satisfies

‖ZjGkZ
T
j ‖ ≤ c{‖Zj+1uk‖2 + ‖Zjvk‖2 + ‖Zjuk+1‖2 + ‖Zjvk+1‖2} (4.6)

and c is a positive constant. This bound is satisfied by a mixed downdating strategy such as
(2.6) or (2.11) (2.12) but does not hold in general. For further details of the precise error analysis
of mixed downdating algorithms, see [13], [5].

Theorem 4.1 Let ũk, ṽk satisfy (4.1.) where Gk satisfies (4.5). Then

‖T − ŨT Ũ‖ ≤ 2n‖u‖{‖ũ1 − u‖+ ‖ṽ1 − v‖}+ 4εc
n−1∑
j=0

Tr(ZjTZT
j ) + O(ε2)

Proof Using lemma 4.1,

‖ZjGkZ
T
j ‖ ≤ 2c{‖Zj+1uk‖2 + ‖Zjuk+1‖2}.

Furthermore, since

Tr(ZjTZj) =
n∑

k=1

‖Zjuk‖2,

it follows that

‖
n−1∑
j=0

n∑
k=1

ZjGkZ
T
j ‖ ≤ 4c

n−1∑
j=0

Tr(ZjTZT
j ) (4.7)

The result now follows on combining (4.2) (4.3) and (4.5).
2

Remark A somewhat less general version of Theorem 4.1 has been obtained by Sweet in
[18].

2

In general, an estimate of the form (4.5) does not hold. A weaker bound on Gk which does
hold for all schemes outlined in section 2 is

‖ZjGkZ
T
j ‖ ≤

c

4
‖H(θk)‖(‖Zj+1uk‖+ ‖Zjvk‖)(‖Zjuk+1‖+ ‖Zjvk+1‖) (4.8)

which, by Lemma 4.1. simplifies to

‖ZjGkZ
T
j ‖ ≤ c‖H(θk)‖ ‖Zj+1uk‖ ‖Zjuk+1‖

The essential difference between (4.4) and (4.6) is the occurence of the multiplier ‖H(θk)‖ which
can be quite large. This term does cause difficulties in other applications such as the downdating
of a Cholesky decomposition (see [5]) but, because of the special structure of the matrix T is of
lesser importance here. The key result which allows us to obtain stability when (4.7) holds is:
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Lemma 4.2

‖H(θk)‖ ‖Zjuk+1‖ ≤ 2(n− k − j)‖Zj+1uk‖.

Proof It is easy to verify from (2.3) that

1∓ sin θk

cos θk
{uk+1 ∓ vk+1} = Zuk ∓ vk

and from (1.1) that

‖H(θk)‖ =
1 + | sin θ|

cos θ
.

Thus,

‖H(θk)‖ ‖Zjuk+1‖ ≤ ‖H(θk)‖ ‖Zjvk+1‖+ ‖Zj+1uk‖+ ‖Zjvk‖
≤ ‖H(θk)‖ ‖Zj+1uk+1‖+ 2‖Zj+1uk‖

where the last inequality was derived via lemma 4.1. Thus

‖H(θk)‖ ‖Zjuk+1‖ ≤ 2
n−k∑

l=j+1

‖Zluk‖

and the result follows.
2

Remark: Lemma 4.2 does not hold for the computed quantities unless we introduce an O(ε)
term. However in a first order analysis we only need it to hold for the exact quantities.

Theorem 4.2 Let ũk, ṽk satisfy (4.1) where Gk satisfies (4.6). Then

‖T − ŨT Ũ‖ ≤ 2nε‖u‖{‖ũ1 − u‖+ ‖ṽ1 − v‖}+ 2εc
n−1∑
j=1

(n− j)Tr(ZjTZT
j )

Proof Applying Lemma 4.2 to (4.6) yields

‖ZjGkZ
T
j ‖ ≤ 2c(n− j − 1)‖Zj+1uk‖2

and hence

‖
n−1∑
j=0

n−1∑
k=1

ZjGkZ
T
j ‖ ≤ 2c

n−1∑
j=1

n−1∑
k=1

(n− j)‖Zjuk‖2

≤ 2c
n−1∑
j=1

(n− j)Tr(ZjTZT
j ) (4.9)

The result now follows from (4.2) (4.3) and (4.7).
2
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Note that when T is Toeplitz,

Tr(ZjTZT
j ) = (n− j)t0 .

Hence from Theorem 4.1 and 4.2 we obtain the main result on the stability of the Bareiss type
algorithms for solving a symmetric positive definite Toeplitz system:

Corolarry 4.1: The Bareiss type Toeplitz solvers produce an upper triangular matrix Ũ
such that

T = ŨT Ũ + ∆T

where ‖∆T‖ ≤ εt0n
2 when mixed downdating scheme is used, or ‖∆T‖ ≤ εt0n

3 when hyperbolic
downdating scheme is used instead.

2

However, we have been unable to obtain numerical results that demonstrate that a ‘mixed
downdating strategy’ yields superior results to ‘hyperbolic downdating’.

5 Preliminary Results on Basic Recurrences.

In this section we analyse properties of a nonlinear recurrence that is related to the Levinson
recurrence for solving Yule-Walker problem. We then derive bounds on the growth of the
magnitude of the terms in the recurrence. These bounds are applied in the next section in the
roundoff error analysis of Levinson type algorithms.

Let us first consider the recurrence(
pT

k+1

qT
k+1

)
= H(θk)

(
pT

k ZT

qT
k

)
+

(
fT
k

gT
k

)
(5.1)

where p1, q1, f1, g1 are n-dimensional vectors. Then, it follows from (2.3) and (5.1) that

pk+1uT
k+1 − qk+1vT

k+1 = ZpkuT
k ZT − qkvT

k + fkuT
k+1 − gkvT

k+1

and hence that

n∑
k=1

pkuT
k − Z

n∑
k=1

pkuT
k ZT = p1uT − q1vT +

n−1∑
k=1

(fkuT
k+1 − gkvT

k+1)

Thus,

PU =
n−1∑
j=0

Zj(p1uT − q1vT )ZT
j +

∑
j,k

Zj(fkuT
k+1 − gkvT

k+1)Z
T
j

where

P =
n∑

k=1

pkeT
k
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As a result,

pn = {
n−1∑
j=0

Zj(p1uT − q1vT )ZT
j +

∑
j,k

Zj(fkuT
k+1 − gkvT

k+1)Z
T
j }rn (5.2)

where

rn = U−1en

is the last column of U−1.
Our motivation for examining (5.1) is its close connection with the recurrence

yk+1 = Zyk − sin θkJkyk +
√

ck+1‖H(θk)‖hk (5.3)

where

Jk = JZn−k

ck = t0

k−1∏
j=1

cos2 θj

eT
j y1 = 0, j > 1

eT
j hk = 0, j > k + 1.

It is easy to verify that the solution of (5.3) satisfies

eT
j yk = 0, j > k

and hence

Jk+1Jkyk = Zyk

Jk+1Zyk = Jkyk

If we now define

pk = c
−1/2
k yk

qk = c
−1/2
k Jkyk

we find that pk, qk satisfy (5.1) with

fk = ‖H(θk)‖hk

gk = ‖H(θk)‖Jk+1hk

Hence, it follows from (5.2) that

yn = {t−1/2
0

n−1∑
j=0

Zjy1(u− v)T ZT
j

+
∑
j,k

‖H(θk)‖Zj(hkuT
k+1 − Jk+1hkvT

k+1)Z
T
j }
√

cnrn (5.4)
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Now let ak satisfy the homogeneous equation

ak+1 = Zak − sin θkJkak (5.5a)
a1 = e1 (5.5b)

Then, from (5.4)

an = t
−1/2
0

n−1∑
j=0

Zje1(u− v)T ZT
j

√
cnrn

We now consider only the case when T is Toeplitz. Then

u− v = t
1/2
0 e1 (5.6)

and hence

an =
√

cnrn (5.7)

Hence from (5.4) and (5.7) the solution of (5.3) is

yn = {
n−1∑
j=0

Zjy1eT
j+1 +

∑
j,k

‖H(θk)‖Zj(hkuT
k+1 − Jk+1hkvT

k+1)Z
T
j }an (5.8)

Remark It is easy to obtain solutions of (5.3) when the restrictions on y1 and hk are relaxed
by using (5.8) and superposition.

Lemma 5.1 If (5.6) holds then the solution of (5.3) satisfies

‖yn‖ ≤ {|eT
1 y1|+ 4n2t

1/2
0 (

n−1∑
k=1

‖hk‖2
1)

1/2}‖an‖

Proof It is straightforward to see that

‖
n−1∑
j=0

Zjy1eT
j+1‖ = |eT

1 y1| (5.9)

In addition, it is easy to verify that

‖
n−k−1∑

j=0

ZjhkeT
j+1‖1 = ‖

n−k−1∑
j=0

ZjhkeT
j+1‖∞ = ‖hk‖1. (5.10)

and we now use (5.10) to estimate the second term in (5.8). We have

‖
n−1∑
j=0

ZjhkuT
k+1Z

T
j ‖ = ‖

n−k−1∑
j=0

ZjhkuT
k+1Z

T
j ‖

≤ ‖
n−k−1∑

j=0

ZjhkeT
j+1‖ ‖

n−k−1∑
j=0

Zjuk+1eT
j+1‖

≤ n1/2‖hk‖1‖uk+1‖
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Similarly, using Lemma 4.1

‖
n−1∑
j=0

ZjJk+1hkvT
k+1Z

T
j ‖ ≤ n1/2‖hk‖1‖uk+1‖

Thus,

‖
∑
j,k

‖H(θk)‖Zj(hkuT
k+1 − Jk+1hkvT

k+1)Z
T
j ‖

≤ 2n1/2
n−1∑
k=1

‖H(θk)‖ ‖hk‖1‖uk+1‖

≤ 2n1/2(
n−1∑
k=1

‖H(θk)‖2‖uk+1‖2)1/2(
n−1∑
k=1

‖hk‖2
1)

1/2

≤ 4n3/2(
n−1∑
k=1

‖Zuk‖2)1/2(
n−1∑
k=1

‖hk‖2
1)

1/2 (5.11)

where we have used Lemma 4.2 to establish the last inequality. In addition,

n−1∑
k=1

‖Zuk‖2 = Tr(ZTZT ) = (n− 1)t0 (5.12)

and the result now follows from (5.8), (5.9), (5.11) and (5.12).
2

6 The Levinson–Durbin Algorithm.

In this section we consider the problem of calculating the last column of the inverse of a Toeplitz
matrix. This is a slight variation of the usual Levinson–Durbin algorithm which is often asso-
ciated with the solution of the Yule–Walker equations. However a simple modification of the
analysis presented here enables us to analyse this and other modifications of the basic algorithm.

We begin by recalling (5.5) (5.6). That is, the solution of

ak+1 = (Z − sin θkJk)ak, a1 = e1 (6.1)

is

an =
√

cnrn =
√

cnU−1en

where

ck = t0

k−1∏
j=1

cos2 θj

and

T = UT U
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Thus,

Tan =
√

cneT
nunen

Furthermore, it is easy to verify from (3.4) that

eT
nun =

√
cn.

Hence,

Tan = cnen (6.2)

and consequently c−1
n an is the last column of T−1. Clearly, the recurrence (6.1) provides an

effective means of calculating an when the coefficients sin θk are known. Incidently, − sin θk

are often referred to as the reflection or partial correlation coefficients. In Sections 2 and 3, we
considered the calculation of sin θk via the auxiliary vectors uk, vk and this is essentially how they
are determined in Bareiss’s algorithm. It is however possible to calculate them independently
as follows

sin θk = v̂T Zak/ck

ck+1 = (1− sin2 θk)ck

where

v̂T = (0, t1, . . . , tn−1)T

= t
1/2
0 vT

Thus, we obtain

a1 = e1 , c1 = t0 (6.3a)
sin θk = v̂T Zak/ck (6.3b)
ck+1 = (1− sin2 θk)ck (6.3c)
ak+1 = (Z − sin θkJk)ak (6.3d)

and the last column of T−1 is given by c−1
n an.

Suppose that the computed values of ak satisfy

ãk+1 = (Z − s̃kJk)ãk + ε
√

ck+1‖H(θk)‖ξk (6.4)

where s̃k = sin θ̃k is the computed value of sin θk.
Then on multiplying (6.4) by Ek+1T we obtain

Ek+1T ãk+1 = (Z − s̃kJk)EkT ãk

+ v̂T Zãke1 − s̃kv̂T Zãkek+1

+ ε
√

ck+1‖H(θk)‖Ek+1Tξk

If we now write

EkT ãk = c̃kek + δk (6.5)
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where c̃k is the calculated value of ck and note that

δk = O(ε),

we obtain, to first order

δk+1 = (Z − skJk)δk + ε
√

ck+1‖H(θk)‖{αke1 + βkek+1 + Ek+1Tξk}

where

ε
√

ck+1‖H(θk)‖αk = v̂T Zãk − s̃k c̃k

ε
√

ck+1‖H(θk)‖βk = c̃k − c̃k+1 − s̃kv̂T Zãk

Rounding errors that could be obtained from (6.3) and (6.4) are of the form

‖ξk‖ ≤ K‖rk‖, rk = U−1ek

|αk| ≤ Kk‖rk‖
|βk| ≤ Kk‖rk‖.

and error estimates for δn can now be estimated via Lemma 5.1.
Let A = (ã1, ã2, · · · , ãn). It follows from (6.1)-(6.4) that A is upper triangular such that

TA = L + ∆L (6.6)

where L is lower triangular, ∆L = (δ1, δ2 · · · , δn) is upper triangular and the columns of ∆L are
bounded as indicated by Lemma 5.1, that is,

‖δk‖ ≤ ε(
k−1∑
i=1

‖ri‖2)1/2‖ak‖ (6.7)

Note now that

AT TA = AT L + AT ∆L (6.8)

The matrix AT TA is symmetric so AT L + AT ∆L also has to be symmetric. But AT L + AT ∆L
is ”almost” lower triangular thus

AT L + AT ∆L = D + ∆D , ‖∆D‖ ≤ ‖A‖‖∆L‖ ≤ ε‖U−1‖‖A‖2 (6.9)

and also

T = A−T DA−1 + A−T ∆DA−1 (6.10)

Now the computed solution x̃ is obtained as x̃ = AD−1AT b. Hence

x− x̃ = (I −AD−1AT T )x = −AD−1∆DA−1x (6.11)
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or

‖x− x̃‖
‖x‖

≤ ‖AD−1∆DA−1‖ (6.12)
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