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We present a new method for algebraic independence results in the context of Mahler’s

method. In particular, our method uses the asymptotic behavior of a Mahler function

f(z) as z goes radially to a root of unity to deduce algebraic independence results about

the values of f(z) at algebraic numbers. We apply our method to the canonical example

of a degree two Mahler function; that is, we apply it to F (z), the power series solution to

the functional equation F (z) − (1 + z + z2)F (z4) + z4 F (z16) = 0. Specifically, we prove that

the functions F (z), F (z4), F ′(z), and F ′(z4) are algebraically independent over C(z). An

application of a celebrated result of Ku. Nishioka then allows one to replace C(z) by Q

when evaluating these functions at a nonzero algebraic number α in the unit disc.

1 Introduction

We say a function f(z) ∈ C[[z]] is a Mahler function, provided there are integers k� 2 and

d� 0 and polynomials a(z), a0(z), . . . , ad(z) ∈ C[z] with a0(z)ad(z) �= 0 such that

a(z) + a0(z) f(z) + a1(z) f(zk) + · · · + ad(z) f(zkd
) = 0. (1)
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We call the (minimal) integer d the degree of the Mahler function f . In the past few

decades, the study of Mahler functions has been given renewed importance because of

their relationships to theoretical computer science and linguistics [3]. In particular, the

generating function of an automatic sequence is a Mahler function.

While transcendence questions concerning Mahler functions have more or less

been answered, much less is known about the deeper area of algebraic independence

of the functions and their derivatives. All of the current results in the latter direction,

and certainly the most practical examples, concern only Mahler functions of degree one

[4–6]. Until now, these results relied on a hypertranscendence criterion due to Nishioka

[21]. Recall that a function is called hypertranscendental, provided it does not satisfy

an algebraic differential equation; in other words, the function and all its derivatives

are algebraically independent over the field of rational functions.

In this paper, we introduce a new method for proving algebraic independence

results for Mahler functions and their derivatives. We apply this method to a degree

two Mahler function introduced by Dilcher and Stolarsky [12], which has quite recently

become the canonical example of a degree two Mahler function. Specifically, we consider

the function F (z) ∈ Z[[z]] satisfying the functional equation

F (z) = (1 + z + z2)F (z4) − z4 F (z16), (2)

which starts

F (z) = 1 + z + z2 + z5 + z6 + z8 + z9 + z10 + · · · .

Among various combinatorial properties, Dilcher and Stolarsky [12] showed that all

the coefficients of F (z) are in {0, 1}. Coons [10] proved that F (z) is transcendental and

Adamczewski [1] gave the transcendence of the values F (α) for any nonzero algebraic

number α inside the unit disc. Recently, Bundschuh and Väänänen [7] proved that F (z)

and F (z4) are algebraically independent over C(z), and very recently [8] they showed that

the functions F (z), F (z2), and F (z4) are algebraically independent over C(z).

Our central result is Theorem 1.

Theorem 1. The functions F (z), F (z4), F ′(z), and F ′(z4) are algebraically independent

over C(z). �

An application of Theorem 1 along with Mahler’s powerful method implies the

algebraic independence result for the values of the functions.
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Theorem 2. For each nonzero algebraic number α inside the unit disc, the numbers

F (α), F (α4), F ′(α), and F ′(α4) are algebraically independent over Q. �

Indeed, one expects the stronger version of algebraic independence of the func-

tions F (z) and F (z4) along with all of their derivatives, though the present methods seem

inadequate for a result of this generality.

As alluded to in the above paragraphs, the novelty of our approach is the avoid-

ance of the hypertranscendence criterion of Nishioka [21]. Nishioka’s criterion is very

specialized and only applicable to Mahler functions of degree one. In contrast, our

method partly relies on understanding the radial asymptotics of Mahler functions and

can be applied to Mahler functions of any degree. The analytic problem of determin-

ing this type of asymptotic behavior for Mahler functions is very classical, even for

degree one Mahler functions; for example, see Mahler [20], de Bruijn [11], Dumas [14],

and Dumas and Flajolet [15]. The importance of such asymptotics also appears (though

in a weaker form) in recent work of Adamczewski and Bell [2].

In the case of F (z), we prove the following result.

Theorem 3. As z→ 1−, we have

F (z) = C (z)

(1 − z)lg ρ
· (1 + O(1 − z)),

where lg denotes the base-2 logarithm, ρ := (1 + √
5)/2 denotes the golden ratio, and C (z)

is a positive oscillatory term, which in the interval (0, 1) is bounded away from 0 and ∞,

real analytic, and satisfies C (z) = C (z4). �

This paper is organized as follows. In Section 2, we prove Theorem 3 by a careful

study of the continued fraction for F (z)/F (z4). In Section 3, we use this knowledge to

establish Theorem 1: assuming a polynomial relation in F (z), F (z4), F ′(z), and F ′(z4) the

asymptotic behavior of F (z) as z→ 1− allows us to significantly shorten it; then using a

linear algebra argument, we show that this reduced algebraic relation is not possible.

The related algebraic statement, Theorem 4, is proved in generality in Section 4. The

derivation of Theorems 2 from 1 is performed at the end of Section 3. Finally, in Section 5,

we discuss an alternative proof of Theorem 3 that can be used in the asymptotical study

of general Mahler functions at arbitrary roots of unity.

We would like to point out that the methods of the paper apply with no diffi-

culty to the “satellite” function G(z) (for definitions and related results, see Dilcher and

Stolarsky [12], Adamczewski [1], and Bundschuh and Väänänen [7, 8]), so that all three

theorems above remain true when we replace F (z) in their statements with G(z).
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2 A Continued Fraction Related to F(z) and Asymptotics

In this section, we prove Theorem 3 as stated in Introduction. In order to carry out our

method, it is useful to define the auxiliary function μ : [0, 1) → R given by

μ(z) := F (z)

F (z4)
. (3)

From (2) and (3), μ(z) satisfies the recurrence

μ(z) = 1 + z + z2 − z4

μ(z4)
. (4)

Our strategy is to analyze the asymptotic behavior of μ(z) and then deduce the corre-

sponding behavior of F (z).

Note that μ(z) may be written as a continued fraction

μ(z) = 1 + z + z2 − z4

1 + z4 + z2·4 − z42

1+z42 +z2·42 − ...

.

Also, from (3), F (z) is given by the infinite product

F (z) =
∞∏

k=0

μ(z4k
).

In this sense, we have an “explicit solution” for F (z) as an infinite product of

continued fractions.

Before continuing, we make some remarks on notation. Since logarithms to dif-

ferent bases occur naturally in the analysis, we write ln x for the natural logarithm

and lg x for the logarithm to the base 2. As in the statement of Theorem 3, we define

ρ := (1 + √
5)/2 ≈ 1.618 to be the golden ratio, and note that ρ2 = ρ + 1.

The following few lemmas provide the needed background for the proof of

Theorem 3 concerning the asymptotics of F (z) as z→ 1−.

Lemma 1. The power series

F (z) =
∞∑

n=0

cnzn

has coefficients cn ∈ {0, 1}. Also, F (z) is strictly monotone increasing and unbounded for

z∈ [0, 1), and cannot be analytically continued past the unit circle. �
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Proof. Since the coefficients cn are in {0, 1} (see [7, 12]) and infinitely many are nonzero,

the strict monotonicity and unboundedness of F (z) follow easily. Thus, F (z) has a sin-

gularity at z= 1.

From the functional Equation (2), it follows that F (z) has a singularity at

z= e2πi/2k
for all non-negative integers k. Thus, there is a dense set of singularities on the

unit circle, so the unit circle is a natural boundary. See also Bundschuh and Väänänen

[7, Theorem 1.1] for a proof of the last part of the lemma. �

Lemma 2. If z∈ [0, 1), then μ(z) � 1. Moreover, if μ1 := limz→1− μ(z) and

μ′
1 := limz→1− μ′(z), then

μ1 = 3 + √
5

2
= ρ2 ≈ 2.618 and μ′

1 = 21 + 8
√

5

11
≈ 3.535. �

Proof. Suppose that z∈ [0, 1). Since F (z) is monotonic increasing on [0, 1), we have

F (z) � F (z4) � 1, so μ(z) � 1.

Define

Q(z) := 1 + z + z2 +
√

(1 + z + z2)2 − 4z4

2

to be the larger root of

Q(z) = 1 + z + z2 − z4

Q(z)
.

Observe that Q(z) is a continuous monotone increasing function on [0, 1], and

Q(1) = (3 + √
5)/2.

Take an arbitrary z0 ∈ (0, 1), and define zk := z1/4k

0 , so zk−1 = z4
k for k� 1 and

limk→∞ zk = 1. For notational convenience, we also define yk := μ(zk) and Qk := Q(zk);

in particular,

Qk = 1 + zk + z2
k − z4

k/Qk

and

yk = 1 + zk + z2
k − z4

k/yk−1

from the functional Equation (4). Since limk→∞ Qk = Q(1) > 2, we can assume that k0 � 1

is sufficiently large that Qk � 2 for all k� k0. Thus,

|Qk − yk| = |z4
k(y−1

k−1 − Q−1
k )| =

∣∣∣∣z4
k(Qk − yk−1)

Qkyk−1

∣∣∣∣
� |Qk − yk−1|

2
� |Qk−1 − yk−1|

2
+ |Qk − Qk−1|

2
,
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using |zk| � 1, yk−1 � 1, |Qk| � 2, and the triangle inequality. It follows from limk→∞
(Qk − Qk−1) = 0 that limk→∞(Qk − yk) = 0. Thus, limk→∞ yk = Q(1), which completes the

proof

of μ1 = ρ2.

Differentiating each side of the recurrence (4) gives

μ′(z) = 1 + 2z − 4z3

μ(z4)
+ 4z7μ′(z4)

μ(z4)2
. (5)

As z→ 1−,

1 + 2z − 4z3

μ(z4)
→ 3 − 4

μ1
and

4z7

μ(z4)2
→ 4

μ2
1

,

so (5) may be written as

μ′(z) = 3 − 4/μ1 + o(1) + (4/μ2
1 + o(1))μ′(z4).

Using the latter expression, it can be shown that μ′(z) → μ′
1, where μ′

1 satisfies

μ′
1 = 3 − 4/μ1 + (4/μ2

1)μ
′
1,

so

μ′
1 = 3 − 4/μ1

1 − 4/μ2
1

= 21 + 8
√

5

11
.

We omit the details, but note that |4/μ2
1| < 1, so the iteration

mk = 3 − 4/μ1 + (4/μ1)
2mk−1

converges, and limk→∞ mk = μ′
1. �

In view of Lemma 2, we define by continuity μ(1) := μ1 and μ′(1) := μ′
1. Since μ′′(z)

is unbounded as z→ 1−, this process cannot be continued; see Figure 1 for a graph of

μ(z) and μ′(z) for z∈ [0, 1).

Lemma 3. Let α be any constant satisfying α < 2 lg ρ ≈ 1.388. Then, for t ∈ (0,∞),

we have

μ′′(e−t) = O(tα−2) (6)

and

μ(e−t) = μ1 − tμ′
1 + O(tα). (7)

�
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Fig. 1. The functions μ(z) (dashed line) and μ′(z) (solid line) for z∈ [0, 1).

Proof. Let z= e−t ∈ (0, 1). Differentiating both sides of (5) with respect to z gives

μ′′(e−t) = A(t) + B(t)μ′′(e−4t), (8)

where A(t) is uniformly bounded, say |A(t)| � A, and

B(t) = 16 e−10t

μ(e−4t)2
= 16

μ2
1

+ O(t) (9)

as t → 0+.

We now prove by induction on k� 0 that, if t0 is sufficiently small, tk := t0/4k, and

C is sufficiently large, then

μ′′(e−tk) < C tα−2
k (10)

holds for all k� 0.

By the choice of α, we have

δ := 1 − 16

μ2
1

· 4α−2 > 0.

By (9), there exists ε > 0 such that, for all t ∈ (0, ε), we have B(t) < (16/μ2
1)(1 + δ). Thus,

for all t ∈ (0, ε),

4α−2 B(t) < (1 − δ)(1 + δ) = 1 − δ2.

For an arbitrary t0 ∈ (0, ε), choose

C > max{μ′′(e−t0)/tα−2
0 , A/δ2}. (11)
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Table 1. Approximation of μ(e−t) for t = 2−k, 20 � k� 24, where

e1(t) := μ(e−t) − (μ1 − tμ′
1).

k t = 2−k μ(e−t) e1(t) e1(t)/t2 lg ρ

20 9.5367 · 10−7 2.6180306 1.1708 · 10−8 2.6790

21 4.7684 · 10−7 2.6180323 4.4999 · 10−9 2.6958

22 2.3842 · 10−7 2.6180331 1.7079 · 10−9 2.6787

23 1.1921 · 10−7 2.6180336 6.5648 · 10−10 2.6956

24 5.9605 · 10−8 2.6180338 2.4917 · 10−10 2.6786

Thus, μ′′(e−t0) < C tα−2
0 , so the inductive hypothesis (10) holds for k= 0. Suppose that it

holds for some k� 0. Then, from (8),

μ′′(e−tk+1) = μ′′(e−tk/4) � A(tk/4) + B(tk/4)μ′′(e−tk)

< A+ 42−α(1 − δ2)C tα−2
k = A+ C (1 − δ2)tα−2

k+1

= (A− C δ2tα−2
k+1 ) + C tα−2

k+1 < C tα−2
k+1 ,

where on the final step, we used A< C δ2 < C δ2tα−2
k+1 , by the choice (11) of C and also since

tk+1 ∈ (0, 1) and α < 2. Thus, (10) holds for all k� 0, by induction. This proves (6). To prove

(7), we integrate twice over the interval [0, t]. �

With a similar (but more precise) proof, we can show that the bounds (6) and (7)

of Lemma 3 hold for α = 2 lg ρ. We omit the details since this result is not necessary in

what follows. Numerical experiments indicate that the constant 2 lg ρ is best possible—

see Table 1, where the last column gives (μ(e−t) − (μ1 − tμ′
1))/t2 lg ρ . Observe the small

oscillations in the last column (these are discussed at the end of this section).

Lemma 4 is not necessary, but we state it here for its independent interest and

provide a sketch of the proof; check also with Figure 1 for a graph of μ(z).

Lemma 4. The function μ(z) is strictly monotone increasing for z∈ [0, 1). �

Sketch of proof. Suppose that z∈ [0, 1) and N � 1. Since F (z) =∑
n�0 cnzn, where the cn ∈

{0, 1}, we can bound the “tails”

∑
n�N

cnzn � zN

1 − z
and

∑
n�N

ncnzn−1 � NzN−1

1 − z
+ zN

(1 − z)2
.
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Thus, given z0 < 1 and ε > 0, we can easily find N = N(ε) such that, for all z∈ [0, z0],

0 � F (z) − FN(z) � ε and 0 � F ′(z) − F ′
N(z) � ε,

where FN(z) :=∑N−1
n=0 cnzn is the truncated power series approximating F (z).

From (3), we have μ(z) � 1 and

μ′(z)
μ(z)

= F ′(z)
F (z)

− 4z3 F ′(z4)

F (z4)
.

Take z0 = 3
4 . Using the above and a rigorous numerical computation, we can show that

μ′(z) > 0 for z∈ [0, z0], and also that μ(z4
0) > 4

3 . Thus, for z∈ [z0, z1/4
0 ], we have μ(z4) > 4

3 . In

particular, μ(z0) > 4
3 .

Define zk := (3/4)1/4k
, so zk+1 = z1/4

k . We prove, by induction on k� 0, that μ′(z) > 0

for z∈ [0, zk]. The base case (k= 0) has been established. Assume that the result holds for

k� K; hence, for z∈ [zK , zK+1], we have μ(z4) > 4
3 . Now, from (5),

μ′(z) � 1 + 2z − 4z3

μ(z4)
� 1 + 2z − 3z3 = (1 − z)(1 + 3z + 3z2) > 0.

In other words, the result holds for k= K + 1, thus it holds for all k� 0, by induction.

Since limk→∞ zk = 1, this completes the proof. �

We are now in a position to treat the asymptotics of F (z) as z→ 1−. To this end,

we define the Mellin transforms

F(s) :=
∫∞

0
ln F (e−t)ts−1 dt (12)

and

M(s) :=
∫∞

0
ln μ(e−t)ts−1 dt, (13)

where the integrals converge for 
(s) > 0, and by analytic continuation elsewhere. From

(3) and well-known properties of Mellin transforms (see, for example, [17, Appendix B.7]),

we have

(1 − 4−s)F(s) =M(s). (14)

We deduce the asymptotic behavior of F (e−t) for small positive t from knowledge

of the singularities of F(s). Before doing this, we use analytic continuation to extend the

definitions (12) and (13) into the left half-plane.
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Define

μ̃(t) := ln μ(e−t) − ln(μ1) e−λt,

where

λ := μ′
1

μ1 ln μ1
≈ 1.403

is a positive constant; the reason for our choice of λ will soon be clear.

Clearly, μ̃(t) = O(e−t) as t → +∞. Also, from Lemma 3, as t → 0+, we have for any

constant α < 2 lg ρ ≈ 1.388

μ̃(t) = (λ ln μ1 − μ′
1/μ1)t + O(tα) = O(tα),

by our choice of λ.

From (13) and the definition of μ̃(t), we have

M(s) = M̃(s) + ln(μ1)λ
−sΓ (s), (15)

where

M̃(s) :=
∫∞

0
μ̃(t)ts−1 dt. (16)

However, the integral in (16) converges for 
(s) > −α. Since α may be chosen arbitrarily

close to 2 lg ρ, this implies that (15) and (16) give the analytic continuation of M(s) into

a meromorphic function in the half-plane H := {s ∈ C : 
(s) > −2 lg ρ}.
Since M̃(s) has no singularities in H, it follows from (15) that the singularities of

M(s) in H are precisely those of ln(μ1)λ
−sΓ (s). Also, from (14), the singularities of F(s)

in H are precisely those of M(s)/(1 − 4−s). We conclude that the Mellin transform F(s)

has three types of singularities in H, as follows

(a) a double pole at s = 0, since Γ (s) has a pole there, and the denominator

1 − 4−s vanishes at s = 0;

(b) simple poles at s = ikπ/ ln 2 for k∈ Z \ {0}, since the denominator 1 − 4−s

vanishes at these points; and

(c) a simple pole at s = −1, since Γ (s) has a pole there.

We are now ready to prove the following result, which gives the asymptotic behavior

of F (z) as z→ 1−. It is convenient to express the result in terms of ln F (e−t). Indeed,

Theorem 3 is a weaker result, written in terms of F (z), of the following statement.
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Proposition 1. For small positive t,

ln F (e−t) = − lg ρ · ln t + c0 +
∞∑

k=1

ak(t) + c1t + O(tα), (17)

where c0 is given by (19), c1 is given by (20), α < 2 lg ρ ≈ 1.388, and

ak(t) = 1

ln 2


(
M
(

ikπ

ln 2

)
exp(−ikπ lg t)

)
. �

Proof. We consider the three types of singularities of F(s) in H. For case (a), the double

pole at s = 0, we need the first two terms in the Laurent expansion of F(s). It is conve-

nient to define

L(s) := M(s)

Γ (s)
.

so, from (15),

L(s) = M̃(s)

Γ (s)
+ ln(μ1)λ

−s. (18)

(The reader may think of L(s) as the Dirichlet series
∑∞

n=1 bnn−s, where the bn are defined

to be the coefficients in the power series ln μ(z) =∑∞
n=1 bnzn. Be warned that μ(z) has a

zero at z0 ≈ −0.2787 + 0.7477i, so the power series has radius of convergence R= |z0| ≈
0.7979 < 1. Thus, the bn have faster than polynomial growth, and the Dirichlet series

does not converge anywhere.)

Taking the limit as s → 0 in (18) gives

L(0) = ln μ1 = 2 ln ρ ≈ 0.9624.

Differentiating both sides of (18) and then taking the limit as s → 0 gives

L ′(0) = M̃(0) − 2 ln λ · ln ρ ≈ 0.05706.

Near s = 0, we have

L(s) = L(0)

(
1 + L ′(0)

L(0)
s + O(s2)

)
, Γ (s) = 1

s
(1 − γ s + O(s2)),

and

(1 − 4−s)−1 = 1

2s ln 2
(1 + s ln 2 + O(s2)),

so

F(s) = L(0)

2 ln 2
· 1

s2
+ c0

s
+ O(1),
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where L(0)/ ln 4 = lg ρ and

c0 = (ln 2 − γ )L(0) + L ′(0)

2 ln 2
≈ 0.1216438693. (19)

Now, the “Mellin dictionary” of [17, p. 765] shows that the double pole at s = 0

contributes the two leading terms − lg ρ · ln t + c0 of (17).

For case (b), the poles at s = ikπ/ ln 2 for k∈ Z \ {0} are simple and have residue

M(ikπ/ ln 2)/ ln 4. Thus, from the simple pole at ikπ/ ln 2, we get a term

Tk(t) := 1

ln 4
M
(

ikπ

ln 2

)
exp(−ikπ lg t).

Combining the terms Tk(t) and T−k(t) for k� 1, the imaginary parts cancel and we are

left with the oscillatory term ak(t) in (17). Of course, in order to write the infinite sum

over the ak(t) as stated in the proposition, we must show that this sum converges. Note

that μ̃′′(t) = O(tα−2) as t → 0+, and μ̃′′(t) decreases exponentially as t → +∞. Suppose

y∈ R\{0}. Then, using integration by parts once, we have

M̃(iy) =
∫∞

0
μ̃(t)tiy−1 dt =

[
μ̃(t)

tiy

iy
−

∫
μ̃′(t)

tiy

iy
dt
]∞

0

= − 1

iy

∫∞

0
μ̃′(t)tiy dt,

and twice, we have

M̃(iy) = 1

iy(iy + 1)

∫∞

0
μ̃′′(t)tiy+1 dt = I0(y) + I1(y)

iy(iy + 1)
,

where

I0(y) =
∫1

0
μ̃′′(t)tiy+1 dt and I1(y) =

∫∞

1
μ̃′′(t) tiy+1 dt.

Now, using the asymptotic bounds on μ̃′′(t) for small and large t, respectively, we have

|I0(y)| �
∫1

0
tα−1 dt � 1 and |I1(y)| �

∫∞

1
t e−t dt � 1,

so as y→ ∞,

M̃(iy) � |y|−2.

Also, it follows from the complex version of Stirling’s formula that Γ (iy) � e−πy/2, so

M(iy) � |y|−2 as y→ ∞. Thus,

∞∑
k=1

|M(ikπ/ ln(2))| �
∞∑

k=1

k−2 < ∞,

and the series
∑∞

k=1 ak(t) is uniformly and absolutely convergent.
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Table 2. The constants Ak, Bk, and Ck related to ak(t) for k� 4.

k Ak Bk Ck

1 +2.009968436 · 10−3 −6.155485619 · 10−4 2.102111592 · 10−3

2 −1.751530562 · 10−6 +1.354122041 · 10−6 2.213934464 · 10−6

3 +4.561611933 · 10−10 −2.802129666 · 10−9 2.839016326 · 10−9

4 +2.421586941 · 10−13 +3.247722091 · 10−12 3.256737573 · 10−12

For case (c), the factor (1 − 4−s)−1 is − 1
3 at s = −1, so F(s) has a pole with residue

c1 = λ ln μ1

3
= μ′

1

3μ1
= 23 + 3

√
5

66
≈ 0.4501 (20)

at s = −1. This accounts for the term c1t in (17).

Finally, the error term O(tα) in (17) follows from the fact that we have only con-

sidered the singularities of F(s) in H. �

We may write ak(t) as

ak(t) = Ak cos(kπ lg t) + Bk sin(kπ lg t).

Define Ck :=
√

A2
k + B2

k = maxt>0 |ak(t)|. The constants Ak, Bk, and Ck for k� 4 are given in

Table 2. We discuss the methods used to compute the numerical values of these con-

stants at the end of this section.

Proof of Theorem 3. If we define C (z) := (1 − z)lg ρ F (z), then clearly C (z) is positive for

z∈ [0, 1), and C (0) = 1. Also, for small positive t, Proposition 1 gives

C (e−t) = D(t) eO(t),

where

D(t) = exp

(
c0 +

∞∑
k=1

ak(t)

)

is a continuous function, which is periodic in the variable lg t. Since F (e−t) > 1 for t ∈
(0,∞), we must have

0 < inf
t>0

D(t) � sup
t>0

D(t) < ∞.

Thus,

0 < inf
0<t<1

C (e−t) < sup
0<t<1

C (e−t) < ∞.
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However, it is easy to see directly that C (e−t) is bounded away from zero and infinity for

t ∈ [1,∞). �

In the remainder of this section, we briefly discuss some of the numerical find-

ings and computations that were used throughout this section.

Regarding the function C (z) of Theorem 3, we find numerically that

1 < C (z)< 1.14 for all z∈ (0, 1), and 1.11 < C (z) < 1.14 for all z∈ [ 1
2 , 1).

In order to evaluate M(πik/ ln 2) for k∈ Z \ {0}, by (15), it suffices to evalu-

ate M̃(πik/ ln 2), since the term involving the Γ -function can be evaluated by stan-

dard methods. For purposes of numerical computation, we transform the integral (16)

as follows.

Changing variables t = eu, we have

M̃
(

πik

ln 2

)
=

∫+∞

−∞
μ̃(eu) eπiku/ ln 2 du.

Now, let v := ku/(2 ln 2), so

M̃
(

πik

ln 2

)
= 2 ln 2

k

∫+∞

−∞
μ̃(e2 ln(2)v/k) e2πiv dv.

Using the 1-periodicity of e2πiv, we obtain

M̃
(

πik

ln 2

)
= 2 ln 2

k

∫1

0
fk(v) e2πiv dv, (21)

where fk(v) is a 1-periodic function defined by a rapidly convergent series;

fk(v) :=
∑
j∈Z

μ̃(e2 ln(2)(v+ j)/k).

The integral in (21) can be evaluated by any method which is suitable for periodic

integrands (a simple and good choice is the trapezoidal rule [24]).

Table 3 shows the results of a numerical computation using Proposition 1. We

used 8 terms in the sum over ak(t). In Table 3, e2(t) is defined as the approximation given

by (17) minus the exact value ln F (e−t). It appears from the last column of Table 3 that

the error is of order t2 lg ρ . Also, the last column does not appear to tend to a limit as

t → 0+; instead, it fluctuates in a small interval. The same phenomenon may be observed

in the last column of Table 1. This suggests that M(s) and F(s) have poles at s = −2 lg ρ +
ikπ/ ln 2 for k∈ Z, as expected from the form of (8).
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Table 3. Approximation of ln(F (e−t)) using Proposition 1. Here,

e2(t) is defined as the approximation given by (17) minus the exact

value ln F (e−t).

t ln(F (e−t)) e2(t) e2(t)/t2 lg ρ

1.0 · 10−1 1.756508934 7.11 · 10−3 0.1739

1.0 · 10−2 3.322632048 2.93 · 10−4 0.1755

1.0 · 10−3 4.919666200 1.19 · 10−5 0.1748

1.0 · 10−4 6.514164850 4.91 · 10−7 0.1757

1.0 · 10−5 8.114306645 2.00 · 10−8 0.1755

1.0 · 10−6 9.714782160 8.16 · 10−10 0.1748

1.0 · 10−7 11.30965459 3.35 · 10−11 0.1757

1.0 · 10−8 12.91018122 1.37 · 10−12 0.1755

1.0 · 10−9 14.51031430 5.57 · 10−14 0.1748

1.0 · 10−10 16.10521012 2.29 · 10−15 0.1757

3 Algebraic Independence of F(z), F(z4), F ′(z), and F ′(z4)

In this section, we prove Theorem 1 up to a certain algebraic statement concerning the

nonexistence of polynomials satisfying a certain functional equation. Because of possi-

ble independent interest, we provide a much more generalized version of the statement

than immediately needed for our current purpose. It is as follows.

Theorem 4. There are no polynomials pm0,...,ms(z) ∈ C[z] (besides all being trivial)

such that

λ(z)
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(z)ym0
0 · · · yms

s

=
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(z
4)

s∏
i=0

(1 + z + z2 − zyi)
Mi−mi (22)

for some rational function λ(z). �

This nonexistence result is proved in the next section.

To start our proof of Theorem 1, we show that Theorem 3 gives a recipe for

computing the radial asymptotics of F (ξz) as z→ 1− for any root of unity ξ of degree 4n.
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Consider, for example, ξ1 ∈ {±i,−1} and substitute z= ξ1z into Equation (2). Using the

asymptotics provided in Theorem 3, then as z→ 1−, we have

F (ξ1z) = (1 + ξ1z + ξ2
1 z2)F (z4) − z4 F (z16)

= (1 + ξ1 + ξ2
1 )

C (z4)

(1 − z4)lg ρ
(1 + O(1 − z4)) − C (z16)

(1 − z16)lg ρ
(1 + O(1 − z16))

= (1 + ξ1 + ξ2
1 )

C (z)

(4(1 − z))lg ρ
(1 + O(1 − z)) − C (z)

(16(1 − z))lg ρ
(1 + O(1 − z))

=
(

(1 + ξ1 + ξ2
1 )

3 − √
5

2
− 7 − 3

√
5

2

)
C (z)

(1 − z)lg ρ
(1 + O(1 − z))

= Ω(ξ1)
C (z)

(1 − z)lg ρ
(1 + O(1 − z)),

because 4− lg ρ = (3 − √
5)/2. Similarly, if ξ4

2 = ξ1, then as z→ 1−, we have

F (ξ2z) = (1 + ξ2z + ξ2
2 z2)F (ξ1z4) − ξ1z4 F (z16) = Ω(ξ2)

C (z)

(1 − z)lg ρ
(1 + O(1 − z)),

where

Ω(ξ2) = (1 + ξ2 + ξ2
2 )Ω(ξ1)

3 − √
5

2
− ξ1

7 − 3
√

5

2
,

and, in general, this iteration defines the function Ω(ξ) at any root of unity ξ of degree

4n for n� 0:

Ω(ξ) = (1 + ξ + ξ2)Ω(ξ4)
3 − √

5

2
− ξ4Ω(ξ16)

7 − 3
√

5

2
,

and Ω(1) = 1, together with the related radial asymptotics of F (ξz). Note that

(3 − √
5)/2 = ρ−2 and (7 − 3

√
5)/2 = ρ−4.

Lemma 5. Let ξ be a root of unity of degree 4n for some n� 0. Then, as z→ 1−, we have

F (ξz) = Ω(ξ)
C (z)

(1 − z)lg ρ
(1 + O(1 − z)),

where the function Ω(z) satisfies Ω(1) = 1 and

Ω(z) = (1 + z + z2)ρ−2Ω(z4) − z4ρ−4Ω(z16). (23)

�
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We stress that the function Ω(z) and so its relative

ω(z) := ρ2Ω(z)

Ω(z4)
(24)

are defined only on the set of roots of unity of degree 4n where n= 0, 1, 2, . . . .

Lemma 6. The function (24) is transcendental over the field of rational functions. �

Proof. We start observing that the functional Equation (23) translates into

ω(z) = 1 + z + z2 − z4

ω(z4)
(25)

for the function (24). Assume, on the contrary, that the function ω(z) is algebraic, hence

satisfies, on the set of the roots of unity, a nontrivial relation

M∑
m=0

pm(z)(ω(z)/z)m =
M∑

m=0

pm(z)ym

∣∣∣∣∣
y=ω(z)/z

= 0,

which we suppose to have the least possible M. Multiply the relation by (z/ω(z))M, sub-

stitute z4 for z in the relation, and apply (25) to arrive at

M∑
m=0

pm(z4)(1 + z + z2 − zy)M−m

∣∣∣∣∣
y=ω(z)/z

=
M∑

m=0

pm(z4)(1 + z + z2 − ω(z))M−m = 0.

If the two algebraic relations are not proportional, that is, if
∑M

m=0 pm(z4)(1 + z + z2 −
zy)M−m is not λ(z)

∑M
m=0 pm(z)ym for some λ(z) ∈ C(z), then a suitable linear combination

of the two will eliminate the term yM and result in a nontrivial algebraic relation for

ω(z) of degree smaller than M, a contradiction. The proportionality, on the other hand,

is not possible in view of Theorem 4 applied in the case s = 0. Thus, ω(z) cannot satisfy

an algebraic relation over C(z). �

Recall the function μ(z) defined in (3). It follows from (4) and (25) and from

μ(1) = ρ2 = ω(1) that the functions μ(z) and ω(z) coincide on the set of roots of unity

of degree 4n. Thus, Lemma 6 implies that μ(z) is a transcendental function—the fact

which is already a consequence of the algebraic independence of F (z) and F (z4). Note,

however, that in the opposite direction the transcendence of μ(z) does not directly imply

Lemma 6, because the function ω(z) is defined on a smaller set of certain roots of unity

and is not even known to be analytic.
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Another immediate consequence of the transcendence of ω(z) is the

following result.

Lemma 7. Assume that with polynomials p0(z), . . . , pM(z) ∈ C[z], we have

M∑
m=0

pm(ξ)Ω(ξ)mΩ(ξ4)M−m = 0

for any root of unity of degree 4n, where n= 0, 1, 2, . . .. Then, pm(z) = 0 for each,

m = 0, 1, . . . , M. �

Proof. Indeed, the equation from the hypothesis of the lemma is equivalent to the

identity
M∑

m=0

pm(z)ρ−2mω(z)m = 0

on the set of roots of unity of degree 4n, where n= 0, 1, 2, . . .. This contradicts the tran-

scendence of ω(z) established in Lemma 6. �

Denoting

Fk(z) :=
(

z
d

dz

)k

F (z)

and using the fact that C (z) is real analytic, we have, as z→ 1−, that

Fk(ξz) =
k−1∏
j=0

(lg ρ + j) · Ω(ξ)
C (z)

(1 − z)lg ρ+k
(1 + O(1 − z)),

since this is true for k= 0 and we simply differentiate it as many times as needed. From

now on, we can consider the limit as z→ 1− along the sequence exp(−t04−n) for integers

n� 1, for some fixed t0, so that C (z) is constant along the sequence. Finally, we can write

the functional equation for the derivatives in the form

Fk(z) = (4k(1 + z + z2)Fk(z
4) − 16kz4 Fk(z

16)) · (1 + o(1)) (26)

as z approaches any root of unity of degree 4n, because the terms in o(1) involve the

derivatives of F of order smaller than k. (In fact, we will use only (26) for k= 1.)

We are now in a position to present the proof of Theorem 1.
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Proof of Theorem 1. For the sake of a contradiction, assume that the theorem is false

and that we have an algebraic relation

∑
m=(m0,m1,m2,m3)∈M

pm(z)F0(z)
m0 F1(z)

m1 F0(z
4)m2 F1(z

4)m3 = 0, (27)

where the set M of multi-indices m∈ Z4
�0 is finite, and none of the polynomials pm(z) in

the sum is identically zero. Without loss of generality, we can assume that the polyno-

mial
∑

m pm(z)ym0
0 ym1

1 ym2
2 ym3

3 in five variables is irreducible.

In the first part of our proof, we discuss the algebraic independence of

F0(z), F1(z), and F0(z4) only (so that the dependence on y3 is suppressed); this scheme

is general for this particular case as well as for the one with F1(z4).

Let ξ be any root of unity of degree 4n for some n� 0. Note that as z→ 1−,

we have

F0(ξz)m0 F1(ξz)m1 F0((ξz)4)m2 F1((ξz)4)m3 = Cm · Ω(ξ)m0+m1Ω(ξ4)m2+m3

(1 − z)(lg ρ)|m|+(m1+m3)
(1 + o(1)),

where |m| := m0 + m1 + m2 + m3,

Cm := C |m|

4m3

(
3 − √

5

2

)m2+m3

(lg ρ)m1+m3 ,

and C = C (e−t0/4) does not depend on ξ or z, the latter chosen along the sequence.

Denote by M′ the subset of all multi-indices of M for which the quantity

β := (lg ρ)|m| + m1 + m3

is maximal; in particular, |m| and m1 + m3 are the same for all m∈ M′.

Substituting ξz for z in (27), multiplying all the terms in the resulted sum by

(1 − z)β , and letting z→ 1−, we deduce that

∑
m∈M′

Cm · pm(ξ) · Ω(ξ)m0+m1Ω(ξ4)m2+m3 = 0 (28)

for any root of unity ξ under consideration. If there is no dependence on F1(z4) in (27)

(hence in (28)), then the summation in m3 is suppressed; in this case, M := |m| = m0 +
m1 + m2 and M′ := m1 are constant for all indices m∈ M′, so that Equation (28) becomes

∑
m=(m0,M′,M−M′−m0,0)∈M′

Cm · pm(ξ) · Ω(ξ)m0Ω(ξ4)M−m0 = 0
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for any root of unity ξ of degree 4n. By Lemma 7, this is possible only when pm(z) = 0

identically, a contradiction to our choice of M. This means that the functions F0(z), F1(z)

and F0(z4) are algebraically independent.

The same argument in the case of general (27) implies that

∑
m=(m0,N−m0,M0−m0,M1−(N−m0))∈M′

Cm · pm(z) = 0

for any N, where M0 := m0 + m2 and M1 := m1 + m3 are constant on M′.

We next iterate relation (27) and compute, again, the asymptotics of the leading

term as z tends radially to a root of unity ξ of degree 4n. For this, we substitute z4 for z in

the relation (27), multiply the result by 16m1+m3 z4|m| and use the expressions for F0(z16)

and F1(z16) given by the Mahler functional equations in F0(z), F0(z4), F1(z), and F1(z4)

(see also the proof of Theorem 2) to arrive at

∑
n∈N

qn(z)F0(z)
n0 F1(z)

n1 F0(z
4)n2 F1(z

4)n3 = 0,

where N is defined analogous to M. The terms contributing the leading asymp-

totics (which, of course, remains attached to the same β as before) correspond to

the multi-indices n∈ N′ with the property β = (lg ρ)|n| + n1 + n3. Because of (26), con-

trolling the coefficients qn(z) for n∈ N′ is much easier than for general n∈ N. Note

that N′ is characterized by constant M0 = n0 + n2 and M1 = n1 + n3 as was before

M′. The above transformation for the leading asymptotics terms in (27) assumes

the form

∑
m∈M′

16m1 z4(m0+m1) pm(z4)F0(z
4)m0((1 + z + z2)F0(z

4) − F0(z))
m2

× F1(z
4)m1(4(1 + z + z2)F1(z

4) − F1(z))
m3

=
∑

m∈M′
16m1 z4(m0+m1) pm(z4)

×
m2∑

n0=0

(−1)n0

(
m2

n0

)
(1 + z + z2)m2−n0 F0(z)

n0 F0(z
4)m2+m0−n0

×
m3∑

n1=0

(−1)n1

(
m3

n1

)
4m3−n1(1 + z + z2)m3−n1 F1(z)

n1 F1(z
4)m3+m1−n1
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implying

qn(z) = (−1)n0+n1
∑

n0�m2�n0+n2
n1�m3�n1+n3

16n1+n3−m34m3−n1

(
m2

n0

)(
m3

n1

)

× z4(|n|−m2−m3)(1 + z + z2)m2+m3−n0−n1 p(n0+n2−m2,n1+n3−m3,m2,m3)(z
4)

= (−1)n0+n1
∑

n0�m2�M0
n1�m3�M1

16M1 4−m3−n1

(
m2

n0

)(
m3

n1

)

× z4(M0−m2+M1−m3)(1 + z + z2)m2+m3−n0−n1 p(M0−m2,M1−m3,m2,m3)(z
4)

= (−1)n0+n116M1
∑

0�m0�M0−n0
0�m1�M1−n1

4m1−n1−M1

(
M0 − m0

n0

)(
M1 − m1

n1

)

× z4(m0+m1)(1 + z + z2)M0+M1−m0−m1−n0−n1 p(m0,m1,M0−m0,M1−m1)(z
4)

for all n∈ N′, where for the last equality we switched to summation over m0 = M0 − m2

and m1 = M1 − m3.

In view of our assumption of the irreducibility of the original algebraic

relation (27), the newer relation must be proportional to it; that is, the polyno-

mial
∑

m∈M pm(z)ym0
0 ym1

1 ym2
2 ym3

3 divides
∑

n∈N qn(z)yn0
0 yn1

1 yn2
2 yn3

3 in the polynomial ring

C[z, y0, y1, y2, y3]. In particular, the leading asymptotic parts of these polynomials,

∑
n∈N′

qn(z)yn0
0 yn1

1 yn2
2 yn3

3 = yM0
2 yM1

3

∑
n∈N′

qn(z)
(

y0

y2

)n0
(

y1

y3

)n1

and ∑
m∈M′

pm(z)ym0
0 ym1

1 ym2
2 ym3

3 = yM0
2 yM1

3

∑
m∈M′

pm(z)
(

y0

y2

)m0
(

y1

y3

)m1

,

must be proportional, hence their quotient must be a polynomial in z. In other words, the

sets N′ and M′ coincide (unless the former is empty, meaning that qm(z) = 0 identically

for all m∈ M′) and qm(z) = q(z)pm(z) for all m∈ M′ for some q(z) ∈ C[z]. We define

p̂m0,m1(z) := 4m1 pm0,m1,M0−m0,M1−m1(z) for 0 � m0 � M0, 0 � m1 � M1,

so that

M0∑
m0=0

M1∑
m1=0

p(m0,m1,M0−m0,M1−m1)(z)ym0
0 ym1

1 =
M0∑

m0=0

M1∑
m1=0

p̂m0,m1(z)ym0
0

( y1

4

)m1

,
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and the above proportionality relation reads

q(z)
M0∑

m0=0

M1∑
m1=0

p̂m0,m1(z)ym0
0 ym1

1

= 4M1

M0∑
m0=0

M1∑
m1=0

p̂m0,m1(z
4)(1 + z + z2 − zy0)

M0−m0(1 + z + z2 − zy1)
M1−m1 .

However, it follows from the case s = 1 of Theorem 4 that this is not possible; that is, the

polynomials must all be identically zero. �

In this final part of the section, we prove Theorem 2, by applying Theorem 1

along with a general result in Mahler’s method due to Nishioka [22]; see also monograph

of Nishioka [23], in particular, Theorem 4.2.1 therein.

Proposition 2 (Nishioka [22]). Let K be an algebraic number field and let k� 2 be

a positive integer. Let f1(z), . . . , fd(z) ∈ K[[z]] and write f (z) for the column-vector

( f1(z), . . . , fd(z))T. If

f (zk) = B(z) f (z)

for some matrix B(z) ∈ K(z)d×d and α is a nonzero algebraic number in the radius of

convergence of f (z) such that αkj
is not a pole of B(z) for any j � 0, then

tr degQQ( f1(α), . . . , fd(α)) � tr degK(z)K(z)( f1(z), . . . , fd(z)). �

Proof of Theorem 2. Apply Theorem 1 and Proposition 2 with K = Q, k= d= 4,

f (z) = (F (z), F (z4), F ′(z), F ′(z4))T,

and

B(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

− 1

z4

1 + z + z2

z4
0 0

0 0 0 1
1

4z20
−4 + 3z + 2z2

16z20
− 1

16z19

1 + z + z2

4z16

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

�

4 Linear Algebra and Fibonacci Numbers

This section is entirely devoted to the proof of Theorem 4.

Assume, on the contrary, that a nontrivial collection of polynomials pm0,...,ms(z)

satisfying (22) exists. If the greatest common divisor of the polynomials is p(z), then
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dividing them all by p(z), we arrive at the relation (22) for the newer normalized polyno-

mials but with λ(z) replaced by λ(z)p(z)/p(z4). Therefore, we can assume, without loss

of generality, that the polynomials pm0,...,ms(z) in (22) are relatively prime. Furthermore,

without loss of generality, we can assume that the existing polynomials all have ratio-

nal coefficients as the identity (22) itself happens to be over the field of rationals, so that

pm0,...,ms(z) ∈ Q[z] and λ(z) ∈ Q(z).

We first analyze the s = 0 case of relation (22). To this end, suppose there exist

p0(z), . . . , pM(z) ∈ Q[z] with gcd(p0(z), . . . , pM(z)) = 1 such that

λ(z)
M∑

m=0

pm(z)ym =
M∑

m=0

pm(z4)(1 + z + z2 − zy)M−m (29)

for some rational function λ(z). Assuming λ(z) is nonzero, write λ(z) = a(z)/b(z), where

gcd(a(z), b(z)) = 1, so that (29) becomes

a(z)
M∑

m=0

pm(z)ym = b(z)
M∑

m=0

pm(z4)(1 + z + z2 − zy)M−m. (30)

It follows immediately that any polynomial pm(z) on the left-hand side of (30) is divisible

by b(z), hence b := b(z) is a constant. By substituting x = 1 + z + z2 − zy, we write (30) as

a(z)
M∑

m=0

pm(z)zM−m(1 + z + z2 − x)m = bzM
M∑

m=0

pm(z4)xM−m,

from which we conclude as before that each pm(z4) is divisible by a(z)/zN, where

zN is the highest power of z dividing a(z). As gcd(p0(z4), . . . , pM(z4)) = 1, we find out

that a := a(z)/zN is a constant. In summary, λ(z) = λzN for some λ ∈ Q and N ∈ Z�0;

that is

λzN
M∑

m=0

pm(z)ym =
M∑

m=0

pm(z4)(1 + z + z2 − zy)M−m. (31)

Note that the rational constant λ must be nonzero as otherwise, by substituting z= 1

into (31), all pm(z4) would have the common divisor z − 1.

The above argument clearly extends to tensor powers of the related opera-

tor. In this way, we use the above to extend to the general case in the statement of

the theorem.

Lemma 8. Assuming relation (22) holds, we have λ(z) = λzN for some λ ∈ Q \ {0} and

N ∈ Z�0. �
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In our further investigation, we will be interested in specializing identity (22) by

choosing z to be an appropriate root of unity. Any such specialization leads to a linear

relation on the space of polynomials in y0, y1, . . . , ys of degree at most Mj in yj for each

j = 0, 1, . . . , s.

Take a matrix

γ :=
(

a b

c d

)
∈ SL2(C),

so that its determinant ad− bc = 1, and assume that its eigenvalues μ and μ−1 are dis-

tinct. Consider the linear operator

UM(γ ) : ym �→ (ay + b)m(cy + d)M−m

on the linear space PM[y] of polynomials of degree at most M. Let the two row vectors

(α0, β0) and (α1, β1) be the eigenvectors of γ ; that is

(α0, β0)γ = μ(α0, β0) and (α1, β1)γ = μ−1(α1, β1).

Lemma 9. The spectrum of UM(γ ) is the set

{μk : −M � k� M, k≡ M (mod2)},

with the corresponding eigenpolynomials

rk(y) = rk(γ ; y) = (α0y + β0)
(M+k)/2(α1y + β1)

(M−k)/2,

− M � k� M, k≡ M (mod2).

�

Proof. This follows immediately from the fact that the operator U1(γ ) maps α0y + β0

onto μ(α0y + β0) and α1y + β1 onto μ−1(α1y + β1). �

Lemma 9 allows us to describe the spectrum of the (tensor-product) operator

U = UM0(γ ) ⊗ · · · ⊗ UMs(γ ) :
s∏

j=0

y
mj

j �→
s∏

j=0

(ayj + b)mj (cyj + d)Mj−mj

that acts on the space of polynomials in y0, y1, . . . , ys of degree at most Mj in yj for

j = 0, 1, . . . , s, as well as to explicitly produce the corresponding eigenpolynomials.
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Lemma 10. The spectrum of U is contained in μZ, with the (linearly independent)

eigenpolynomials

s∏
j=0

rkj (γ ; yj), −Mj � kj � Mj, kj ≡ Mj (mod2) for j = 0, 1, . . . , s,

corresponding to the eigenvalues μk0+k1+···+ks , respectively. �

Substitution z= 1 into (22), where λ(z) = λzN , brings our case to

λ
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(1)ym0
0 · · · yms

s

=
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(1)(3 − y0)
M0−m0 · · · (3 − ys)

Ms−ms .

This corresponds to an eigenvector r(y0, . . . , ys) of the operator U, when γ = (
0 1

−1 3

) ∈
SL2(C). We get μ = (3 + √

5)/2 = ρ2,

α0y + β0 = μ−1y − 1 and α1y + β1 = μy − 1.

(Of course, we exclude the trivial case r(y0, . . . , ys) = 0 as it would imply that all

pm0,...,ms(z) are divisible by z − 1.) Because all pm0,...,ms(z) ∈ Q[z], we have r(y0, . . . , ys) ∈
Q[y0, . . . , ys], so that none of the irrational values in μZ can show up as λ. In other words,

λ = 1 and the structure of the tensor product above dictates M0 + · · · + Ms to be even and

further produces

r(y0, . . . , ys) =
∑

|kj |�Mj , kj≡Mj (mod2)
k0+···+ks=0

Ck0,...,ks · rk0(y0) · · · rks(ys), (32)

where Ck0,...,ks ∈ Q[μ]. We do not require the form (32), but only the fact λ = 1.

Lemma 11. Assuming relation (22) holds, we have λ(z) = zN for some N ∈ Z�0:

zN
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(z)ym0
0 · · · yms

s

=
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(z
4)

s∏
i=0

(1 + z + z2 − zyi)
Mi−mi . (33)

�
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We now take any prime p> 3, a root of unity ζp of degree p, and the matrix

γp := g(ζ 4(p−1)/2−1

p )g(ζ 4(p−1)/2−2

p ) · · · g(ζ 4
p)g(ζp),

where g(z) =
(

0 1

−z z2 + z + 1

)
. (34)

If we write γp = (
a b
c d

)
, iterate the right-hand side of (33), and substitute z= ζp, then

we obtain

ζ N
p

∑
0�mj�Mj
j=0,1,...,s

pm0,...,ms(ζp)ym0
0 · · · yms

s

=
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(ζp)

s∏
i=0

(ayi + b)mi (cyi + d)Mi−mi , (35)

because ζ 4(p−1)/2

p = ζ 2p−1

p = ζp. Note that det g(z) = z, so that

det γp =
(p−1)/2−1∏

j=0

ζ 4 j

p = ζ (2p−1−1)/3
p = 1

for primes p> 3, thus establishing that γp ∈ SL2(C).

Lemma 12. Let μ and μ−1 be the eigenvalues of γp. If μp �= 1, then N ≡ 0 (mod p)

in (33). �

Proof. By comparing relation (35) with the result of Lemma 10, we conclude that ζ N
p ∈

μZ, and the latter is only possible when ζ N
p = 1. �

Lemma 13. There are infinitely many primes p for which the eigenvalues μ of the cor-

responding γp are not pth roots of unity. �

We have checked by direct computation that the only primes p in the range 3 <

p< 300, for which the condition μp �= 1 is violated, are p= 5 and p= 11 (and μ = 1 in

the two cases). It is therefore natural to expect that we always have the condition of

Lemma 12 satisfied for primes p> 11.
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Proof of Lemma 13. For positive exponents, e1, . . . , es, consider

g(ze1)g(ze2) · · · g(zes) =
(

−a(z) b(z)

−c(z) d(z)

)
.

Using induction on s, the coefficients of polynomials a(z), b(z), c(z), d(z) are non-negative

integers; furthermore,(
−a(1) b(1)

−c(1) d(1)

)
= g(1)s =

(
−F0 F2

−F2 F4

)s

=
(

−F2s−2 F2s

−F2s F2s+2

)
,

where F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 is the Fibonacci sequence. It is not hard to

verify that

F2n ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (mod7) if n≡ 0 (mod4),

3 (mod7) if n≡ 2 (mod8),

4 (mod7) if n≡ 6 (mod8),

n= 0, 2, 4, . . . . (36)

Consider now any prime p≡ 15 (mod28); this means that p− 1 is divisible by

7 and that s = (p− 1)/2, the number of the matrices g( · ) in the product for γp, is odd.

The trace of the matrix γp is a polynomial in ζp containing F2s+2 monomials ζm
p minus

F2s−2 monomials ζm
p . Note the sums of the form

∑p−1
j=1 ζ

jm
p = 0, each involving p− 1 terms,

for j �≡ 0 (modp), and such sums only, can be canceled from consideration, thus leaving

us with

F2(s+1) − F2(s−1) − (p− 1)N ≡ ±3 (mod7)

terms according to (36). This implies that the trace of γp in its irreducible form is

the sum of at least three monomials ζm
p , corresponding to not necessarily different

m ∈ {0, 1, . . . , p− 1}; in particular, the trace cannot be written in the form ζ �
p + ζ−�

p for

some �. Therefore, the eigenvalues μ,μ−1 of γp are not of the form ζ �
p, ζ

−�
p . This completes

the proof of Lemma 13. �

Proof of Theorem 4. It follows from Lemmas 12 and 13 that N ≡ 0 (mod p) in (33) for

infinitely many primes p. This means that N = 0 and Equation (33) assumes the form

∑
0�mj�Mj
j=0,1,...,s

pm0,...,ms(z)ym0
0 · · · yms

s

=
∑

0�mj�Mj
j=0,1,...,s

pm0,...,ms(z
4)

s∏
i=0

(1 + z + z2 − zyi)
Mi−mi . (37)
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As y0, . . . , ys are replaced with c0y0, . . . , cs ys, where (c0, . . . , cs) varies over Rs+1, the

generic degree in z of the right-hand side in (37) is bounded from below by 4d, where

d denotes the maximal degree of the polynomials pm0,...,ms(z), whereas the degree in z of

the left-hand side in (37) is at most d. This can happen only when the polynomials are

constant; however, in the latter circumstances, we will still have a positive degree in z

for the right-hand side in (37), a contradiction completing the proof of Theorem 4. �

5 Mahler Functions at Roots of Unity

In this section, we discuss the structure of general Mahler functions at roots of unity

and provide an alternative approach to the proof of Theorem 3, which can be used in the

asymptotical study of Mahler functions of any degree.

The simplest possible Mahler functions are given as infinite products, so that it

is natural to investigate the asymptotics of

P (z) :=
∞∏
j=0

1

(1 − αzkj
)

as z→ 1−, where α ∈ C, |α| � 1. The recent paper [2] provides crude estimates for the

asymptotics of such products, though earlier works [11, 15, 20] already discuss the

asymptotics in the “most natural” case |α| = 1; see also the paper [13].

As in Section 2, we make use of the Mellin transform, and so we define

P(s) :=
∫∞

0
ln P (e−t)ts−1 dt,

which maps e−λt to Γ (s)λ−s. Since

ln P (e−t) =
∞∑
j=0

∞∑
l=1

1

l
αl e−lkjt,

we have

P(s) = Γ (s)
∞∑
j=0

∞∑
l=1

1

l

αl

(lkj)s
= Γ (s)

1 − k−s

∞∑
l=1

αl

ls+1
. (38)

Thus, the asymptotics of ln P (e−t) as t → 0+ is related to the values of the meromorphic

continuation of the Dirichlet series

P(s)

Γ (s)
= 1

1 − k−s

∞∑
l=1

αl

ls+1
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at negative integers [26, Proposition 2]. Without reproducing the standard analytic argu-

ment in this situation (see [11, 15] for details) one gets, as t → 0+,

P (e−t) = C (t)t(ln(1−α))/(ln k)(1 + O(t))

if α �= 1, and

P (e−t) = C (t)t−1/2 e(ln2 t)/(2 ln k)(1 + O(t))

if α = 1, for some positive and (2πim/ ln k)-periodic function C (t) of t. Clearly, the asymp-

totics so obtained allow one to write out the asymptotic behavior of any solution of the

Mahler equation

f(z) =
m∏

j=1

(1 − ξ jz) · f(zk)

along any radial limit as z→ ξ , where ξ1, . . . , ξm and ξ are roots of unity.

This analysis, Theorem 3 and the approach we discuss below allow us to expect

similar asymptotic behavior for other Mahler functions f(z) satisfying functional equa-

tions of the form (1). That is, under some natural conditions imposed on the polynomials

a(z), a0(z), . . . , ad(z), the asymptotics of f(z) as z→ 1− is either of the form

C (z)(1 − z)c1(1 + O(1 − z))

or

C (z)(1 − z)c0 ec2 ln2
(1−z)(1 + O(1 − z))

for some rational c0 or c1 of the form “ln(analgebraicinteger)/ ln k” and c2 of the form

“rational/ ln k”, where the function C (z) is assumed to have some oscillatory behavior.

For our alternative method to prove Theorem 3, we consider the function F (z)

as defined in the introduction. If we let z= e−t, where t = 4−x and denote f(x) = F (z16) =
F (e−16t), then the functional Equation (2) assumes the form

f(x + 2) − (1 + e−t + e−2t) f(x + 1) + e−4t f(x) = 0.

Using |1 − e−t| < t for t > 0, we can then recast this equation in the form

f(x + 2) − (3 + a1(x)) f(x + 1) + (1 + a2(x)) f(x) = 0,

where |a1(x)|, |a2(x)| � 4 · 4−x. Denoting the zeroes of the characteristic polynomial

λ2 − 3λ + 1, by λ1 := (3 − √
5)/2 and λ2 := (3 + √

5)/2 = ρ2, and applying the quantitative

version of Perron’s theorem due to Coffman [9] (see [25, Theorem 2] and comments
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to it within for the explicit statement, as well as [16, 19] for the predecessors), we

deduce that

f(x) = C̃λx
j(1 + O(4−x))

as x → +∞ along x ≡ x0 (mod Z), for some C̃ = C̃ (x0) > 0 and j ∈ {1, 2}. A simple analysis

then shows that j = 2.

Note that C̃ (x) is a 1-periodic real-analytic function in an interval x > σ0 because

of the analytic dependence of the solution of the difference equation on the initial data.

This implies that as t → 0+

F (e−t) = Ĉ (t)

tlg ρ
(1 + O(t)),

and further

F (z) = C (z)

(1 − z)ln ρ
(1 + O(1 − z)) as z→ 1−,

where C (z) is real-analytic and satisfies C (z) = C (z4) for z∈ (0, 1), which is exactly the

statement of Theorem 3.

The Mellin-transform approach of Section 2 and the difference-equation

approach of this section also make possible studying the asymptotic behavior of Mahler

functions at other roots of unity. Here, we briefly explain the situation on what happens

with the particular example of F (z).

Denote ζn a primitive root of unity of (odd) degree n. For ζ3, we clearly have ζ 4
3 = ζ3;

therefore, the defining Equation (2) for F (z) transforms to the equation

F̃ (z) = (1 + ζ3z + ζ 2
3 z2)F̃ (z4) − ζ3z4 F̃ (z16)

for the function F̃ (z) := F (ζ3z). The characteristic polynomial of this recursion as z→
1− is λ2 + ζ3, with the absolute values of both roots equal to 1, so that the theorem of

Poincaré [18] applies to imply that F̃ (z) has oscillatory behavior as z→ 1−.

Similarly, the difference equation for F (z) gives rise to a difference equation for

F̃ (z) = F (ζnz), because the former is equivalent to a relation between F (z), F (z4k
) and

F (z42k
) for any k� 1. In particular, one can take k= (p− 1)/2, when n= p is a prime

(compare with the construction of γp in Section 4). Taking n= 5 and choosing k= 2, so

that ζ 4k

n = ζn, we find the corresponding characteristic polynomial λ2 − 2λ + 1. Again, the

double zero λ = 1 (of absolute value 1) of the polynomial leads to the oscillatory behav-

ior of F̃ (z) as z→ 1−; the same story happens for the choice n= 11 and k= 6. The first
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“interesting” situation originates at n= 7. Here, k= 3 and the characteristic polynomial

of the difference equation relating F (ζ7z), F (ζ7z43
) and F (ζ7z46

) is

λ2 + (ζ7 + ζ 2
7 + ζ 4

7 )λ + 1 = λ2 + −1 ± √−7

2
λ + 1.

Its roots are
1 ± √−7 ±

√
−22 ± √−7

4
,

whose absolute values are approximately 0.53101005 and 1.88320350. The technical con-

ditions of Coffman’s version of Perron’s theorem are not met in this case, but the numer-

ics support that they behave

F (ζ7z) ∼ C (z)(1 − z)ln(0.53101005)/(3 ln 4) as z→ 1−,

where C (z) oscillates.

The characteristic polynomial for n= p is exactly the characteristic polynomial

of the matrix γp in (34). It may be interesting to look for the known L-functions as poten-

tial Mellin transforms for such a sophisticated behavior at different roots of unity:

recall that the Mellin transform (38) used at the beginning of this section was, up to

the unwanted factor (1 − k−s)−1, a Dirichlet L-function. Although it is hard to expect

anything significant for the Mellin transform of ln F (z) as there are zeroes of F (z) in

the disc |z| < 1 (compare with the text given in the proof under Proposition 1 as ‘The

reader may think of.....,’ in Section 2), but F (z) itself looks a nice target for a reasonable

L-function.
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Thèse, Université de Bordeaux I, Talence, 1993.

[15] Dumas, P. and P. Flajolet. “Asymptotique des récurrences mahlériennes: le cas cyclo-
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