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1. Introduction

The obvious way to compute the continued fraction of a real number α > 1 is to
compute a very accurate numerical approximation of α, and then to iterate the well-known
truncate-and-invert step which computes the next partial quotient a = bαc and the next
complete quotient α′ = 1/(α − a). This method is called the basic method. In the course
of this process precision is lost, and one has to take precautions to stop before the partial
quotients become incorrect. Lehmer [6] gives a safe stopping-criterion, and a trick to reduce
the amount of multi-length arithmetic. Schönhage [12] describes an algorithm for computing
the greatest common divisor of u and v and the related continued fraction expansion of u/v
in O(n log2 n log log n) steps if both u and v do not exceed 2n.

A disadvantage of this approach is that if we wish to extend the list of partial quotients
computed from an initial approximation of α, we have to compute a more accurate initial
approximation of α, compute the new complete quotient using this new approximation and
the partial quotients already computed from the old approximation, and then extend the list
of partial quotients using that new complete quotient (we notice that Shiu in [13, p.1312]
incorrectly states that all the previous calculations have to be repeated, but the partial
quotients computed so far don’t have to be recomputed).

Bombieri and Van der Poorten [1], and Shiu [13] have recently proposed a remedy
for this problem. They give a formula for computing a rational approximation of the next
complete convergent from the first n partial quotients. From that complete convergent about
n new partial quotients can be computed. So each step gives an approximate doubling of
the number of partial quotients. To start the method, a few partial quotients have to be
computed with the basic or indirect method. In [1] this method is proposed for algebraic
numbers (which are zeros of polynomials) of degree ≥ 3, whereas Shiu also applies it to
more general numbers, namely to transcendental numbers that can be defined as the zero
of a function for which the logarithmic derivative at a rational point can be computed
with arbitrary precision. This includes numbers like π, log π, and log 2. For each of thirteen
different numbers, Shiu computes 10000 partial quotients. Their frequency distributions are
compared with the one which almost all numbers should obey, according to the Khintchine–
Lévy theory [3, 7]. No significant deviations from this theory are reported. Shiu calls his
method the direct method.

Curiously, Shiu does not refer to what we would call the polynomial method for algebraic
numbers [2, 5, 11] of degree ≥ 3, which computes the partial quotients of α using only
the coefficients of its defining polynomial. Moreover, Shiu gives neither implementational
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details of his direct method, nor of the indirect method mentioned above (which he applies
to four numbers which can not be handled with the direct method). He concludes that his
direct method is “superior in the sense that the computing times for a modest number of
partial quotients using the indirect and the direct method are similar, whereas it becomes
prohibitively long for the basic algorithm”.

Since this is not quite a reproducible conclusion, and since the polynomial method is
not included in Shiu’s study, we felt stimulated to produce a more explicit comparison of
the various methods. In addition, we have taken the occasion to compute about 200000
partial denominators of six different algebraic numbers.

A second motivation for this study is the use of the continued fraction expansion of
certain algebraic numbers in solution methods for certain Diophantine inequalities. For
example, in [10] the system of inequalities

|x3 + x2y − 2xy2 − y3| ≤ 200 and |y| ≤ 10500

(known to have finitely many integral solution pairs (x, y)) was solved with the help of the
computation of a (modest) number of partial quotients of the continued fraction expansion
of one of the real roots of the third degree polynomial x3 + x2 − 2x− 1.

2. Notation and error control

2.1 Notation.
Let α be a real number > 1. The continued fraction expansion of α is defined by

α = a0 +
1

a1 +
1

a2 + · · ·

,

where ai = bαic, αi+1 = 1/(αi − ai), i = 0, 1, . . . , with α0 = α. The positive integers a0,
a1, . . . are called the partial quotients of α and the real numbers αi are called the complete
quotients of α. For simplicity, one writes

α = [a0, a1, a2, . . . ] = [a0, a1, . . . , an, αn+1],

where αn+1 = [an+1, an+2, . . . ].
If α is rational, say α = u/v, then its continued fraction expansion terminates (with

some αi = 0) and the basic method is nothing but the Euclidean algorithm for computing
the greatest common divisor of u and v.

The rational approximation

[a0, a1, . . . , an] =
pn

qn

of α is called the n-th convergent of α. The numerators and denominators of these
approximations can be computed with the following formulas:

pi+1 = ai+1pi + pi−1

qi+1 = ai+1qi + qi−1

}
i = 0, 1, . . . ,

where p0 = a0, q0 = 1, p−1 = 1, and q−1 = 0. In matrix notation, we have(
pi+1 pi

qi+1 qi

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
. . .

(
ai+1 1

1 0

)
,

which implies, by taking determinants, that

(1) pi+1qi − piqi+1 = (−1)i, i = 0, 1, . . . .
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2.2 Error control.
When we compute the partial quotients a0, a1, . . . from a numerical approximation

α of α, we loose precision. The error can be controlled with the help of the following two
lemmas. Lemma 1 gives a sufficient condition for bαc = bαc to hold. Lemma 2 gives an
upper bound for the relative error in α ′ = 1/(α−bαc) as a function of α, the relative error
in α, and α ′.

Lemma 1. Let α be a numerical (rational) approximation of α with relative error bounded
by δ, i.e., α = α(1 + ε) with |ε| < δ. If δ < 1/2 and

(2) (bαc+ 1) δ < α− bαc < 1− (bαc+ 1) δ,

then bαc = bαc.

Proof. We show that bαc < α < bαc+ 1.
Firstly, since 1− δ < 1/(1 + ε) for δ < 1, we have

α(1− δ) <
α

1 + ε
= α.

Furthermore, we have α δ < (bαc+ 1) δ so that, by the left inequality in (2), α δ < α−bαc,
which with the above inequality implies that bαc < α(1− δ) < α.

Secondly, since 1/(1 + ε) < 1/(1− δ) for δ < 1
2 , we have

α =
α

1 + ε
<

α

1− δ
.

From the right inequality in (2) we have α < (bαc+1)(1−δ), so that α/(1−δ) < bαc+1. �

Lemma 2. Suppose the conditions of Lemma 1 hold, and let

α′ =
1

α− bαc
, α ′ =

1
α− bαc

.

Then an upper bound for the relative error in α ′ with respect to α′ is given by α α ′δ/(1−δ).

Proof. We have

∣∣∣∣α ′ − α′

α′

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1

α− bαc
− 1

α− bαc
1

α− bαc

∣∣∣∣∣∣∣∣ =
∣∣∣∣ α− α

α− bαc

∣∣∣∣ =

= α α ′
∣∣∣1− α

α

∣∣∣ = α α ′
∣∣∣∣ ε

1 + ε

∣∣∣∣ < α α ′
δ

1− δ
.

�

An additional way to control the computation is based on the following well-known
property of continued fractions which we leave to the reader to prove.

Lemma 3. If β0/β1 and γ0/γ1 are rational numbers such that

β0

β1
< α <

γ0

γ1
,

then as long as the partial quotients of β0/β1 and γ0/γ1 coincide, they are the partial
quotients of α. The first time the partial quotients do not coincide, they form a lower and
an upper bound for the correct value.
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This suggests Lehmer’s method [6] to reduce the amount of multi-precision work.
Assuming that we have a very accurate rational approximation u/v of the real number
α > 1 with very large numbers u and v, we can form a suitable lower and upper bound
for u/v by just taking the first ten (say) decimal digits of u and v: if dlog10 ue = k, take
u0 = bu/10k−10c and v0 = bv/10k−10c and choose1

β0 = u0, β1 = v0 + 1, γ0 = u0 + 1, and γ1 = v0.

Now we compute partial quotients a0, a1, . . . , ai0 of γ0/γ1 and hence of α as follows:

(3)

ai = bγi/γi+1c
γi+2 = γi − aiγi+1, βi+2 = βi − aiβi+1

if βi+2 < 0 ∨ βi+2 ≥ βi+1then
i0 = i− 1, stop

endif

 i = 0, 1, . . .

Notice that we do not have to compute the partial quotients of β0/β1 (contrary to what is
suggested in [4, p.328]) since as long as 0 ≤ βi+2 < βi+1, we are sure that ai is also the
correct partial quotient of β0/β1. After (3) has stopped, we have to update the fraction
u/v with the computed partial quotients a0, a1, . . . , ai0 . So with a0 we replace u/v by
v/(u− a0v). In matrix notation,(

u
v

)
:=

(
0 1
1 −a0

) (
u
v

)
,

and in general, for a0, . . . , ai0 we have(
u
v

)
:=

(
0 1
1 −ai0

) (
0 1
1 −ai0−1

)
. . .

(
0 1
1 −a0

) (
u
v

)
.

The product of the 2 × 2 matrices in the right hand side is built up first, and next it is
multiplied by the vector (u v)T , which is the only high-precision computation.

3. The basic, polynomial and direct methods

In this section we will describe the three methods which we have considered in this
study, namely the basic method, the polynomial method, and the direct method, which is
derived from Shiu’s direct method.

3.1 The basic method. With the notation of Section 2.1, let αi be a rational
approximation of αi with relative error bounded by δi. The basic method for computing
the continued fraction expansion of α = α0 with safe error control (based on Lemmas 1 and
2) reads as follows.

(4)

ai = bαic
if (ai + 1) δi < αi − ai < 1− (ai + 1) δi then

αi+1 = 1/(αi − ai)
δi+1 = αiαi+1δi/(1− δi)

else
stop

endif


i = 0, 1, . . .

1If v0 = 0, the first partial quotient of u/v is extremely large, and we have to increase the number of

decimal digits in u0 and v0 accordingly.
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Since the αi are rational numbers, we can use Lemma 3 and (3) to reduce the amount of
multi-precision computations. The numbers (ai + 1) δi and δi+1 are computed in (floating-
point) single precision. Since (3) works with low-precision approximations γi/γi+1 and
βi/βi+1 of αi, some care has to be taken in the check of the inequalities in (4) and in the
computation of δi+1 from δi in (4). Here we can use that

β2i

β2i+1
< α2i <

γ2i

γ2i+1
,

and
γ2i+1

γ2i+2
< α2i+1 <

β2i+1

β2i+2
.

as long as a2i and a2i+1 are the correct partial quotients of α2i and α2i+1, respectively. In
the full version of this paper, we will give a complete listing of the algorithmic steps in this
method.

From the metric theory of continued fractions it is known [9] that if from d decimal
digits of α we can compute p partial quotients of its continued fraction, then for almost all
α

lim
d→∞

p

d
=

6 log 2 log 10
π2

= 0.970....

To illustrate this: Lochs [8] has computed 968 partial quotients of π from its first 1000
decimals.

A disadvantage of the basic method is that if we have computed as many as possible
partial quotients from a given initial approximation of α, and if we would like to compute
more partial quotients, we have to compute a more accurate initial approximation, use the
known partial quotients to compute the last possible complete convergent, and from that
extend the list of partial quotients.

3.2 The polynomial method. Let α > 1 be an an algebraic number of degree d > 2
with defining polynomial f(x) (with integral coefficients), so that f(α) = 0. Let f(x) have
the following three properties:

(i) its leading coefficient is positive;
(ii) it has a unique root α > 1 which is simple, i.e., f ′(α) 6= 0;
(iii) α is irrational.

The polynomial method [5] for computing the continued fraction expansion of α reads as
follows. Let f0(x) = f(x).

(5)
ai = max{n ∈ N, fi(n) < 0}
gi(x) = fi(x + ai)
fi+1(x) = −xdgi(1/x)

 i = 0, 1, . . .

It is easy to see that f1(x) has the same three properties as f0(x) and that the unique root
> 1 of f1(x) is given by 1/(α − a0). It follows that the unique root > 1 of the polynomial
fi(x) is the i-th complete quotient of the continued fraction expansion of α, and that this
algorithm finds the corresponding partial quotients. The time-consuming work lies in the
computation of the coefficients of fi+1(x) from those of fi(x) (which grow with i). The
number ai can be computed quickly as follows. If we write fi(x) = cidx

d + ci,d−1x
d−1 + . . . ,

then the sum of the roots of fi(x) is given by si = −ci,d−1/cid. Since, for i ≥ 1, the d − 1
roots of fi(x) which have their real part < 1, are all located in the interval (−1, 0), the
number si approximates ai with an error not greater than d − 1; the precise value of ai is
found from si by trial and error (with an average of (d− 1)/2 trials).

Similarly to the basic method, the polynomial method may be accelerated [5] by
computing several successive partial quotients (with the basic method) from a low-precision
approximation of the real root > 1 of fn(x). Then it is possible to compute fn+m(x) from
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fn(x) and an, an+1, . . . , an+m−1 with less computation than is needed to compute all the
intermediate polynomials fn+1(x), . . . , fn+m−1(x). We have not (yet) pursued this.

An advantage of this method is that the computation can always be continued, without
any recomputation, provided that we save the exact integral values of the coefficients of the
last used polynomial fi(x). To illustrate the growth of these, for f(x) = f0(x) = x3−8x−10,
the four coefficients of f100(x) are integers of 68 decimal digits each, and the four coefficients
of f1000(x) are integers of 570, 571, 570, and 568 decimal digits, respectively.

3.3 The direct method. The direct method which we formulate here is based on ideas
expressed in [1] and [13], combined with error control facilities described in Section 2. The
aim is to compute a very good rational approximation of the complete quotient αn+1 when
the partial quotients a0, a1, . . . , an are known, and from that approximation compute about
n partial quotients of αn+1. This is done as follows. We have

α = [a0, a1, . . . , an, αn+1] =
αn+1pn + pn−1

αn+1qn + qn−1
,

from which we find, using (1), that

αn+1 =
(−1)n−1

qn(pn − αqn)
− qn−1

qn
.

Now using the mean value theorem and f(α) = 0, we replace the difference pn

qn
− α by

f(pn

qn
)/f ′(pn

qn
), and obtain the approximation

(6) αn+1 ≈
(−1)n−1

q2
n

f ′(pn

qn
)

f(pn

qn
)
− qn−1

qn
.

The error in this approximation is approximately

|f ′′(α)|
q2
n|f ′(α)|

.

From this rational approximation of αn+1 partial quotients an+1, an+2, . . . , an+m, . . . can
be computed as long as qn+m < bq2

n, for some small b = b(α) > 0. The direct method
for computing N partial quotients of the continued fraction expansion of α now reads as
follows. Step 1 Use the basic method (4) to compute a small number of partial quotients
and the corresponding partial convergents of α, say up to an, pn, qn.
Step 2 (Check) If pnqn−1 − pn−1qn 6= (−1)n−1 then stop.
Compute the next rational approximation α′ of αn+1 by

(7) α′ =
(−1)n−1

q2
n

f ′(pn/qn)
f(pn/qn)

− qn−1

qn
.

Let B = bq2
n for some suitable constant b = b(α).

Compute the next partial quotients an+1, an+2, . . . , an+m, . . . with the basic method (4)
(using Lemma 3 and (3)) as long as n + m ≤ N and qn+m < B.
Step 3 Put n = n + m; if n < N go back to Step 2.

The number of partial quotients which can be computed in Step 2 is roughly equal to
n so that after the completion of Step 2, the number of partial quotients computed has
roughly been doubled compared with before Step 2. Since (7) is very time-consuming, it is
worthwhile to choose n in Step 1 such that the last time Step 2 is carried out, it starts with
a value of n which is slightly larger than N/2. Since in the beginning of the method the
behaviour of Step 2 may be rather erratic, one should compute so many partial quotients
of α in Step 1 that the ”stable” behaviour phase of Step 2 (an approximate doubling of the
number of partial quotients) is reached. In practice, this works for n ≈ 100, but this also
depends on the sizes of the first partial quotients of the continued fraction of α.
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4. Experiments

We have implemented the three methods described in Section 3 on a SUN workstation,
partially in GP/PARI and partially in Magma. The first package is developed by Henri
Cohen and his co-workers at Université Bordeaux I, the second comes from John Cannon
and his group at the University of Sydney. Initially, we only worked with GP, but at
a certain point in the direct method we ran into problems with the stack size, due to the
enormous size of the integers involved in this method. Later we learned that these problems
can be solved, for example, by programming PARI in Library Mode, but in the meantime we
learned about the Magma-package at the University of Sydney and decided to experiment
with that. With Magma we did not encounter any stack problems.

In Table 1 we give some timings with Magma and GP for the basic, the polynomial,
and the direct methods. Based on these results, we decided to run bigger experiments with
our Magma implementation of the direct method.

In Table 2 we give the frequency distributions of the first 200001 partial quotients of
the continued fraction of six algebraic numbers, computed with the direct method. For
comparison, the last column gives the frequencies of occurrence of partial quotients j:

log2

(
1 +

1
j

)
− log2

(
1 +

1
j + 1

)
from the well-known Gauss-Kusmin Theorem. Let

K(α, n) = (a0a1 . . . an)1/(n+1)

and
L(α, n) = q1/(n+1)

n .

Then for almost all α

lim
n→∞

K(α, n) =
∞∏

k=1

(
1 +

1
k(k + 2)

)log k/ log 2

= 2.68545...,

and

lim
n→∞

L(α, n) = exp
(

π2

12 log 2

)
= 3.27582....

The latter result implies that for almost all α the number of decimal digits in qn is
about n log10 L ≈ 0.515n. Table 2 gives the values of K(α, 200000) for the six algebraic
numbers which we considered. Table 2 also lists the largest partial quotient an found,
and the corresponding index n. Only in case (A) there is an early occurrence of a
large partial quotient (a121 = 16467250), but soon after that, no extremely large partial
quotients occur anymore. To illustrate this, Table 3 lists an for n = 0, . . . , 200 and for
n = 199901, . . . , 200000. The “abnormal” initial behaviour is explained in [14]. Table 4
presents, for some values of n, the number of decimal digits in qn and that number divided
by n. The values of n in Table 4 are those for which the direct method computed a new
rational approximation of αn: it illustrates the approximate doubling of these n-values,
especially for larger values of n. The last column shows good convergence to the value
π2/(12 log 2 log 10) = 0.51532....

5. Conclusion

We have compared three different methods (the basic, the polynomial, and the direct
method) for computing the continued fraction expansion of algebraic numbers, and observed
that the direct method is the most efficient one in terms of CPU-time and memory, at least
for our implementations (in GP/PARI and Magma). We have applied the direct method to
the computation of 200,001 partial quotients of six different algebraic numbers, and found
no apparent deviation from the theory of Khintchine and Lévy, which holds for almost all
real numbers.
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Table 1 CPU-time in seconds to compute 10000 partial
quotients of the root α = 3.31862... of f(x) = x3 − 8x − 10.

basic polynomial direct
with Magma 98 55
with GP 192 172

Table 2 Frequency distribution of the first 200001 partial
quotients of the continued fraction of various algebraic numbers.

(A) f(x) = x3 − 8x− 10, α= 3.31862...
(B) f(x) = x3 − 2, α= 1.25992... = 21/3

(C) f(x) = x3 − 5, α= 1.70997... = 51/3

(D) f(x) = x4 + 6x3 + 7x2 − 6x− 9 α= 1.03224...
= (51/2 − 1)/2 + 21/2 − 1
= [0, 1 ] + [0, 2 ]

(E) f(x) = x3 + x2 − 2x− 1 α= 1.24697... = 2 cos(2π/7)
(F) f(x) = x6 − 9x4 − 4x3 + 27x2 − 36x− 23 α= 2.99197... = 21/3 + 31/2

digit (A) (B) (C) (D) (E) (F) “expected”
1 82705 82862 83186 82865 83159 82566 83008
2 34277 34180 33883 34538 33900 34382 33985
3 18641 18680 18570 18588 18560 18616 18622
4 11693 11795 11785 11503 11835 11931 11779
5 8192 8114 8165 8114 8070 8083 8128
6 6082 5900 5864 5880 5826 5916 5949
7 4470 4443 4535 4512 4519 4532 4544
8 3470 3636 3557 3540 3671 3594 3584
9 2862 2841 2975 2896 2866 2911 2900
10 2474 2424 2329 2400 2428 2347 2395

>10 and
≤100 22156 22240 22298 22309 22302 22230 22264
>100 2979 2886 2854 2856 2865 2893 2843

K 2.6944 2.6871 2.6832 2.6848 2.6844 2.6919 2.68545

max(an) 16467250 320408 489859 7295890 179545 1075748
index n 121 190270 21125 142839 44595 52062

CPU-time
in minutes 109 99 107 196 113 424
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Table 3 Some partial quotients an of the real root
α = 3.31861... of x3 − 8x − 10 (those > 10000 are underlined).

n an

0 3
1 – 20 3 7 4 2 30 1 8 3 1 1 1 9 2 2 1 3 22986 2 1 32
21 – 40 8 2 1 8 55 1 5 2 28 1 5 1 1501790 1 2 1 7 6 1 1
41 – 60 5 2 1 6 2 2 1 2 1 1 3 1 3 1 2 4 3 1 35657 1
61 – 80 17 2 15 1 1 2 1 1 5 3 2 1 1 7 2 1 7 1 3 25
81 – 100 49405 1 1 3 1 1 4 1 2 15 1 2 83 1 162 2 1 1 1 2
101–120 2 1 53460 1 6 4 3 4 13 5 15 6 1 4 1 4 1 1 2 1
121–140 16467250 1 3 1 7 2 6 1 95 20 1 2 1 6 1 1 8 1 48120 1
141–160 2 17 2 1 2 1 4 2 3 1 2 23 3 2 1 1 1 2 1 27
161–180 325927 1 60 1 87 1 2 1 5 1 1 1 2 2 2 2 2 17 4 9
181–200 9 1 7 11 1 2 9 1 14 4 6 1 22 11 1 1 1 1 4 1

199901–199920 1 1 2 1 2 1 3 3 3 4 2 2 1 1 1 1 1 8 11 1
199921–199940 10 1 4 1 1 2 4 2 1 1 3 5 1 6 1 2 7 7 50 1
199941–199960 2 12 1 1 1 3 1 7 1 6 2 2 1 1 2 3 2 6 1 3
199961–199980 1 3 10 1 1 1 3 1 6 2 1 16 1 1 1 1 8 1 1 1
199981–200000 2 5 1 1 2 1 2 2 3 2 1 1 5 2 5 1 1 1 268 1

Table 4 Sizes of qn for the continued fraction expansion
of the real root α = 3.31862... of x3 − 8x − 10.

n # dec. digits of qn # dec. digits/n

301 192 0.638
654 380 0.581
1347 752 0.558
2830 1499 0.530
5667 2992 0.528
11502 5977 0.520
22982 11945 0.520
46208 23880 0.517
92514 47754 0.516

0.51532...= π2

12 log 2 log 10
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