
A Novel Parallel Algorithm for Enumerating Combinations�

Zhou B. B., Brent R. P. and Qu X. Liang W. F

Computer Sciences Laboratory Department of Computer Science
The Australian National University The Australian National University

Canberra, ACT 0200, Australia Canberra, ACT 0200, Australia

Abstract In this paper we propose a new algorithm
for parallel enumeration of combinations. This algo-
rithm uses N processing elements (or PEs). We prove
that, if N and M are relatively prime, each PE will
do the same operations and generate the same num-
ber of distinct combinations so that the computational
load is well balanced. The algorithm has an important
application in solving the problem of fault tolerance in
replicated �le systems.

1 Introduction

A number of parallel algorithms for generating com-
binations and permutations has been introduced in lit-
erature (e.g., those in [1, 2, 3, 4]). Those algorithms
may be classi�ed into two types. The �rst type of
algorithms, for enumerating combinations (or permu-
tations) of M out of N elements, uses M processing
elements (or PEs). These PEs work cooperatively to
generate one combination at a time, that is, the ith
PE only generates the ith elements of each subset (as-
suming PEs are numbered).

Using K PEs for K a positive integer, the second
type of algorithms can generate combinations in lexi-
cographic order and each PE may produce an interval
of 1

K

�N
M

�
subsets. The best algorithm for this type is

described in [1]. In that algorithm each combination
is associated with a unique integer. By using those
integers, a PE can easily determine the �rst combi-
nation in the interval. After the �rst combination is
generated, the rest combinations in that interval can
easily be obtained.

In this paper we present a new parallel algorithm.
This algorithm uses N PEs, each of which generates
1
N

�N
M

�
distinct combinations. Assume that there are

N locations which are indexed, say, from 0 to N � 1
and that each location is equipped with a PE. A spe-

�Appeared in Proc. ICPP, 1996, Vol. II, 70{73.
Copyright c 1996 the authors. rpb168 typeset using LATEX

cial feature of this algorithm is that regular commu-
nication patterns can be obtained if each location re-
quires information from di�erent locations associated
with the elements in a generated combination. This
requirement may be found in the problem of fault tol-
erance in replicated �le systems [5].

2 The Algorithm

Assume that N PEs are in di�erent locations which
are numbered from 0 to N � 1. The basic idea of our
algorithm is that at each step a primitive pattern of M
integers (out of N consecutive integers starting from
zero) is �rst chosen as

P = fT0; T1; � � � ; Tl; � � � ; TM�1g (1)

where T0 = 0, Tl < N and Ti < Tj if i < j. Location i
then generates a combination Pi of size M according
to this primitive pattern, that is,

Pi = f(i+ T0)modN; (i+ T1)modN; (2)
� � � ; (i+ Tl)modN; � � � ; (i+ TM�1)modNg

where 0 � i � N � 1. If a set of primitive patterns
is chosen properly, all

�N
M

�
combinations can be gen-

erated in parallel at N locations.
To obtain those proper primitive patterns, we must

solve the following two problems. Consider an exam-
ple of N = 8 and M = 4. It is easy to see that com-
bination f0, 3, 4, 7g will be generated at locations 0
and 4 and that combination f1, 4, 5, 0g be generated
at locations 1 and 5 when f0, 3, 4, 7g is used as a
primitive pattern. Thus the �rst problem is how to
obtain a primitive pattern which generates only dis-
tinct combinations.

Primitive patterns are de�ned as dependent prim-
itive patterns if a combination can be generated by
either of those patterns. Otherwise they are called in-
dependent primitive patterns. The second problem to



be solved is how to avoid using dependent primitive
patterns. In the following we prove that, if N and
M are relatively prime, (i.e., (N;M) = 1) the combi-
nations generated by the same primitive pattern are
all distinct and dependent primitive patterns can only
generate the same set of combinations. If N and M
are chosen to be relatively prime, therefore, we can
�nd a �xed number of independent primitive patterns
for generating all distinct combinations exactly only
once. With these independent patterns each location
will produce the same number of distinct combina-
tions. The computational load is thus well balanced.

The following two lemmas show that the combina-
tions generated by the same primitive pattern are all
distinct if (N;M) = 1.

Lemma 1 Assume that the greatest common divisor
of b and d is e, that is, (b; d) = e for 0 < d � b and
e � 1. If the elements in a given primitive pattern
satisfy the equations

Tb+i = Tb + Ti (3)

and
Td+j = Td + Tj (4)

where 0 � i �M�1�b, 0 � j � b�1, then Te divides
both Tb and Td, or written as Te j Tb and Te j Td.

Proof. Setting b = d � q(1) + r(1) for q(1) > 0 and
0 < r(1) � d� 1 and applying it to (3), we have

Td�q(1)+r(1)+i = Td�q(1)+r(1) + Ti;

or

Td+d�(q(1)�1)+r(1)+i = Td+d�(q(1)�1)+r(1) + Ti: (5)

If 0 � i � d� 1, then d � (q(1) � 1) + r(1) + i � b� 1.
Applying (4) to (5), we have

Td + Td�(q(1)�1)+r(1)+i = Td + Td�(q(1)�1)+r(1) + Ti;

or
Td�(q(1)�1)+r(1)+i = Td�(q(1)�1)+r(1) + Ti:

Continuing the above process, we can obtain

Tr(1)+i = Tr(1) + Ti (6)

where 0 � i � d� 1.
Let d = r(1)q(2) + r(2) for q(2) > 0 and 0 < r(2) �

r(1) � 1. Using (4) and (6), for the same reason we
may have

Tr(2)+i = Tr(2) + Ti (7)

where 0 � i � r(1) � 1. By continuously using the
Euclidean algorithm (for �nding the greatest common
divisor of b and d) and applying the same procedure
as above, we eventually obtain

r(n�3) = r(n�2)q(n�3) + e;

r(n�2) = q(n�2) � e (8)

and
Te+i = Te + Ti (9)

where 0 � i � r(n�2) � 1.
Now the process goes backward, that is, we �rst

calculate Tr(n�2) . From (8), we have

Tr(n�2) = Tq(n�2)e

= Te+(q(n�2)�1)e: (10)

Since e � 1, then

(q(n�2) � 1)e = q(n�2)e� e
= r(n�2) � e
� r(n�2) � 1:

Applying (9) to (10), we thus obtain

Tr(n�2) = Te + T(q(n�2)�1)e

and further
Tr(n�2) = q(n�2)Te:

Similarly, we can have

Tr(n�3) = Tq(n�3)r(n�2)+e

= q(n�3)Tr(n�2) + Te
= (q(n�3)q(n�2) + 1)Te:

Thus Te also divides Tr(n�3) . Continuing to trace back,
we can �nally obtain that Te divides both Td and Tb.
If b = f � e and d = g � e for f > 0 and g > 0, in
particular, we have Tb = f � Te and Td = g � Te. The
proof for this is easy, but tedious and thus omitted.

Lemma 2 If (N;M) = 1, all the combinations gen-
erated by the same primitive pattern at di�erent loca-
tions will be distinct.

Proof. We prove this lemma by showing that di�er-
ent locations may generate the same combination by
the same primitive pattern only if N and M have a
common divisor greater than one.

Without loss of generality, we assume that P0 and
Pa for a > 0 are the same combination and have the
forms

P0 = fT0; T1; � � � ; Tb; � � � ; TM�1g



and

Pa = f(a+ T0)modN; (a+ T1)modN;
� � � ; (a+ Tb)modN; � � � ; (a+ TM�1)modNg:

Assume (a + T0)modN = Tb, or a = Tb for 0 < b �
M � 1. For 0 � l �M � 1 we have

T(b+l)modM = (a+ Tl)modN:

If l �M � 1� b, then

T(b+l)modM = Tb+l � TM�1:

We know that (a + Tl)modN must increase to reach
TM�1 before it becomes T0 as l increases. For l �
M � 1� b, then

(a+ Tl)modN = a+ Tl = Tb + Tl:

Thus we obtain

Tb+l = Tb + Tl (11)

where 0 � l �M � 1� b.
Let M = hb + d for h > 0 and 0 < d � b. If

l = (h� 1)b+ d� 1 = M � 1� b, from (11) we have

Tb + T(h�1)b+d�1 = TM�1:

The next immediate element in Pa must be equal to
T0 = 0. Otherwise, the two combinations will not be
the same. Thus we have

(Tb + T(h�1)b+d)modN = T0 = 0;

or
Tb + T(h�1)b+d = N: (12)

For 0 � i � b� 1, then

(Tb + T(h�1)b+d+i)modN = Ti;

or
Tb + T(h�1)b+d+i = N + Ti (13)

>From equations in (12) and (13), we obtain

T(h�1)b+d+i = T(h�1)b+d + Ti (14)

where 0 � i � b� 1.
From (11) we can have

Tkb+i = Tb+(k�1)b+i

= Tb + T(k�1)b+i

...
= kTb + Ti

for kb+ i �M � 1.
Since (h � 1)b + d + i � M � 1 for i � b � 1, the

equation in (14) can then be rewritten as

(h� 1)Tb + Td+i = (h� 1)Tb + Td + Ti;

or
Td+i = Td + Ti (15)

for 0 � i � b� 1.
We see from the above discussion that Ti (for 0 �

i � M � 1) must satisfy the two equations in (11)
and (15) if P0 = Pa. Let the greatest common divisor
of b and d be (b; d) = e, or b = f � e and d = g � e
for e � 1, f > 0 and g > 0. >From Lemma 1 we
have Tb = fTe and Td = gTe. Therefore, from (12) we
obtain

N = Tb + T(h�1)b+d

= hTb + Td
= h � fTe + gTe
= (h � f + g)Te
= cTe

where c = h � f + g. We also have

M = h � b+ d
= h � f � e+ g � e
= (h � f + g)e
= c � e:

Since h, f and g are all greater than zero, then c =
h � f + g > 1. Therefore, N and M must have a
common divisor greater than one.

We now prove that dependent primitive patterns
can only generate the same set of combinations.

Lemma 3 If two combinations generated by di�erent
primitive patterns are the same, then any combination
generated by one of these primitive patterns can also
be generated by the other.

Proof. Let P and P 0 be two distinct primitive pat-
terns

P = fT0; T1; � � � ; Tl; � � � ; TM�1g
and

P 0 = fT0
0; T1

0; � � � ; Tl0; � � � ; T 0M�1g:
Without loss of generality, we assume that Pb and Pa0
are the same combination generated by P and P 0 re-
spectively for a� b = e and e > 0. Then

a = b+ e = b+ Tc



0 1 2 3 4 5 6 7 8
group 1 0 1 2 3 4
group 2 0 1 2 3 5

0 1 2 3 6
0 1 2 3 7

group 3 0 1 2 4 5
0 1 2 4 6
0 1 2 4 7
0 1 2 5 6
0 1 2 5 7
0 1 2 6 7

group 4 0 1 3 4 6
0 1 3 4 7
0 1 3 5 7
0 1 4 5 7

Figure 1: A number of 1
N

�N
M

�
= 14 independent prim-

itive patterns for N = 9, M = 5.

where 0 � c �M � 1. We thus have

(b+ T(c+l)modM )modN = (a+ Tl0)modN;

or
T(c+l)modM = (e+ Tl0)modN

and

(k + T(c+l)modM )modN
= (k + (e+ Tl0)modN)modN
= (k + e+ Tl0)modN
= ((k + e)modN + Tl0)modN

where 0 � l �M � 1 and 0 � k � N � 1.
Since modular arithmetic is applied in our compu-

tation, (k+ e)modN for 0 � k � N �1 has N distinct
values which correspond to the N locations and simi-
larly (c + l)modM for 0 � l � M � 1 has M distinct
values which associate with the M indices of Tl. It is
easy to see from the above equation that every combi-
nation generated by P can also be generated by P 0 and
vice versa. We thus conclude that dependent primitive
patterns only generate the same set of combinations.

3 Discussions

In the previous section we have proved that, if N
and M are chosen relatively prime, there exists a set of

independent primitive patterns. Using these patterns,
all
�N
M

�
combinations can be generated in parallel at

N locations. Now the problem is how to construct
these independent primitive patterns in a reasonable
and systematic way. We have a very simple method
to do that. Here we only present an example of N = 9
and M = 5, as shown in Fig. 1. (For details see [6].)
Because of the simplicity and regularity, the method
can easily be implemented.

Our algorithm can also be extended to the case
when N and M are not relatively prime. Because
Lemma 2 cannot be applied, however, some special
care has to be taken into consideration. It is easy to
prove that N may not divide

�N
M

�
if N and M are not

relatively prime. The computational load may then
not be well balanced. This imbalance of computa-
tional load occurs only in certain steps in which each of
the given primitive patterns generates the same com-
bination at di�erent locations. When our method for
generating independent primitive patterns is applied,
those patterns can easily be identi�ed and a simple
technique may be applied to ensure that each combi-
nation is generated exactly once only.

In this paper we only discussed how to use N PEs
to enumerate

�N
M

�
combinations. Another interesting

problem is how to generate those combinations by us-
ing only P PEs for P � N . One solution to this
problem can be found in [6].

References

[1] S. G. Akl, \Adaptive and optimal parallel algo-
rithms for enumerating permutations and combi-
nations", The Computer Journal, Vol. 30, No. 5,
1987, pp. 433-436.

[2] G. H. Chen and M. S. Chern, \Parallel generation
of permutations and combinations", BIT, Vol. 26,
1986, pp. 277-283.

[3] C. J. Lin and J. C. Tsay, \A systolic generation
of combinations", BIT, Vol. 29, 1989, pp. 23-36.

[4] I. Stojmenovic, \An optimal algorithm for gen-
erating equivalence relations on a linear array of
processors", BIT, Vol. 30, 1990, pp. 424-436.

[5] B. B. Zhou, R. P. Brent, X. Qu and W. F. Liang,
\A method for solving the problem of fault toler-
ance in replicated �le systems", in preparation.

[6] B. B. Zhou, R. P. Brent, X. Qu and W. F. Liang,
\A New Method for Parallel Generation of Com-
binations", in preparation.


