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Abstract

We prove a double binomial sum identity

∑

p

∑

q

(

2k

k + p

)(

2k

k + q

)

|p2 − q2| = 2k2
(

2k

k

)2

which differs from most binomial sum identities in that the summands

involve the absolute value function. The identity is of interest because

it can be used in proofs of lower bounds for the Hadamard maximal

determinant problem. Our proof of the identity uses a two-variable

variant of the method of telescoping sums.

1 Introduction

In this note we prove two results, one known and one new, involving binomial
sums where the absolute value function occurs in the summands.

http://arxiv.org/abs/1309.2795v2


Lemma 1 is a binomial sum which has appeared several times in the
literature, e.g. Alon and Spencer [1, §2.5], Best [3, proof of Theorem 3],
Brown and Spencer [6], Erdős and Spencer [7, proof of Theorem 15.2]. It was
also a problem in the 1974 Putnam competition [2, Problem A4]. Lemma 1
can be used to calculate the mean of each diagonal term that arises when the
probabilistic method is used to give lower bounds for the Hadamard maximal
determinant problem, as in [4].

Our new result is Theorem 1, which gives a closed-form expression for a
double sum which is analogous to the single sum of Lemma 1. Theorem 1
can be used to calculate the second moment of each diagonal term that arises
when the probabilistic method is used to give lower bounds for the Hadamard
maximal determinant problem. In [4, Theorems 2–3] we gave lower bounds
without using this second moment, but such results can be improved if the
second moment is known [5].

To prove Theorem 1 we first use symmetry to eliminate the absolute
value function occurring in the sum, and then use a two-variable variant of
the method of telescoping sums, where the double sums collapse to give single
sums which can be evaluated explicitly. The “magic” cancellation giving the
final result suggests that a simpler proof could exist, but we have not found
such a proof.

Notation

The variables k, n, p, q denote integers (not necessarily positive).
The binomial coefficient

(

n
k

)

is defined to be zero if k < 0 or k > n.
Using this convention, we can often avoid explicitly specifying upper and
lower limits of sums involving binomial coefficients.

2 A well-known single sum

Lemma 1 is well-known, as noted in the Introduction. We give a proof
because it illustrates some of the ideas used in the proof of Theorem 1.

Lemma 1. For all k ≥ 0,

∑

p

(

2k

k + p

)

|p| = k

(

2k

k

)

.
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Proof. Let S0 :=
∑

p

(

2k
k+p

)

|p|. Splitting the sum into sums over positive

and negative p, using
(

2k
k+p

)

=
(

2k
k−p

)

, and observing that the term for p = 0
vanishes, we see that

S0 = 2
∑

p>0

p

(

2k

k + p

)

. (1)

Writing p = (k + p)− k gives

p

(

2k

k + p

)

= (k + p)

(

2k

k + p

)

− k

(

2k

k + p

)

= 2k

(

2k − 1

k + p− 1

)

− k

(

2k

k + p

)

.

Substituting this into (1) and using

2
∑

p>0

(

2k − 1

k + p− 1

)

=
∑

p

(

2k − 1

p

)

= 22k−1

and

2
∑

p>0

(

2k

k + p

)

=
∑

p 6=0

(

2k

k + p

)

= 22k −

(

2k

k

)

gives

S0 = k22k − k22k + k

(

2k

k

)

= k

(

2k

k

)

.

This completes the proof of Lemma 1.

3 The main result – a double sum

Theorem 1. For all k ≥ 0,

∑

p

∑

q

(

2k

k + p

)(

2k

k + q

)

|p2 − q2| = 2k2

(

2k

k

)2

.

Proof. Write

S1 :=
∑

p

∑

q

(

2k

k + p

)(

2k

k + q

)

|p2 − q2| .
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The terms in S1 for which p = 0 or q = 0 are

S2 :=
∑

p

(

2k

k + p

)(

2k

k

)

p2 +
∑

q

(

2k

k

)(

2k

k + q

)

q2

= 2

(

2k

k

)

∑

p

(

2k

k + p

)

p2 ,

and the other terms are

S3 :=
∑

p 6=0

∑

q 6=0

(

2k

k + p

)(

2k

k + q

)

|p2 − q2| .

Considering the generating function

f(x) :=
∑

p

(

2k

k + p

)

xp = x−k(1 + x)2k = (x1/2 + x−1/2)2k ,

applying the operator xd/dx twice, and evaluating the resulting expression
at x = 1, we see that

∑

p

(

2k

k + p

)

p2 = k22k−1 ,

so

S2 = k22k
(

2k

k

)

. (2)

Also, using symmetry, we have

S3 = 8
∑

p>q>0

(

2k

k + p

)(

2k

k + q

)

(p2 − q2) .

Now write p2 − q2 = (p− k)(p+ k)− (q − k)(q + k), so

(

2k

k + p

)(

2k

k + q

)

(p2 − q2) =

2k(2k − 1)

[

−

(

2k − 2

k + p− 1

)(

2k

k + q

)

+

(

2k

k + p

)(

2k − 2

k + q − 1

)]

.
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On the right-hand side we use

(

2k

k + p

)

=

(

2k − 2

k + p

)

+ 2

(

2k − 2

k + p− 1

)

+

(

2k − 2

k + p− 2

)

and the corresponding identity for
(

2k
k+q

)

. After cancelling the terms involving
(

2k−2

k+p−1

)(

2k−2

k+q−1

)

and regrouping, this gives

S3

8
= 2k(2k − 1)×

{[

∑

p>q>0

(

2k − 2

k + p

)(

2k − 2

k + q − 1

)

−
∑

p>q>0

(

2k − 2

k + p− 1

)(

2k − 2

k + q − 2

)

]

+

[

∑

p>q>0

(

2k − 2

k + p− 2

)(

2k − 2

k + q − 1

)

−
∑

p>q>0

(

2k − 2

k + p− 1

)(

2k − 2

k + q

)

]}

.

Changing variables in the second and third summations, we obtain

S3

8
= 2k(2k − 1)×

{[

∑

p>q>0

(

2k − 2

k + p

)(

2k − 2

k + q − 1

)

−
∑

p>q≥0

(

2k − 2

k + p

)(

2k − 2

k + q − 1

)

]

+

[

∑

p>q≥0

(

2k − 2

k + p− 1

)(

2k − 2

k + q

)

−
∑

p>q>0

(

2k − 2

k + p− 1

)(

2k − 2

k + q

)

]}

.

The expressions inside each pair of square brackets both involve a kind of
two-variable telescoping sum – the only terms that do not cancel are those
for q = 0. Thus, we obtain

S3

8
= 2k(2k − 1)×

{

∑

p>0

(

2k − 2

k + p− 1

)(

2k − 2

k

)

−
∑

p>0

(

2k − 2

k + p

)(

2k − 2

k − 1

)

}

.
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Taking out the factors that are independent of p, we are left with two easily-
evaluated sums, giving

S3 = 8k(2k − 1) ×

{(

2k − 2

k

)[

22k−2 −

(

2k − 2

k − 1

)]

−

(

2k − 2

k − 1

)[

22k−2 − 2

(

2k − 2

k

)

−

(

2k − 2

k − 1

)]}

. (3)

Recall that S1 = S2 + S3. Using the expressions (2) for S2 and (3) for S3,
and simplifying, we obtain the desired result for S1.
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