
FFT extension for
algebraic-group factorization algorithms

Richard P. Brent, Alexander Kruppa, and Paul Zimmermann

Australian National University, Canberra, Australia

Technische Universität München, München, Germany

Inria/LORIA, Nancy, France

Abstract

It is well known that the second stage of factoring methods that exploit smooth-
ness of group orders can be implemented efficiently using the fast Fourier
transform (FFT). For Pollard’s p−1 method [15] this originated with the Mont-
gomery and Silverman paper [14], and for the elliptic curve factoring method
[10] it was the subject of Peter Montgomery’s PhD dissertation [12]. Along
with Peter’s most recent work on this subject [13], these developments are pre-
sented in this chapter.

This article appeared as Chapter 8 of the book Topics in Computational Num-
ber Theory inspired by Peter L. Montgomery, edited by Joppe W. Bos and
Arjen K. Lenstra and published by Cambridge University Press. See www.
cambridge.org/9781107109353. There is a cross-reference to Chapter 4 of
the same book, Montgomery curves and the Montgomery ladder by Daniel J.
Bernstein and Tanja Lange.

www.cambridge.org/9781107109353
www.cambridge.org/9781107109353

Contents

8 FFT extension for algebraic-group factorization algorithms page 1
8.1 Introduction 1
8.2 FFT extension for the elliptic curve method 2

8.2.1 The product tree algorithm 3
8.2.2 The POLYEVAL algorithm 4
8.2.3 The POLYGCD algorithm 6
8.2.4 Choice of points of evaluation 9
8.2.5 A numerical example 10

8.3 FFT extension for the p − 1 and p + 1 methods 11
8.3.1 Constructing F(X) by scaling and multiplying 12
8.3.2 Evaluation of a polynomial along a geometric

progression 14

Bibliography 17
Subject index 19

8
FFT extension for algebraic-group factorization

algorithms
Richard P. Brent, Alexander Kruppa and Paul Zimmermann

8.1 Introduction

We assume that the reader is familiar with the basic ideas of the Elliptic Curve
Method of factorization (ECM) – an overview is given in the survey paper [17]
and a high-level description is given in Section 8.2 on page 2. ECM was in-
vented by H. W. Lenstra, Jr., and information about it circulated informally as
early as February 1985, although Lenstra’s Annals paper [10] did not appear
in print until 1987. Already by the end of 1985 Peter Montgomery and the
first author had implemented ECM and found various practical improvements
described in [6, 11, 17]. The most significant improvements were:

1 Implementation of a “stage two” analogous to the stage two in Pollard’s p−1
method [11, 15]. Several variants of stage two were suggested, see [17].

2 Use of Montgomery’s form of elliptic curve, given here in homogeneous
form where the triple (x : y : z) represents the point (x/z : y/z) in affine
coordinates:

Ea,b : by2z = x3 + ax2z + xz2

instead of the classical (homogeneous) Weierstrass form

y2z = x3 + axz2 + bz3.

This uses fewer operations in Z/nZ, where n is the number to factor, al-
though it introduces the complication of Lucas chains. In stage one it is
faster to use Montgomery’s form than the Weierstrass form.1 In stage two
it may be better to switch to the homogeneous Weierstrass form. However,
stage one typically takes more than 50% of the running time, so the im-
provement due to using Montgomery’s form in stage one is significant.

1 See Bernstein and Lange [2] for a discussion of an alternative form suggested recently by
Edwards [8] (see also Chapter 4).

2

3 Montgomery’s form ensures that the group order g is divisible by 4; an im-
provement is Suyama’s parametrization which ensures that g is divisible
by 12. In Chapter 6 of his dissertation [12], Montgomery considers various
ways of ensuring that g is divisible by 12 or 16 (subject to a congruence
condition).2

We remark that these improvements, although significant in practice, do not
change the theoretical order of the (conjectured) expected running time

O
(
L(p)

√
2+o(1)Mn

)
to find a prime factor p of n, where L(p) = exp(

√
ln p ln ln p), and Mn repre-

sents the complexity of multiplication modulo n. All the improvements can be
absorbed into the o(1) term, so asymptotically they are unimportant. However,
in practice they are highly significant.

Other improvements were introduced later. A survey of developments up to
about 2006 is given in [17]. The most significant of these later improvements
is the “FFT extension” which was proposed by Montgomery around 1990 and
published in his dissertation [12]. The idea of using the FFT had already been
suggested by Pollard [15] for his p−1 method (see also [14]), but Montgomery
was the first to see how to apply the FFT to speed up ECM. We note that
“FFT extension” is a poor name – more accurate would be “fast polynomial
arithmetic extension/continuation” – since any algorithm for fast polynomial
multiplication can be used, not just the FFT. However, “FFT extension” has
been used consistently in the literature, so to avoid confusion we adopt this
terminology.

In Section 8.2 we describe Montgomery’s FFT extension for ECM, and in
Section 8.3 on page 11 we describe the FFT extension for Pollard’s p − 1
method and Williams’ p + 1 method [16], where some additional speedups are
possible.

8.2 FFT extension for the elliptic curve method

To fix our notation, we first give a high-level description of ECM. Suppose that
the stage one and stage two limits are B1 and B2, respectively. In the following
π denotes a rational prime.

Stage one of ECM takes a point P0 = (x0 : y0 : z0) on a pseudo-random el-

2 See also the erratum to [17].

FFT extension for algebraic-group factorization algorithms 3

liptic curve Ea,b mod n (ignoring the fact that n is not a prime!), and computes

Q =
∏
π≤B1

πe(B1,π)P0

on Ea,b, where e(B1, π) = bln B1/ ln πc. (If the computation breaks down then
most likely a GCD computation will give a non-trivial factor of n – see [17]
for details.) Assuming that there was no breakdown in the computation of Q,
stage two computes, for each (prime) π ∈ (B1, B2],

(xπ : yπ : zπ) = πQ on Ea,b and gπ = gcd(n, zπ),

and if gπ , 1, outputs gπ (a factor of n) and exits. If all the gπ are 1 then
stage two fails and we restart stage one with another choice of pseudo-random
elliptic curve.

If implemented as we have just described, stage two takes Θ(B2/ ln B2) op-
erations, assuming B1 � B2. Montgomery’s idea is to use fast polynomial
arithmetic to reduce this complexity.

We take two sets S and T such that S + T = {σ + τ : σ ∈ S , τ ∈ T } covers
all primes in (B1, B2]. For example: d = bB1/2

2 c, S = {i · d : 0 ≤ i · d ≤ B2},
T = { j : 0 < j < d, gcd(j, d) = 1}. Computing all values of σQ and τQ costs
O(B2/d + d) operations, which is O(B1/2

2) by our choice of d. Also, all primes
π ∈ (d, B2] can be written as π = σ + τ for some σ ∈ S and τ ∈ T .

Assume that we use affine coordinates for stage two, so σQ = (xσ : yσ)
and τQ = (xτ : yτ). Then σQ + τQ = OE mod p implies that xσ = xτ mod p
(where OE is the neutral element in the group of the elliptic curve mod p, and
p is a prime factor of n). Thus, it suffices to compute gcd(xσ − xτ, n) to obtain
the factor p (except in the unlikely case that xσ = xτ mod n; we shall ignore
this possibility).

Thus, the problem reduces to computing

h =
∏
σ∈S

∏
τ∈T

(xσ − xτ) mod n, (8.1)

since if any gcd(xσ − xτ, n) is non-trivial, so will be gcd(h, n).
The idea of the FFT stage two is to compute this product via fast algorithms

for polynomial multi-point evaluation with complexity in O(d(log d)2) ring op-
erations, rather than evaluating all O(d2) terms of (8.1) individually.

8.2.1 The product tree algorithm

Let F(X) be the polynomial whose roots are the xτ, i.e., F(X) =
∏

τ∈T (X− xτ),
and similarly G(X) =

∏
σ∈S (X − xσ). Both F(X) and G(X) can be computed

in O(M(d) log d) operations — still assuming d = bB1/2
2 c — over Z/nZ with

4

F(X) = F0,8(X)

F0,4(X)

F0,2(X)

F0,1(X)
= X − x0

F1,1(X)

F2,2(X)

F2,1(X) F3,1(X)

F4,4(X)

F4,2(X)

F4,1(X) F5,1(X)

F6,2(X)

F6,1(X) F7,1(X)
= X − x7

Figure 8.1 Example of a product tree to compute a polynomial F(X) of de-
gree 8 from its roots x0, . . . , x7.

the “product tree” algorithm and fast polynomial multiplication [9], where
M(d) = Mn(d) denotes the complexity of multiplying polynomials of degree d
over Z/nZ. The product tree algorithm works by recursively multiplying poly-
nomials of equal degree `, starting with the linear polynomials X − xτ. As-
suming d = 2k is a power of 2, there are k recursion levels, each costing
O(M(`)d/`), for the stated total cost O(M(d)k) = O(M(d) log d). If d is not
a power of 2, a variant of the product tree can be used that multiplies polyno-
mials of degrees differing by 1 where necessary.

Algorithm 1 shows how to compute the product tree when d is a power of 2,
and Figure 8.1 shows an example for a polynomial of degree 8.

8.2.2 The POLYEVAL algorithm

Given F(X) =
∏

τ∈T (X − xτ), we can rewrite the product (8.1) on page 3
as h =

∏
σ∈S F(xσ) mod n. To evaluate F(X) on many points xσ efficiently,

Montgomery suggests the “POLYEVAL” algorithm.
We first note that F(xσ) = F(X) mod (X − xσ); this is a degree-0 poly-

nomial, i.e., an element of Z/nZ. Let F(X),G(X) ∈ (Z/nZ)[X] be polyno-
mials as defined in Section 8.2.1, both assumed to have degree d = 2k. Let
Gi,`(X) ∈ (Z/nZ)[X], ` | d, ` | i, 0 ≤ i < d, be the nodes of the product tree
associated with G(X). We can evaluate all F(xσ) in total time O(M(d) log d) by
recursively reducing F(X) modulo the various Gi,`(X), forming a “remainder
tree”, whose leaf nodes then contain the values F(X) mod (X − xσ) = F(xσ).

FFT extension for algebraic-group factorization algorithms 5

Algorithm 1 Product tree algorithm

Inputs: d, a power of 2. r0, . . . , rd−1 ∈ Z/nZ.
Output: F(X) ∈ Z/nZ[X] of degree d with roots ri, 0 ≤ i < d.
for i← 0, d − 1 do

Fi,1(X) = X − ri . Initialise leaves
end for
for ` ← 1, 2, 4, . . . , d/2 do . Powers of 2

for i← 0, 2`, 4`, . . . , d − 2` do
Fi,2`(X)← Fi,`(X)Fi+`,`(X)

end for
end for
return F0,d(X)

This process uses the nodes Gi,`(X) from the product tree for G(X) from
the root downwards to the leaves, i.e., in the opposite direction of how it
was created. Thus it is not practical to create the Gi,`(X) on-the-fly. To ob-
tain acceptable performance it seems necessary to compute the product tree
for G(X) ahead of time and store its nodes, resulting in memory requirements
of O(d log d) residues. Montgomery [12, 3.7] points out that the product tree
can be kept on external storage; the GMP-ECM implementation offers this op-
tion, reducing main memory use to only O(d) ring elements while typically
incurring only negligible delay for reading coefficients of Gi,`(X) from storage
during POLYEVAL.

Once all the values F(xσ) are computed, we take their product h =
∏

σ∈S F(xσ)
and compute g = gcd(h, n). If for any p | n, σ ∈ S , and τ ∈ T we have xσ ≡ xτ
(mod p), then h ≡ 0 (mod p) and thus p | g, revealing the factor p.

Polynomial modular reduction
To compute a polynomial modular reduction efficiently, Montgomery proposes
an algorithm RECIP that computes a reciprocal of a polynomial in the follow-
ing sense: let G(X) ∈ (Z/nZ)[X] be a polynomial of degree d whose leading
coefficient is invertible in Z/nZ, then RECIP(G) =

⌊
X2d

G(X)

⌋
, where

⌊
f (X)
g(X)

⌋
for

polynomials f (X), g(X) is the polynomial quotient with remainder discarded.
The algorithm proceeds by applying the familiar Newton iteration for recip-

rocals on the Laurent series G(X)/Xd, see [12, 3.5] for details. Given RECIP(G),
we can compute F(X) mod G(X) by first computing a quotient

H(X) =

⌊
F(X)
G(X)

⌋
=

⌊
bF(X)/XdcRECIP(G)

Xd

⌋
, (8.2)

6

F(X) mod G0,8(X)

F(X) mod G0,4(X)

F(X) mod
G0,2(X)

F(X) mod
G0,1(X)
= F(x0)

F(X) mod
G2,2(X)

F(X) mod G4,4(X)

F(X) mod
G4,2(X)

F(X) mod
G6,2(X)

F(X) mod
G7,1(X)
= F(x7)

Figure 8.2 Example of a remainder tree to evaluate a polynomial F(X) on
8 points x0, . . . , x7 which form the roots of the polynomial G(X). The poly-
nomials Gi,`(X) are the nodes in the product tree for building G(X) from its
roots.

then

F(X) mod G(X) = F(X) −G(X)H(X). (8.3)

(This can be seen as a translation for polynomials of Barrett’s algorithm to re-
duce integers.) We note that, if Gi,2`(X) = Gi,`(X)Gi+`,`(X) and the polynomials
Gi,` are monic, then

RECIP(Gi,`) = bbRECIP(Gi,2`)X−`cGi+`,`(X)X−`c

and similarly for RECIP(Gi+`,`). The POLYEVAL algorithm uses this to com-
pute the required polynomial reciprocals RECIP(Gi,`) and RECIP(Gi+`,`) from
RECIP(Gi,2`) as we traverse the remainder tree, so that the more expensive
Newton iteration to compute a reciprocal is required only at the root node.

Algorithm 2 on page 7 gives pseudo-code for POLYEVAL when d is a power
of 2, and Figure 8.2 on page 6 presents an example of a remainder tree for a
polynomial of degree 8. As for the product tree algorithm, the algorithm can
be adjusted to handle slightly unbalanced trees if d is not a power of 2.

8.2.3 The POLYGCD algorithm

Montgomery also suggested the “POLYGCD variant”, in which h is interpreted
as the resultant Res(F,G), whose computation reduces to a polynomial GCD.

FFT extension for algebraic-group factorization algorithms 7

Algorithm 2 POLYEVAL algorithm

Inputs: d, a power of 2. F(X) ∈ (Z/nZ)[X], a monic polynomial of degree d.
Gi,`(X) ∈ (Z/nZ)[x], monic polynomials as computed by Algorithm 1 on
page 5 from the roots x0, . . . , xd−1.

Output: F(x0), . . . , F(xd−1).
H0,d(X)← F(X) −G0,d(X) . Equivalent to F(X) mod G0,d(X)
for ` ← d/2, . . . , 2, 1 do . Powers of 2

for i← 0, 2`, 4`, . . . , d − 2` do
. Compute reciprocals needed for modular reduction

RECIP(Gi,`)← bbRECIP(Gi,2`)X−`cGi+`,`(X)X−`c
RECIP(Gi+`,`)← bbRECIP(Gi,2`)X−`cGi,`(X)X−`c

. RECIP(Gi,2`) is not needed any more after this
Hi,`(X)← Hi,2`(X) mod Gi,`(X) . Using (8.2), (8.3) on page 6
Hi+`,`(X)← Hi,2`(X) mod Gi+`,`(X)

. Hi,2`(X) is not needed any more after this
end for

end for
return H0,1(X), . . . ,Hd−1,1(X) . Equals F(x0), . . . , F(xd−1)

This can also be computed in O(M(d) log d) operations. We note that the con-
cept of a polynomial GCD over Z/nZ is not well-defined when n is composite,
as Montgomery’s example

gcd(X2 + 9X + 8, 2X + 9) (mod 35)

shows. Applying the Euclidean algorithm leads to the problem of dividing
2X + 9 by 14, but 14 is not invertible in Z/35Z. Fortunately this works to
our advantage, since the fact that 14 is not invertible means that gcd(14, 35)
gives a factor of 35.

Montgomery’s POLYGCD algorithm is an optimized variant of the sub-
quadratic algorithm for polynomial GCDs presented in [1, 8.9]. The algorithm
is based on two ideas: the GCD can be computed quickly from the two poly-
nomials’ quotient sequence (defined below), and computing the quotient of
two polynomials of nearly equal degrees requires only a few of their highest
coefficients.

Given two polynomials f (X), g(X) over a field K, deg(f) ≥ deg(g), define
their remainder sequence as r0(X) = f (X), r1(X) = g(X), ri(X) = ri−2(X) mod
ri−1(X) for 2 ≤ i ≤ k, with rk(X) = 0 so that rk−1(X) = gcd(f (X), g(X)),
and their quotient sequence as qi(X) = bri−2(X)/ri−1(X)c for 2 ≤ i ≤ k. Thus
ri(X) = ri−2(X) − qi(X)ri−1(X), and for 0 ≤ i ≤ j

8

(
r j(X)

r j+1(X)

)
= Ai, j

(
ri(X)

ri+1(X)

)
(8.4)

with

Ai, j =

j∏
`=i

(
0 1
1 −q`(X)

)
. (8.5)

From the quotient sequence we can evaluate the product in (8.5) quickly with a
product tree algorithm similar to Algorithm 1 on page 5, but operating on 2×2
matrices of polynomials, and obtain the desired GCD with the matrix-vector
product (8.4).

The quotient of two polynomials f (X), g(X) can be computed from their
high-order coefficients b f (X)/Xic and bg(X)/Xic if i ≤ 2 deg(g) − deg(f) [1,
Lemma 8.6]. We note that in the remainder sequence of two polynomials, suc-
cessive terms typically have degrees differing by 1. This allows computing the
quotient sequence without generating all the O(deg(f)2) coefficients of the full
remainder sequence, a necessary criterion for a sub-quadratic GCD algorithm.

The POLYGCD algorithm uses a HGCD sub-routine which recursively com-
putes approximately the first half of the quotient sequence for two polyno-
mials ri(X), ri+1(X) and collects the corresponding product matrix Ai, j (with
j ≈ (k + i)/2) as in (8.5), k being the length of the remainder sequence. With
this matrix, the corresponding r j(X), r j+1(X) are computed via (8.4) and HGCD
is used again. This process iterates until rk−1(X) = gcd(f (X), g(X)) is reached.

Montgomery’s PhD dissertation includes the algorithm and a proof of its
correctness [12, 3.8], analysis of its running time [12, 3.9], and proves that if
the algorithm is applied to polynomials defined over a ring Z/nZ which is not
a field, it will either compute the correct GCD or discover a proper factor of n.

With the current state of the art, the POLYEVAL variant seems faster (by
a small constant factor), but requires more space – Θ(d log d) coefficients in
Z/nZ, instead of only O(d) for POLYGCD, although the latter has a relatively
large proportionality constant. When storing the product tree of G(X) on disk,
POLYEVAL uses both less main memory and less CPU time, usually making
it the preferred choice.

For ways of performing fast polynomial multiplication in (Z/nZ)[X], we re-
fer to [17]. Montgomery [12] suggested performing several FFTs modulo small
primes – chosen so that finding a suitable primitive root of unity as needed for
the FFT is easy – and then recovering the coefficients by the Chinese Remain-
der Theorem. Another approach is to use the “Kronecker-Schönhage trick” [7,
pg. 44], which encodes polynomials as integers.

FFT extension for algebraic-group factorization algorithms 9

8.2.4 Choice of points of evaluation

Stage two discovers a factor p if, for some σ ∈ S and τ ∈ T , xσ = xτ (mod p).
The x-coordinate of a point and its inverse are identical; thus the factor is found
if σQ = ±τQ on Ea,b mod p, or (σ ± τ)Q = OE mod p. Let o = ord(Q) on
Ea,b mod p, then stage two finds the factor if σ ± τ ≡ 0 (mod o). We assume
that o has no small prime factors, as Q = kP where k is the product of primes
and prime powers ≤ B1. We also assume o is prime; if it is composite, then it
is very likely too large to be found. Thus it is sufficient to choose T = { j : 0 <
j < d/2, gcd(j, d) = 1}, assuming even d, as all primes in (B1, B2] can then be
written as either σ − τ or σ + τ with σ ∈ S , τ ∈ T .3 This way, the set T has
only half the size, reducing the degree of the polynomial F(X) accordingly.

Using powers
In the context of the p − 1 and p + 1 methods, Montgomery [11] suggested
computing (using our present notation) not σQ and τQ, but σ2Q and τ2Q,
producing a match if (σ2 − τ2) ≡ 0 (mod o), so that these algorithms likewise
need only a set T of half the size, even though in their respective group, an
element and its inverse do not have an identical residue. The scalar values have
approximately twice the bit-length, so the cost of computing multiples of Q
approximately doubles, but this is easily offset by having to compare only half
as many pairs for a match.

The first author and Suyama extended the idea to allowing higher powers
than 2. When using σkQ and τkQ, k ≥ 1, in the context of ECM, a factor p is
found if σk − τk ≡ 0 (mod o) or σk + τk ≡ 0 (mod o). With prime o, this is
equivalent to (σ

τ
)2k − 1 ≡ 0 (mod o).

The polynomial X2k −1 factors into a total of ν(2k) cyclotomic polynomials,
where ν(2k) is the number of divisors of 2k; the two linear factors generate the
primes in (B1, B2], but the polynomial factors of higher degree may be divisible
by primes larger than B2. A naïve analysis estimates the probability that a (not
too large) prime o > B2 occurs as a divisor of some σk − τk or σk + τk as
1 − (1 − (ν(2k) − 2)/o)|S ||T |.

The polynomial Xk − 1 (mod o), o prime, o , k, has exactly gcd(o − 1, k)
roots. This leads to a "clustering" effect for the primes greater than B2 gener-
ated by the Brent-Suyama extension using k-th powers: for primes congruent
to 1 (mod 2k), we have 2k roots, causing such primes to occur very frequently
as divisors of some σ2k − τ2k. For primes congruent to −1 (mod 2k), we have
only 2 roots, belonging to the two linear cyclotomic factors which generate
the primes up to (and perhaps a few slightly larger than) B2, and therefore us-

3 To hit all primes up to B2, the set S should now contain all multiples of d up to B2 + d/2.

10

ing σkQ, τkQ instead of σQ, τQ does not help for such primes. Thus, primes o
where gcd(o−1, k) is large are over-represented, while primes where this GCD
is small are under-represented.

Using Dickson polynomials
In his PhD dissertation, Montgomery investigated which other functions can
be used in place of powers and found that Dickson polynomials Dk,α(X) of de-
gree k have favourable properties. Like powers, Dk,α(X)−Dk,α(Y) and Dk,α(X)+
Dk,α(Y) have a total of ν(2k) irreducible polynomial factors between them.
The advantage of using Dickson polynomials for stage two is that Dk,α − z ≡
0 (mod o) may have gcd(o − 1, k) or gcd(o + 1, k) roots, depending on the
quadratic character of z2 − 4αk. As σ and τ range over S and T , respectively,
both cases occur roughly equally often, giving an average number of roots of(
gcd(o − 1, k) + gcd(o + 1, k)

)
/2. This largely avoids the aforementioned clus-

tering effect.
Montgomery [12, Chap. 5] gives a detailed analysis of both powers and

Dickson polynomials for stage two of ECM. He also describes how to compute
the required multiples of Q efficiently via finite differences tables.

As an example of the efficacy of the various choices, we give here the ex-
pected number of curves required to find a factor p of about 60 decimal digits,
as computed by GMP-ECM, which takes into account the effect of the Brent-
Suyama extension with powers or Dickson polynomials. The recommended
parameters for finding 60-digit factors are B1 = 2.6 · 108, B2 ≈ 3.18 · 1012, and
using Dickson polynomials of degree 30.

Polynomial X1 X30 D30,−1(X)
Expected number of curves 54038 48508 47888

As can be seen, the expected number of curves is 12.8% larger when not us-
ing the Brent-Suyama extension (case X1) than with default parameters. When
using the power X30 instead of the Dickson polynomial, the expected number
of curves is only 1.3% larger, but as using powers or Dickson polynomials of
equal degree has identical computational cost, the latter are always preferable.

8.2.5 A numerical example

We give a numerical example to illustrate the effectiveness of ECM with an
FFT extension for stage two.

The Mersenne number 21163 − 1 has “small” factors p12 = 848181715001,
p21 = 337097300570078978047, and the quotient N = (21163 − 1)/(p12 p21) is
a 318-digit composite. In April 2010, Joppe Bos, Thorsten Kleinjung, Arjen

FFT extension for algebraic-group factorization algorithms 11

Lenstra and Peter Montgomery factored N using ECM with an FFT extension
for stage two, using about 5 ·104 curves with B1 = 3 ·109, B2 = 1014 (stage one
was performed on a Playstation 3 [4]). They found that N = p73 · p246, where

p73 = 1042816042941845750042952206680089794
415014668329850393031910483526456487

is a 73-digit prime, and p246 = 4201 · · · 5263 is a 246-digit prime. The lucky
elliptic curve E was defined by Suyama’s parameter σ = 3000085158, and had
group order

g = 22 · 32 · 5 · 23 · 1429 · 28229 · 139133 · 249677·
389749 · 15487861 · 47501591 · 111707179 · g2 · g1,

where the two largest prime factors of g are g1 = 13007798103359 and
g2 = 431421191. Note that g1/B1 ≈ 4336.

8.3 FFT extension for the p − 1 and p + 1 methods

The p−1 and p+1 methods can be seen as a “special case” of the ECM method,
where computations are done in the multiplicative ring of integers modulo n
instead of in the group defined by a pseudo-random elliptic curve. These meth-
ods work well when n has a factor p such that p − 1 (or p + 1, respectively)
is smooth. The p − 1 method was invented by Pollard in 1974 [15], and the
p + 1 method by Williams in 1982 [16].4 As for ECM, those methods admit
a stage two which reduces to computing values Qσ and Qτ in the correspond-
ing (multiplicatively written) group, where Q was computed in stage one, with
σ, τ being taken from two sets S and T , respectively, and checking for a match
modulo p between all pairs of Qσ and Qτ by using fast polynomial arithmetic.

One main difference with ECM is that, if say S is comprised of integers
in an arithmetic progression, then for p − 1 the values Qσ mod n form a ge-
ometric progression modulo n. In that case algorithms exist for computing
G(X) =

∏
σ∈S (X − Qσ) in O(M(d)) operations instead of O(M(d) log d) as

in the generic case. In [13] Montgomery and the second author describe how
those algorithms can be tuned for p − 1 and p + 1. We give a brief overview
below for the p−1 case, and we refer the reader to [13] for the p + 1 case. This
FFT continuation was already suggested by Pollard [15], and using polynomial

4 The p + 1 method was discovered independently by the first author of this chapter in 1981 and
used to find factors of Mersenne numbers, e.g., the 21-digit factor
p = 122551752733003055543 of 2439 − 1, see [5]. Here p − 1 = 2.439.139580583978363389
is not nearly as smooth as p + 1 = 23.3.19.4673.13171.36037.121169, so the p − 1 method is
less effective than the p + 1 method.

12

evaluation along a geometric progression was implemented by Montgomery
and Silverman [14].

Assume n has a factor p such that p − 1 is divisible by all primes up to the
stage one limit B1, except a prime factor h = σ+τwhereσ ∈ S and τ ∈ T . Then
Qh = 1 mod p, thus Qσ = Q−τ mod p. If we compute F(X) =

∏
τ∈T (X −Q−τ)

and G(X) =
∏

σ∈S (X − Qσ), then the resultant of F and G will yield (up to
sign)

h =
∏
σ∈S

∏
τ∈T

(Qσ − Q−τ);

thus h will be divisible by p, and gcd(h, n) will reveal p.
We describe here a simplified version of the algorithm in [13]. It chooses a

highly composite integer P > 2, and an even convolution length ` with 0 <

φ(P) < `. For best performance, ` should be roughly twice as large as φ(P).
We choose T to be a set of representatives of (Z/PZ)∗ which we can factor

into a sum of sets, where each set is an arithmetic progression of prime length,
centered at zero. We use the identities (Z/(mn)Z)∗ = n(Z/mZ)∗ + m(Z/nZ)∗

if gcd(m, n) = 1 and (Z/pkZ)∗ = (Z/pZ)∗ +
∑k−1

i=1 pi(Z/pZ) for prime p. An
arithmetic progression Rn = {2i − n − 1 : 1 ≤ i ≤ n} can be factored into a sum
of arithmetic progressions of prime length via Rmn = Rm + mRn. We use Rp−1

as the set of representatives for (Z/pZ)∗ for odd p.
As a small example one might take P = 105 were we use the factoriza-

tion 35{−1, 1} + 21{−3,−1, 1, 3} + 15{−5,−3,−1, 1, 3, 5} as representatives of
(Z/105Z)∗. We can further factor it into the sum of sets

T = 35{−1, 1} + 42{−1, 1} + 21{−1, 1} + 45{−1, 1} + 15{−2, 0, 2}, (8.6)

each of prime length. This factorization of representatives of (Z/PZ)∗ into a
sum of small sets is used to build the polynomial F(X) by linear recursion,
which is therefore faster than the more general product tree computed by Al-
gorithm 1 on page 5. We will usually refer to T in fully factored represent-
ation, i.e., as a sum of arithmetic progressions of prime length. A reciprocal
Laurent polynomial (RLP) f (X) of degree 2d is a power series of the form∑d

i=0 fi(X + X−1) with fd , 0. The elements in T are used to generate the
roots of a reciprocal Laurent polynomial F(X) which will therefore have de-
gree t = φ(P). This polynomial will be evaluated along a geometric progres-
sion. These two steps are described below.

8.3.1 Constructing F(X) by scaling and multiplying

The reason why we require T to be symmetric around zero is that the p + 1
method constructs an element of Z/nZ of the form R = Q+ Q−1 where Q is not

FFT extension for algebraic-group factorization algorithms 13

explicitly known and may be in a quadratic extension of Z/nZ. The use of RLPs
allows performing all arithmetic in stage two of the p + 1 method referencing
only R, and never Q, by the use of Chebyshev polynomials Vk(X) ∈ Z[X] which
satisfy Vk(X + 1/X) = Xk + 1/Xk, see [13].

With P > 2, t = φ(P) is even, so it is possible to include an arithmetic
progression of length 2 in the set T . The RLP F(X) is constructed such that its
roots are Qτ for τ ∈ T , i.e., using the fact that T is symmetric around 0,

F(X) =
∏

τ∈T,τ>0

(
(X − Qτ)(X − Q−τ)/X

)
=

∏
τ∈T,τ>0

(X + X−1 − Vτ(R)).

Each term in the product is an RLP, thus F(X) is an RLP, so only t/2 + 1 of its
coefficients need to be stored.

For the purpose of this exposition, we will assume the p−1 method where Q
is known, as this simplifies the algorithm for constructing F(X). It can be found
in [13] how to construct F(X) in a way that works for both the p − 1 and p + 1
methods.

We start the recursive construction of F(X) with one of the summands of
cardinality 2 in T , in our example with {−35, 35}, which ensures we obtain an
RLP of degree 2 (where the degree of an RLP is the maximal degree difference
between its monomials):

F1(X) = X + X−1 − V35(R).

Next, we process all summands of odd cardinality in T , in our example {−30, 0, 30},
i.e., from F1(X) we construct the RLP

F2(X) =
∏

τ∈{−35,35}+{−30,0,30},τ>0

X + X−1 − Vτ(R)

of degree 6 by scaling F1(X) and multiplying:

F2(X) = F1(Q−30X)F1(X)F1(Q30X).

The summands of odd cardinality in T are processed early as they are more
difficult than the cardinality 2 case because they require products of RLPs of
unequal degrees, so we prefer to handle them while the degrees of the RLPs
involved are small.

Finally, the remaining summands of cardinality 2 in T are processed. Each
one doubles the degree of the resulting RLP. If the i-th summand that we pro-
cess is {−k, k}, we compute

Fi(X) = Fi−1(Q−kX)Fi−1(QkX);

14

with m summands in T (in our example, m = 5), Fm(X) = F(X), see Figure 8.3
on page 15.

As P is chosen to be highly composite, φ(P) and thus t contain many fac-
tors of 2 so that the cost of building F(X) is dominated by processing sets of
cardinality 2. The total cost is therefore in O(M(d/2) + M(d/4) + M(d/8) +

. . . + M(1)) = O(M(d)), smaller by a factor of order log d than the cost of the
generic product tree in Algorithm 1 on page 5.

For the p+1 method, Q is not explicitly known, but the arithmetic for build-
ing F(X) by scaling and multiplication can be reformulated entirely in terms
of Chebyshev polynomials which reference only R = Q + Q−1. Multiplication
of RLPs can be performed efficiently via weighted FFTs, see [13] for details.

8.3.2 Evaluation of a polynomial along a geometric progression

After F(X) is built from the roots Qτ, τ ∈ T , we evaluate it along the geometric
progression Qσ, σ ∈ S , with S = {kP : k ∈ N, B1 ≤ kP ≤ B2}. Note that this
choice of S may not cover quite all the primes in (B1, B2], depending on the
set T , see [13, §5].

A polynomial can be evaluated along a geometric progression with Bluestein’s
algorithm [3], related to the chirp-z transform which is a generalization of the
length-` DFT to points of evaluation along a geometric progression other than
powers of an `-th primitive root of unity ω`.

For a polynomial F(X) of degree t with coefficient vector in monomial basis,
the length-` DFT of the coefficient vector is

f̄k =
∑
0≤i≤t

fiωik
` for 0 ≤ k < `

= F(ωk
`),

i.e., it evaluates the polynomial along the geometric progression ωk
` for 0 ≤

k < `. The chirp-z transform allows us to change these points of evaluation to
other geometric progressions.

For simplicity, we show how to evaluate F(QkP) for successive values of

FFT extension for algebraic-group factorization algorithms 15

F(X) = F5(X)

F4(Q−45X) F4(Q45X)

F4(X)

F3(Q−21X) F3(Q21X)

F3(X)

F2(Q−42X) F2(Q42X)

F2(X)

F1(Q−30X) F1(X) F1(Q30X)

F1(X) = (X − Q−35)(X − Q35)/X

multiply

sca
le

Figure 8.3 Example of computing a reciprocal Laurent polynomial F(X) of
degree 24 by scaling and multiplying. Each scaling/multiplication step corre-
sponds to one summand in the set T = {−35, 35} + {−42, 42} + {−21, 21} +
{−45, 45} + {−30, 0, 30}.

k = 0, 1, . . . , s − 1 with Bluestein’s algorithm. We write

F(QkP) =
∑
0≤i≤t

fiQikP

=
∑
0≤i≤t

fiQikPQ(i2+k2)P/2Q−(i2+k2)P/2

= Qk2P/2
∑
0≤i≤t

fiQi2P/2Q−(i2−2ik+k2)P/2

= Qk2P/2
∑
0≤i≤t

fiQi2P/2Q−(i−k)2P/2

= Qk2P/2F̃(X)W(X)[k] for 0 ≤ k < s

16

where F̃(X) is a polynomial of degree t with coefficients f̃i = fiQi2P/2, 0 ≤ i ≤ t,
and W(X) is a power series with coefficients wi = Q−i2P/2 for −s < i ≤ t.
The desired values of F(QkP) (up to the factors Qk2P/2, which are harmless for
our purpose but could be divided out) for 0 ≤ k < s occupy the coefficients
0, . . . , s − 1 in the product; these are not affected by wrap-around if a cyclic
convolution of length at least s + t is used. The method is readily adapted to
sets S which do not start at 0.

This demonstrates how a multi-point evaluation of a polynomial of degree t
along a geometric progression of length s can be effected by a single cyclic
convolution product of length ` = s + t; assuming s ≈ t, this has complex-
ity in O(M(t)), faster by a factor of order log(t) than the general multi-point
evaluation in Algorithm 2 on page 7.

The bound B2 and thus the number of points of evaluation s can be chosen
so that ` is a power of 2, allowing efficient use of FFT-based algorithms for the
cyclic convolution.

For the p + 1 method, where the value of Q is not explicitly known, some
of the arithmetic needs to be performed in a quadratic extension of Z/nZ, in-
creasing computational cost and memory requirements. More technical details,
including memory allocation savings, can be found in [13]. This algorithm is
implemented in GMP-ECM both for p−1 and p+1. Examples of large factors
found using this FFT extension are the 55-digit factor

p = 4090528046283359170676873346935001420047744892805041229

of 8190141 − 1 found by A. Reich in March 2015, where the largest factor of
p − 1 is the 15-digit prime 804102884120257; and the 60-digit factor

q=725516237739635905037132916171116034279215026146021770250523

of the Lucas number L2366, found by Montgomery and the second author in
October 2007, with largest factor of q+1 the 15-digit prime 483576618980159.

Bibliography
[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, MA, 1974. (Cited on pages 7 and 8.)
[2] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves.

Mathematics of Computation, 82(282):1139–1179, 2013. (Cited on page 1.)
[3] L. Bluestein. A linear filtering approach to the computation of discrete Fourier

transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–455,
1970. (Cited on page 14.)

[4] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. Efficient SIMD
arithmetic modulo a Mersenne number. In E. Antelo, D. Hough, and P. Ienne,
editors, IEEE Symposium on Computer Arithmetic – ARITH-20, pages 213–221.
IEEE Computer Society, 2011. (Cited on page 11.)

[5] R. P. Brent. New factors of Mersenne numbers (preliminary report), II. AMS
Abstracts, 3:132, 82T–10–22, 1982. (Cited on page 11.)

[6] R. P. Brent. Some integer factorization algorithms using elliptic curves. Australian
Computer Science Communications, 8:149–163, 1986. (Cited on page 1.)

[7] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge Uni-
versity Press, 2010. (Cited on page 8.)

[8] H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44:393–422, July 2007. (Cited on page 1.)

[9] J. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, Cambridge, 1999. http://www-math.uni-paderborn.de/mca. (Cited
on page 4.)

[10] H. W. Lenstra Jr. Factoring integers with elliptic curves. Annals of Mathematics,
126(3):649–673, 1987. (Cited on page 1.)

[11] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987. (Cited on pages 1
and 9.)

[12] P. L. Montgomery. An FFT extension of the elliptic curve method of factorization.
PhD thesis, University of California, 1992. (Cited on pages 1, 2, 5, 8, and 10.)

[13] P. L. Montgomery and A. Kruppa. Improved stage 2 to p±1 factoring algorithms.
In A. J. van der Poorten and A. Stein, editors, Algorithmic Number Theory –
ANTS-VIII, volume 5011 of Lecture Notes in Computer Science, pages 180–195.
Springer, 2008. (Cited on pages 1, 11, 12, 13, 14, and 16.)

[14] P. L. Montgomery and R. D. Silverman. An FFT extension to the p − 1 factor-
ing algorithm. Mathematics of Computation, 54(190):839–854, 1990. (Cited on
pages 1, 2, and 12.)

[15] J. M. Pollard. Theorems on factorization and primality testing. Proceedings of
the Cambridge Philosophical Society, 76:521–528, 1974. (Cited on pages 1, 2,
and 11.)

[16] H. C. Williams. A p + 1 method of factoring. Mathematics of Computation,
39(159):225–234, 1982. (Cited on pages 2 and 11.)

[17] P. Zimmermann and B. Dodson. 20 years of ECM. In F. Hess, S. Pauli, and
M. E. Pohst, editors, Algorithmic Number Theory – ANTS-VII, volume 4076 of
Lecture Notes in Computer Science, pages 525–542. Springer-Verlag. Erratum:

http://www-math.uni-paderborn.de/mca

18 Bibliography

http://www.loria.fr/~zimmerma/papers/, 2006. (Cited on pages 1, 2, 3,
and 8.)

http://www.loria.fr/~zimmerma/papers/

Subject index

Bluestein’s algorithm, 14, 15
Brent-Suyama extension, 9

Chebyshev polynomial, 13, 14
Chinese remainder theorem, 8

DFT, see discrete Fourier transform
Dickson polynomial, 10
differential addition

chain, 1
discrete Fourier transform, 14

ECM, see elliptic curve method of
factorization

elliptic curve
method of factorization, see elliptic curve

method of factorization
elliptic curve method of factorization, 1

GMP-ECM, 5, 10, 16

fast Fourier transform extension, 1, 2
elliptic curve method, 2–11
p − 1 and p + 1 method, 11–16

fast polynomial arithmetic extension, see fast
Fourier transform extension

GMP-ECM, 5, 10, 16

Kronecker-Schönhage trick, 8

Laurent series, 5
Lenstra’s ECM, see elliptic curve method of

factorization
Lucas

number, 16

Mersenne number, 10, 11
Montgomery curve, 1

p − 1 method, 1, 11
p + 1 method, 11
Pollard’s p − 1 method, see p − 1 method
POLYEVAL algorithm, 4

POLYGCD algorithm, 6
polynomial GCD, 6
polynomial modular reduction, 5
product tree algorithm, 3

reciprocal Laurent polynomial, 12–14
RLP, see reciprocal Laurent polynomial

Suyama’s parametrization, 2, 11

Weierstrass equation, 1
Williams’ p + 1 method, see p + 1 method

	FFT extension for algebraic-group factorization algorithms
	Introduction
	FFT extension for the elliptic curve method
	The product tree algorithm
	The POLYEVAL algorithm
	The POLYGCD algorithm
	Choice of points of evaluation
	A numerical example

	FFT extension for the p-1 and p+1 methods
	Constructing F(X) by scaling and multiplying
	Evaluation of a polynomial along a geometric progression

	Bibliography
	Subject index

