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Abstract. Applying gang scheduling can alleviate the blockade problem
caused by exclusively space-sharing scheduling. To simply allow jobs to
run simultaneously on the same processors as in the conventional gang
scheduling, however, may introduce a large number of time slots in the
system. In consequence the cost of context switches will be greatly in-
creased, and each running job can only obtain a small portion of resources
including memory space and processor utilisation and so no jobs can
finish their computations quickly. In this paper we present some experi-
mental results to show that to properly divide jobs into different classes
and to apply different scheduling strategies to jobs of different classes
can greatly reduce the average number of time slots in the system and
significantly improve the performance in terms of average slowdown.

1 Introduction

Scheduling strategies for parallel processing can be classified into either space
sharing, or time sharing. Currently most clusters for parallel processing only
adopt space-sharing strategies, in which each partitioned processor subset is
dedicated to a single job and the job will exclusively occupy the subset until
completion. However, one major drawback of space sharing is the blockade sit-
uation, that is, short jobs can easily be blocked for a long time by long jobs.
Though the backfilling technique can be applied to alleviate this problem to
certain extent [5,7], under heavy workload the blockade can still be a serious
problem. As more parallel software packages have been developed for various
kinds of applications and more and more ordinary users are getting familiar
with multiple processor systems, it is expected that the workload on machines
with multiple processors will become heavy in the near future. To alleviate this
blockade problem, time-sharing strategies have to be considered.

Because processes of the same parallel job need to coordinate with each other
during the computation, coordinated scheduling of parallel jobs across the pro-
cessors is a critical factor to achieve efficient parallel execution in a time-shared
environment. Currently the most popular scheme for coordinated scheduling is
explicit coscheduling [6], or gang scheduling [4]. With gang scheduling time is
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divided into time slots and all parallel jobs, controlled by a global scheduler,
take turns to receive the service in a coordinated manner.

One major fundamental problem associated with conventional gang schedul-
ing is resource contention. Currently nearly all time-sharing strategies assume
that the resources in a system are unlimited. This assumption is not true and
makes the proposed strategies impractical. In a real system the processing speed
of processors is limited. If there is a large number of jobs running simultane-
ously on the same set of processors, no job is able to complete quickly. Because
the memory space in a real system is also limited, it is quite possible that the
system can run out of memory space if a number of jobs are allowed to run
simultaneously and then some jobs have to be paged or swapped out to the sec-
ondary memory. However, the experimental results show that simply applying
the methods of paging and swapping may seriously harm the process coordi-
nation of parallel jobs and thus degrade the system and job performance [1].
Therefore, there is an urgent need to design new time-sharing strategies that
take both processor and memory constraints into consideration.

Recently several methods have been proposed to alleviate this kind of con-
tention problem. For example, the reported experimental results in [1] show that
using a queue to delay job execution is more efficient than running jobs all to-
gether with paging applied. In [9], for another example, the authors first set a
multiprogramming level, or a limit for the maximum number of jobs which are
allowed to run simultaneously on the same processors. If the maximum level
is reached, the new arrivals have to be queued. The authors then combine the
gang scheduling and the backfilling technique to achieve a reasonably good per-
formance.

Using a waiting queue to delay the execution of certain jobs is a good way
to alleviate the problem of resource contention. The question is, however, which
jobs should be queued. Conventionally, jobs are not distinguished according to
their execution times when gang scheduling is considered. It should be pointed
out that the simple round robin scheme used in gang scheduling works well only
if the sizes of jobs are distributed in a wide range. Gang scheduling using the
simple round robin may not perform as well as even a simple FCFS scheme in
terms of average response time, or average slowdown, when all the incoming
jobs are long. The results of our recent study show that limiting the number of
long jobs to time-share the same processors can improve both the average job
performance and processor utilisation [12]. To ensure an efficient utilisation of
the limited computing power and at the same time to satisfy the performance
requirements of various kinds of applications in a give parallel system, therefore,
priorities need to be considered and assigned for different jobs.

Our project to develop an effective and practical coscheduling system is di-
vided into three key stages. In the context of gang scheduling computing re-
sources are two dimensional, that is, we have to consider resource allocation
in both time and space dimensions. At the first stage we investigated effective
resource allocation (packing) and re-allocation (re-packing) schemes for gang
scheduling. We designed a job re-packing strategy for resource re-allocation
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and time slot reduction. Combining certain existing efficient allocation and re-
allocation strategies, we can greatly enhance both resource utilisation and job
performance [10,11].

At the second stage we try to introduce priority scheduling into gang schedul-
ing by dividing jobs into classes, such as, long, medium and short according to
their required execution times. Different allocation strategies are then used for
jobs of different classes to satisfy performance requirements of different appli-
cations. For example, we may queue long jobs to limit the number of long ones
time-sharing the same processors and to allow short ones to be executed im-
mediately without any delay. The method to classify jobs into classes and treat
them differently is not new at all. However, it has not been studied systemati-
cally in the context of gang scheduling. We believe that the performance of gang
scheduling can significantly be improved by taking the priority scheduling into
consideration. Since the computing power is limited, to give one class of jobs a
special treatment will no doubt affect the performance of jobs in other classes. A
hard question is how to design scheduling strategies such that the performance
of jobs in one class can be improved without severely punishing the others.

To solve the problem of memory pressure we need to consider scheduling
and memory management simultaneously. Another advantage of dividing jobs
into classes is that we are able to choose a particular type of jobs for paging
and swapping to alleviate the memory pressure without significantly degrade
the overall job performance. Therefore, in our future work, that is, the third
stage of our project we will consider to combine memory management with gang
scheduling to directly solve the problem of memory pressure.

In this paper we shall present some simulation results from our second stage
research, to show that, by properly classifying jobs (which are generated from
a particular workload model) and choosing different scheduling strategies to
different classes of jobs, we are able to improve the overall performance without
severely degrading the performance of long jobs.

The paper is organised as follows: In Section 2 we briefly describe the gang
scheduling system implemented for our experiments. A workload model used in
our experiments is discussed in Section 3. Experimental results and discussions
are presented in Sections 4. Finally the conclusions are given in Section 5.

2 Our Experimental System

The gang scheduling system implemented for our experiments is mainly based
on a job re-packing allocation strategy which is introduced for enhancing both
resource utilisation and job performance [10,11].

Conventional resource allocation strategies for gang scheduling only consider
processor allocation within the same time slot and the allocation in one time
slot is independent of the allocation in other time slots. One major disadvantage
of this kind of allocation is the problem of fragmentation. Because processor
allocation is considered independently in different time slots, freed processors
due to job termination in one time slot may remain idle for a long time even
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though they are able to be re-allocated to existing jobs running in other time
slots.

One way to alleviate the problem is to allow jobs to run in multiple time
slots [3,8]. When jobs are allowed to run in multiple time slots, the buddy based
allocation strategy will perform much better than many other existing allocation
schemes in terms of average slowdown [3].

Another method to alleviate the problem of fragmentation is job re-packing.
In this scheme we try to rearrange the order of job execution on the originally
allocated processors so that small fragments of idle processors from different
time slots can be combined together to form a larger and more useful one in
a single time slot. Therefore, processors in the system can be utilised more
efficiently. When this scheme is incorporated into the buddy based system, we
can set up a workload tree to record the workload conditions of each subset of
processors. With this workload tree we are able to simplify the search procedure
for available processors, to balance the workload across the processors and to
quickly determine when a job can run in multiple time slots and when the number
of time slots in the system can be reduced.

With a combination of job re-packing, running jobs in multiple time slots,
minimising time slots in the system, and applying buddy based scheme to allo-
cate processors in each time slot we are able to achieve high efficiency in processor
utilisation and a great improvement in job performance [11].

Our experimental system is based on the gang scheduling system described
above. In this experimental system, however, jobs are classified and limits are
set to impose restrictions on how many jobs are allowed to run simultaneously
on the same processors.

To classify jobs we introduce two parameters. Assume the execution time of
the longest job is te. A job will be considered “long” in each test if its execution
time is longer than αlt

e for 0.0 ≤ αl ≤ 1.0. A job is considered “medium” if
its execution time is longer than αmte, but shorter than or equal to αlt

e for
0.0 ≤ αm ≤ αl. Otherwise, the job will be considered “short”. By varying these
two parameters we are able to make different job classifications and to see how
different classifications affect the system performance.

We introduce a waiting queue for medium and long jobs in our coscheduling
system. To alleviate the blockade problem the backfilling technique is adopted.
Because the backfilling technique is applied, a long job in front of the queue will
not block the subsequent medium sized jobs from entering the system. Therefore,
one queue is enough for both classes of jobs. A major advantage of using a single
queue for two classes of jobs is that the jobs will be easily kept in a proper order
based on their arriving times. Note that in our experimental system short jobs
can be executed immediately on their arrivals without any delay.

To conduct our experiments we further set two other parameters. One pa-
rameter km is the limit for the number of both medium and long jobs to be
allowed to time-share the same processors. If the limit is reached, the incoming
medium and long jobs have to be queued. The other parameter kl is the limit
for the number of long jobs to be allowed to run simultaneously on the same
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processors. If that limit is reached, the incoming long jobs have to be queued.
By varying these two parameters we are able to see how the added queue affects
the system performance.

3 The Workload Model

In our experiment we adopted one workload model proposed in [2]. Both job run-
times and sizes (the number of processors required) in this model are distributed
uniformly in log space (or uniform-log distributed), while the interarrival times
are exponentially distributed. This model was constructed based on observations
from the Intel Paragon at the San Diego Supercomputer Center and the IBM
SP2 at the Cornell Theory Center and has been used by many researchers to
evaluate their parallel job scheduling algorithms. Since the model was originally
built to evaluate batch scheduling policies, we made a few minor modifications
in our simulation for gang scheduling.

In following sections we present some experimental results. We assume that
there are 128 processors in the system. In each experiment we measure the
average slowdown and the average number of time slots which are defined below.

Assume the execution time and the turnaround time for job i are tei and tri ,
respectively. The slowdown for job i is si = tri /tei . The average slowdown s is
then s =

∑m
i=0 si/m for m being the total number of jobs.

If ti is the total time when there are i time slots in the system, the average
number of time slots in the system during the operation can be defined as n =∑l

i=0 iti/
∑l

i=0 ti where l is the largest number of time slots encountered in the
system during the computation.

For each estimated system workload, 10 different sets of 10000 jobs were
generated using the workload model described above and the final result is the
average of these 10 runs.

4 Experimental Results

We conducted four different experiments. Some of our experimental results are
presented in the following subsections.

4.1 Experiment One

In our first experiment αm and αl are fixed, that is, αm = 0.0 and αl = 1.0.
With this setting all jobs are treated as equal and they may have to enter the
queue before being executed if km is not set to infinity. The number of jobs to
be allowed to time-share the same processor is determined by km. Thus the sys-
tem performance will be affected by varying this parameter. Some experimental
results for average slowdown are given in Fig. 1.

When km = 1, it is just a simple FCFS scheduling system with backfilling.
It can be seen from this figure that the slowdown is very dramatically increased
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Fig. 1. Average slowdown when αm = 0.0 and αl = 1.0.

after workload becomes greater than 0.4. Therefore, exclusively space-sharing
scheduling can only perform well under light workload. When the system work-
load becomes heavy, time sharing should be considered.

When km is increased, the performance is improved as indicated in the figure.
After km reaches certain value, however, further increase in km will not lead to
a great increase in performance. An interesting point is that the simple gang
scheduling system (by setting km = ∞) will not perform as well as one with km =
30 when the system workload becomes heavy. This is because the computing
power of a given system is limited. If too many jobs time-share the same set of
processors, each job can only obtain a very small portion of processor utilisation
and no job can complete quickly. Thus the system performance will be degraded.

4.2 Experiment Two

In our first experiment jobs are not distinguished based on their execution times.
Though the performance is improved by increasing km, the improvement is not
that significant.

As mentioned in Section 1, the simple round robin scheduling strategy will
not perform well when a number of long jobs are running simultaneously on the
same processors. To demonstrate this in our second experiment we set αm = 0.8
and αl = 1, which means jobs are divided into two classes, that is, “long” jobs
whose execution time is longer than 0.8te for te the execution time of the longest
job, and “short” jobs whose execution time is shorter than or equal to 0.8te. By
varying km we can determine how many long jobs can run simultaneously on
the same processors.

Some experimental results are depicted in Fig. 2. We can see from the figure
that the average slowdown, the average number of slots and the maximum slot
number (i.e. the maximum number of jobs which are running simultaneously on
the same processors during the computation) are all reduced when km decreases.
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Fig. 2. (a) Average slowdown, (b) average number of time slots and (c) maximum
number of time slots, when αm = 0.8 and αl = 1.0.
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It is a clear indication that limiting the number of long jobs to run simultaneously
on the same processors can indeed improve overall system performance.

Comparing Fig. 2(a) with Fig. 1, we see that a much smaller average slow-
down can be obtained by only queueing long jobs, but allowing other jobs to
run immediately on their arrivals. As depicted in Fig. 1, for example, the av-
erage slowdown will become greater than 150 when the workload is 0.9. This
can be considered a very good result when the method of combining the gang
scheduling with backfilling is applied. By queueing long jobs, however, the aver-
age slowdown can be even lower than 20 with km = 1 (or km = 2), which is a
significant improvement.

It can also been seen from Fig. 2(b) that for km = 1 the average number
of slots is only about 5 when the system workload is 0.9. thus queueing long
jobs can also decrease the average number of time slots in contrast with the
conventional gang scheduling.

4.3 Experiment Three

Although the average slowdown is significantly decreased by queueing long jobs
in gang scheduling, the maximum slot number encountered during the compu-
tation is relatively high in contrast to the strategy which queues every incoming
job once a hard limit for the number of time slots is reached. The question is if
we can produce similar performance with reduced maximum slot number.

In our third experiment we first set αm = 0.0, km = 6 and kl = 1, that is,
we set a limit for maximum number of time slots to 6 and another limit for long
jobs to be allowed to time-share the same processors to 1. Thus the maximum
slot number will never exceed 6 during the computation. By varying αl we can
determine what jobs should be considered as long such that a good performance
can be obtained by blocking them from running simultaneously on the same
processors. Some experimental results are depicted in Fig. 3(a).

When αl = 1.0, no jobs are treated as long. This is the same as that in
our first experiment by combining the gang scheduling with backfilling and then
setting km = 6. The performance is first improved with αl decreasing. However,
further decreasing αl will cause an increase in average slowdown. We can see
from the figure that the best performance is obtained when αl = 0.8.

Next we set αm = 0.0, km = 6 and αl = 0.8. We want to see how the system
performs by varying kl. Some experimental results are depicted in Fig. 3(b)
and (c). It is clearly shown in the figures that to allow more long jobs to time-
share the same processors can only degrade the performance.

4.4 Experiment Four

The results obtained from the third experiment is not desirable, that is, these
results are not as good as those obtained by only queueing long jobs in the second
experiment. In contrast with the results obtained by using the combination of
the gang scheduling and backfilling in our first experiment, however, both the
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Fig. 3. (a) Average slowdown when αm = 0.0, km = 6 and kl = 1, (b) average slowdown
and (c) average number of slots when αm = 0.0 and αl = 0.8 and km = 6.



112 B.B. Zhou and R.P. Brent

0
2
4
6
8
10
12
14
16
18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
l
o
w
d
o
w
n

workload

new

♦ ♦ ♦ ♦ ♦
♦

♦

♦

♦♦
old

+ + + + +

+

+

+

+

+

(a)

0

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
l
o
t
s

workload

new

♦ ♦
♦

♦
♦

♦ ♦ ♦ ♦

♦
old

+
+

+
+

+

+
+

+

+
+

(b)

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s
l
o
t
s

workload

new

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦
old

+
+ +

+
+

+
+

+
+

+

(c)

Fig. 4. Comparison of the new results (new) with the best results (old) obtained from
experiment two. (a) average slowdown, (b) average number of slots and (c) maximum
number of slots.
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average slowdown and the average number of slots are reduced if we set limits
both for all jobs and for long jobs to run simultaneously on the same processors.

In our fourth experiment we still set αl = 0.8, km = 6 and kl = 1, that is, the
same set of long jobs will be limited to time-share the same processors as that in
the third experiment. However, we allow a (small) number of real short jobs to
run immediately on their arrivals by setting αm = 0.15. In this way we hope that
the number of time slots will not be increased greatly during the computation
and at the same time the average slowdown will significantly be reduced. Some
experimental results (new) are depicted in Fig. 4. In order to provide a clearer
view about the performance, the best results (old) obtained by setting αm = 0.8
and km = 1 in our second experiment, are also presented in the figure. We can
see that the two strategies (old and new) are comparable in terms of average
slowdown. Under heavy system workload, however, a smaller average number of
time slots and a much smaller maximum number of time slots is obtained in our
fourth (or new) experiment.
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Fig. 5. Comparison of the two strategies (old and new) in average slowdown for long
jobs

Since a number of short jobs are allowed to run immediately without delay,
the performance of long jobs might be severely degraded. As depicted in Fig. 5,
however, we find that no serious performance degradation for long jobs in terms
of slowdown occurs in our experiment. To allow short jobs to run immediately
may enhance the system utilisation. This may be the main reason why the overall
system performance is enhanced in our fourth experiment.

5 Conclusions

It is known that exclusively space-sharing scheduling can cause blockade problem
under heavy workload and that this problem can be alleviated by applying the
gang scheduling strategy. Using gang scheduling to simply allow jobs to run
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simultaneously on the same processors, however, may introduce a large number
of time slots in the system. In consequence the cost of context switches will
be greatly increased, and each running job can only obtain a small portion of
resources including memory space and processor utilisation and so no jobs can
complete quickly. Therefore, the number of jobs allowed to run in the system
should be limited. The question is what kind of jobs should be queued so that
the overall performance can be improved, or at least will not be significantly
degraded in comparison with the conventional gang scheduling. In this paper we
presented some results obtained from our experiments to show that to properly
divide jobs into different classes and to apply different scheduling strategies to
jobs of different classes can greatly reduce the average number of time slots in the
system and significantly improve the performance in terms of average slowdown.

In our experiments we showed that a good overall system performance can
be obtained by first classifying jobs into short, medium and long and then using
conventional gang scheduling for short, the combination of the gang and back-
filling for medium and the combination of the FCFS and backfilling for long
jobs.

Although the average number of time slots is significantly reduced, which
may alleviate memory pressure, our method can only be considered as an indi-
rect method for solving that problem because it does not directly take memory
requirements into consideration. In our future research in the development of an
efficient and practical coscheduling system we shall combine memory manage-
ment with scheduling to directly solve the problem of memory pressure.
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