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Abstract. We show that a certain weighted mean of the Liou-
ville function λ(n) is negative. In this sense, we can say that the
Liouville function is negative “on average”.

1. Introduction

For n ∈ N let n =
∏

p|n p
ep(n) be the canonical prime factorization

of n and let Ω(n) :=
∑

p|n ep(n). Here (as always in this paper) p is

prime. Thus, Ω(n) is the total number of prime factors of n, counting
multiplicities. For example: Ω(1) = 0, Ω(2) = 1, Ω(4) = 2, Ω(6) = 2,
Ω(8) = 3, Ω(16) = 4, Ω(60) = 4, etc.

Define Liouville’s multiplicative function λ(n) = (−1)Ω(n). For ex-
ample λ(1) = 1, λ(2) = −1, λ(4) = 1, etc. The Möbius function µ(n)
may be defined to be λ(n) if n is square-free, and 0 otherwise.

It is well-known, and follows easily from the Euler product for the
Riemann zeta-function ζ(s), that λ(n) has the Dirichlet generating
function

∞∑
n=1

λ(n)

ns
=
ζ(2s)

ζ(s)

for Re (s) > 1. This provides an alternative definition of λ(n).
Let L(n) :=

∑
k≤n λ(k) be the summatory function of the Liouville

function; similarly M(n) :=
∑

k≤n µ(k) for the Möbius function.
The topic of this note is closely related to Pólya’s conjecture [12,

1919] that L(n) ≤ 0 for n ≥ 2.
Pólya verified this for n ≤ 1500 and Lehmer [9, 1956] checked it for

n ≤ 600 000. However, Ingham [5, 1942] cast doubt on the plausibility
of Pólya’s conjecture by showing that it would imply not only the
Riemann Hypothesis and simplicity of the zeros of ζ(s), but also the
linear dependence over the rationals of the imaginary parts of the zeros
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ρ of ζ(s) in the upper half-plane. Ingham cast similar doubt on the
Mertens conjecture |M(n)| ≤

√
n, which was subsequently disproved

in a remarkable tour de force by Odlyzko and te Riele [11, 1985]. More
recent results and improved bounds were given by Kotnik and te Riele
[7, 2006]; see also Kotnik and van de Lune [6, 2004].

In view of Ingham’s results, it was no surprise when Haselgrove
showed [2, 1958] that Pólya’s conjecture is false. He did not give an
explicit counter-example, but his proof suggested that L(u) might be
positive in the vicinity of u ≈ 1.8474× 10361.

Sherman Lehman [8, 1960] gave an algorithm for calculating L(n)
similar to Meissel’s [10, 1885] formula for the prime-counting function
π(x), and found the counter-example L(906 180 359) = +1.

Tanaka [14, 1980] found the smallest counter-example L(n) = +1
for n = 906 150 257. Walter M. Lioen and Jan van de Lune [circa
1994] scanned the range n ≤ 2.5 × 1011 using a fast sieve, but found
no counter-examples beyond those of Tanaka. More recently, Borwein,
Ferguson and Mossinghoff [1, 2008] showed that L(n) = +1 160 327 for
n = 351 753 358 289 465.

Humphries [3, 4] showed that, under certain plausible but unproved
hypotheses (including the Riemann Hypothesis), there is a limiting log-
arithmic distribution of L(n)/

√
n, and numerical computations show

that the logarithmic density of the set {n ∈ N|L(n) < 0} is approxi-
mately 0.99988. Humphries’ approach followed that of Rubinstein and
Sarnak [13], who investigated “Chebyshev’s bias” in prime “races”.

Here we show in an elementary manner, and without any unproved
hypotheses, that λ(n) is (in a certain sense) “negative on average”. To
prove this, all that we need are some well-known facts about Mellin
transforms, and the functional equation for the Jacobi theta function
(which may be proved using Poisson summation). Our main result is:

Theorem 1. There exists a positive constant c such that for every
(fixed) N ∈ N

∞∑
n=1

λ(n)

enπx + 1
= − c√

x
+

1

2
+O(xN) as x ↓ 0.

Thus, a weighted mean of {λ(n)}, with positive weights initially close
to a constant (1/2) and becoming small for n � 1/x, is negative for
x < x0 and tends to −∞ as x ↓ 0.

In the final section we mention some easy results on the Möbius
function µ(n) to contrast its behaviour with that of λ(n).



PÓLYA’S OBSERVATION CONCERNING LIOUVILLE’S FUNCTION 3

2. Proof of Theorem 1

We prove Theorem 1 in three steps.

Step 1. For x > 0,

∞∑
n=1

λ(n)

enπx − 1
= φ(x) =

θ(x)− 1

2
,

where

φ(x) :=
∞∑
k=1

e−k
2πx, θ(x) :=

∑
k∈Z

e−k
2πx.

Step 2. For x > 0,

∞∑
n=1

λ(n)

enπx + 1
= φ(x)− 2φ(2x).

Step 3. Theorem 1 now follows from the functional equation

θ(x) =
1√
x
θ

(
1

x

)
for the Jacobi theta function θ(x).

Proof of Theorem 1.

(1) In the following, we assume that Re (s) > 1, so the Dirichlet
series and integrals are absolutely convergent, and interchanging the
orders of summation and integration is easy to justify.

As mentioned above, it is well-known that

∞∑
n=1

λ(n)

ns
=
∏
p

(
1 + p−s

)−1
=
∏
p

1− p−s

1− p−2s
=
ζ(2s)

ζ(s)
.

Define

f(x) :=
∞∑
n=1

λ(n)

enx − 1
, (x > 0).

We will use the well known fact that if two sufficiently well-behaved
functions (such as ours below) have the same Mellin transform then
the functions are equal.
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The Mellin transform of f(x) is

F (s) :=

∫ ∞
0

f(x)xs−1 dx =

∫ ∞
0

∞∑
n=1

λ(n)

enx − 1
xs−1 dx

=
∞∑
n=1

λ(n)

∫ ∞
0

xs−1

enx − 1
dx =

( ∞∑
n=1

λ(n)

ns

)
×
∫ ∞

0

xs−1

ex − 1
dx

=
ζ(2s)

ζ(s)
× ζ(s)Γ(s) = ζ(2s)Γ(s).

We also have∫ ∞
0

φ
(x
π

)
xs−1 dx =

∫ ∞
0

( ∞∑
n=1

e−n
2x
)
xs−1 dx

=
( ∞∑
n=1

1

n2s

)
×
∫ ∞

0

e−xxs−1 dx = ζ(2s)Γ(s),

so the Mellin transforms of f(x) and of φ(x/π) are identical. Thus
f(x) = φ(x/π). Replacing x by πx, we see that

∞∑
n=1

λ(n)

enπx − 1
=
∞∑
k=1

e−k
2πx,

completing the proof of step (1).

(2) Observe that

1

enπx + 1
=

1

enπx − 1
− 2

e2nπx − 1
,

so, from step (1),

∞∑
n=1

λ(n)

enπx + 1
= φ(x)− 2φ(2x).

(3) Using the functional equation for θ(x), we easily find that

φ(x)− 2φ(2x) = − c√
x

+
1

2
+

1√
x

(
φ
(1

x

)
−
√

2φ
( 1

2x

))
with c = (

√
2− 1)/2 > 0, proving our claim, since the “error” term is

bounded by φ(1/x)/
√
x ∼ exp(−π/x)/

√
x = O(xN) as x ↓ 0 (for any

fixed exponent N). �
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3. Remarks on the Möbius function

We give some further applications of the identity

(∗) 1

z + 1
=

1

z − 1
− 2

z2 − 1

that we used (with z = enπx) in proving step (2) above.

Lemma 2. For |x| < 1, we have

∞∑
n=1

µ(n)
xn

xn + 1
= x− 2x2.

Proof. Assume that |x| < 1. It is well known that

∞∑
n=1

µ(n)
xn

1− xn
= x,

in fact this “Lambert series” identity is equivalent to the Dirichlet series
identity

∑
µ(n)/ns = 1/ζ(s). Writing y = 1/x, we have

∞∑
n=1

µ(n)

yn − 1
= 1/y.

If follows on taking z = yn in our identity (∗) that

∞∑
n=1

µ(n)

yn + 1
=
∞∑
n=1

µ(n)

yn − 1
− 2

∞∑
n=1

µ(n)

y2n − 1
= y−1 − 2y−2.

Replacing y by 1/x gives the result. �

Corollary 3.
∞∑
n=1

µ(n)

2n + 1
= 0.

Proof. Take x = 1/2 in Lemma 2. �

If follows from Lemma 2 that

lim
x↑1

∞∑
n=1

µ(n)
xn

xn + 1
= −1,

so that one might say that in this sense µ(n) is negative on average.
However, this is much weaker than what we showed in Theorem 1
for L(n), where the corresponding sum tends to −∞. The “complex-
analytic” reason for this difference is that ζ(2s)/ζ(s) has a pole (with
negative residue) at s = 1/2, but 1/ζ(s) is regular at s = 1.
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