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Polynomials over finite fields

We consider univariate polynomials P(x) over a finite field F . The
algorithms apply, with minor changes, for any small positive
characteristic, but since time is limited we assume that the
characteristic is two, and F = Z/2Z = GF(2).

P(x) is irreducible if it has no nontrivial factors. If P(x) is irreducible of
degree r , then [Gauss]

x2r
= x mod P(x).

Thus P(x) divides the polynomial Pr (x) = x2r − x . In fact, Pr (x) is the
product of all irreducible polynomials of degree d , where d runs over
the divisors of r .
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Counting irreducible polynomials
Let N(d) be the number of irreducible polynomials of degree d . Thus∑

d |r

dN(d) = deg(Pr ) = 2r .

By Möbius inversion we see that

rN(r) =
∑
d |r

µ(d)2r/d .

Thus, the number of irreducible polynomials of degree r is

N(r) =
2r

r
+ O

(
2r/2

r

)
.

Since there are 2r polynomials of degree r , the probability that a
randomly selected polynomial is irreducible is ∼ 1/r → 0 as r → +∞.
Almost all polynomials over (fixed) finite fields are reducible.
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Analogy
Polynomials of degree r are analogous to integers of r digits. By the
prime number theorem, the number of r -digit primes in base b is about∫ br

br−1

dt
ln t

=

(
br − br−1

r ln b

)(
1 + O

(
1
r

))
.

The Riemann Hypothesis implies an error term O(rbr/2) as r → +∞
for the integral on the left [von Koch].

The [conditional] error bound for integers is not quite as good as the
[proved] error bound for finite fields. Littlewood’s 1914 result is

ψ(x)− x = Ω±(x1/2 log log log x)

so presumably

π(x)− Li(x) = Ω±(x1/2 log log log x/ log x)

and we can not expect to get as good a bound for integers as for finite
fields, even if RH is true.
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Representing finite fields

Irreducible polynomials over finite fields are useful in several
applications. As one example, observe that, if P(x) is an irreducible
polynomial of degree r over GF(2), then

GF(2)[x ]/P(x) ∼= GF(2r ).

In other words, the ring of polynomials mod P(x) gives a
representation of the finite field with 2r elements.

If, in addition, x is a generator of the multiplicative group, that is if every
nonzero element of GF(2)[x ]/P(x) can be represented as a power of
x , then P(x) is said to be primitive.
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Primitive polynomials and shift registers

Primitive polynomials can be used to obtain linear feedback shift
registers (LFSRs) with maximal period 2r − 1, where r is the degree of
the polynomial. These have applications to stream ciphers and
pseudo-random number generators.

Testing primitivity can be difficult, because we need to know the prime
factorization of 2r − 1. Of course, this is trivial if 2r − 1 is prime (a
Mersenne prime).

The number of primitive polynomials of degree r over GF(2) is

φ(2r − 1)

r
≤ N(r) ≤ 2r − 2

r
,

with equality when 2r − 1 is prime.
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Sparsity

In applications we often want P(x) to be sparse, that is to have only a
small number of nonzero coefficients. Ideally P(x) should be a
trinomial

x r + xs + 1 , r > s > 0 .

However, for the application to random number generators, sparsity is
a two-edged sword, because it implies unwanted correlations. For
example, a random number generator based on the trinomial
x r + xs + 1 has xn depending on (xn−r , xn−s). This was the motivation
for my random number generator xorgens (the topic of another talk).

Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 8 / 64



Mersenne primes

A Mersenne prime is a prime of the form 2n − 1, for example
3,7,31,127,8191, . . .

There are conjectured to be infinitely many Mersenne primes. The
number for n ≤ N is conjectured to be of order log N.

The GIMPS project is searching systematically for Mersenne primes.
So far 47 Mersenne primes are known, the largest being

243112609 − 1 .

If 2n − 1 is prime we say that n is a Mersenne exponent. A Mersenne
exponent is necessarily prime, but not conversely (211 − 1 = 23× 89).
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Part 1: Testing irreducibility
Since irreducible polynomials are “rare” but useful, we are interested in
algorithms for testing irreducibility.

P(x) of degree r > 1 is irreducible iff

x2r
= x mod P(x)

and, for all prime divisors d of r , we have

GCD
(

x2r/d − x ,P(x)
)

= 1 .

The second condition is required to rule out the possibility that P(x) is
a product of irreducible factors of some degree(s) k = r/d , d |r .
This condition does not significantly change anything, so let us
assume that r is prime. (In our examples r is a Mersenne exponent, so
necessarily prime.) Then P(x) is irreducible iff

x2r
= x mod P(x).
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Another assumption

All the algorithms involve computations mod P(x), that is, in the ring
GF(2)[x ]/P(x).

In the complexity analysis we assume that P(x) is sparse, that is, the
number of nonzero coefficients is small. Thus, reduction of a
polynomial mod P(x) can be done in linear time.

The algorithms to be discussed still work without this assumption, but
the complexity analysis no longer applies because more time is spent
in the reductions mod P(x).

In applications P(x) is often a trinomial

P(x) = x r + xs + 1 , r > s > 0 .

although sometime pentanomials xp + xq + x r + xs + 1 are considered.
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Irreducible and primitive trinomials

We have given formulas for the number of irreducible or primitive
polynomials of degree r over GF(2), but there is no known formula for
the number of irreducible or primitive trinomials.

Since the number of irreducible polynomials N(r) ≈ 2r/r , the
probability that a randomly chosen polynomial of degree r will be
irreducible is about 1/r .

It is plausible to assume that the same applies to trinomials. There are
r − 1 trinomials of degree r , so we might expect O(1) of them to be
irreducible. More precisely, we might expect a Poisson distribution with
some constant mean µ.

This plausible argument is too simplistic, as shown by Swan’s theorem.
On the next slide we state a simplified version of Swan’s Theorem that
is relevant to trinomials.
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Swan’s theorem (Corollary 5)

Theorem

Let r > s > 0, and assume r + s is odd. Then Tr ,s(x) = x r + xs + 1 has
an even number of irreducible factors over GF(2) in the following cases:
a) r even, r 6= 2s, rs/2 = 0 or 1 mod 4.
b) r odd, s not a divisor of 2r , r = ±3 mod 8.
c) r odd, s divisor of 2r , r = ±1 mod 8.
In all other cases x r + xs + 1 has an odd number of irreducible factors.

Other cases: if both r and s are even, then Tr ,s(x) is a square.
If both r and s are odd, apply the Theorem to Tr ,r−s(x).
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Implications of Swan’s Theorem

For r is an odd prime, case (b) of Swan’s Theorem says that the
trinomial has an even number of irreducible factors, and hence must be
reducible, if r = ±3 mod 8, provided we exclude the special cases
s = 2 and r − s = 2.

For prime r = ±1 mod 8, the heuristic Poisson distribution does seem
to apply, with mean µ ≈ 3. Similarly for primitive trinomials, with a
correction factor φ(2r − 1)/(2r − 2).

Historical note
Swan (1962) rediscovered results of Pellet (1878) and Stickelberger
(1897), so the name of the theorem depends on your nationality.
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Testing irreducibility — first algorithm
Our first and simplest algorithm for testing irreducibility is just repeated
squaring:

Q(x)← x;
for j ← 1 to r do

Q(x)← Q(x)2 mod P(x);

if Q(x) = x then
return irreducible

else
return reducible.

The operation Q(x)← Q(x)2 mod P(x) can be performed in time
O(r). The constant factor is small.

Since the irreducibility test involves r squarings, the overall time is
O(r2).
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Polynomial multiplication
Before describing other algorithms for irreducibility testing, we digress
to discuss polynomial multiplication, matrix multiplication, and modular
composition.

To multiply two polynomials A(x) and B(x) of degree (at most) r , the
“classical” algorithm takes time O(r2). There are faster algorithms,
e.g. Karatsuba, Toom-Cook, and FFT-based algorithms.

For polynomials over GF(2), the asymptotically fastest known algorithm
is due to Schönhage. (The Schönhage-Strassen algorithm does not
work in characteristic 2.)

Schönhage’s algorithm runs in time

M(r) = O(r log r log log r) .

In practice, for r ≈ 32 000 000, a multiplication takes about 480 times
as long as a squaring.
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Matrix multiplication
Let ω be the exponent of matrix multiplication, so we can multiply n × n
matrices in time O(nω+ε) for any ε > 0. The best result is Coppersmith
and Winograd’s ω < 2.376, though in practice we would use the
classical (ω = 3) or Strassen (ω = log2 7 ≈ 2.807) algorithm.

Since we are working over GF(2), our matrices have single-bit entries.
This means that the classical algorithm can be implemented very
efficiently using full-word operations (32 or 64 bits at a time).
Nevertheless, Strassen’s algorithm is faster if n is larger than about
1000.

Good in practice is the “Four Russians” algorithm [Arlazarov, Dinic,
Kronod & Faradzev, 1970]. It computes n × n Boolean matrix
multiplication in time O(n3/ log n).

We can use the Four Russians’ algorithm up to some threshold, say
n = 1024, and Strassen’s recursion for larger n, combining the
advantages of both.

Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 17 / 64



Modular composition

The modular composition problem is: given polynomials A(x), B(x),
P(x), compute

C(x) = A(B(x)) mod P(x).

If max(deg(A),deg(B)) < r = deg(P), then we could compute
A(B(x)), a polynomial of degree at most (r − 1)2, and reduce it modulo
P(x). However, this wastes both time and space.

Better is to compute

C(x) =
∑

j≤deg(A)

aj(B(x))j mod P(x)

by Horner’s rule, reducing mod P(x) as we go, in time O(rM(r)) and
space O(r). Using Schönhage’s algorithm for the polynomial
multiplications, we can compute C(x) in time O(r2 log r log log r).
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Faster modular composition

Using an algorithm of Brent & Kung (1978), based on an idea of
Paterson and Stockmeyer, we can reduce the modular composition
problem to a problem of matrix multiplication. If the degrees of the
polynomials are at most r , and m = dr1/2e, then we have to perform m
multiplications of m ×m matrices. The matrices are over the same
field as the polynomials (that is, GF(2) here).

The Brent-Kung modular composition algorithm takes time

O(r (ω+1)/2) + O(r1/2M(r)),

where the first term is for the matrix multiplications and the second
term is for computing the relevant matrices.

Assuming Strassen’s matrix multiplication, the first term is O(r1.904)
and the second term is O(r1.5 log r log log r). Thus, the second term is
asymptotically negligible (but maybe not in practice).
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Using modular composition
Let Ak (x) = x2k

mod P(x). Then a modular composition algorithm can
be used to compute Ak (Am(x)) mod P(x). Since

Ak (Am(x)) =
(

x2m
)2k

mod P(x) = Am+k (x),

we can compute x2r
mod P(x) with about log2(r) modular

compositions instead of r squarings.

For example, if r = 17, we have
(all computations in GF(2)[x ]/P(x)):

A1(x) = x2, (trivial)
A2(x) = A1(A1(x)) = x4, (≡ 1 squaring)
A4(x) = A2(A2(x)) = x16, (≡ 2 squarings)
A8(x) = A4(A4(x)) = x256, (≡ 4 squarings)
A16(x) = A8(A8(x)) = x216

, (≡ 8 squarings)
A17(x) = A16(x)2 = x217

, (1 squaring)

using only 4 modular composition steps.
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Second algorithm

To summarise, we can compute Ar (x) = x2r
mod P(x) by the following

recursive algorithm that uses the binary representation of r (not that
of 2r ):

if r = 0 then
return x

else if r even then
{U(x)← Ar/2(x);
return U(U(x)) mod P(x)}

else
return Ar−1(x)2 mod P(x).

The algorithm takes about log2(r) modular compositions. Hence, if
Strassen’s algorithm is used in the Brent-Kung modular composition
algorithm, we can test irreducibility in time O(r1.904 log r).
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Third algorithm

Recently, Kedlaya and Umans (2008) proposed an asymptotically fast
modular composition algorithm that runs in time Oε(r1+ε) for any ε > 0.

The algorithm is complicated, involving iterated reductions to multipoint
multivariate polynomial evaluation, multidimensional FFTs, and the
Chinese remainder theorem.

For details, see the papers on Umans’s web site
http://www.cs.caltech.edu/~umans/research.htm

Using the Kedlaya-Umans fast modular composition instead of the
Brent-Kung reduction to matrix multiplication, we can test irreducibility
in time Oε(r1+ε).

Warning: the “Oε(· · · )” notation indicates that the implicit constant
depends on ε. In this case, it is a rather large and rapidly increasing
(probably exponential) function of 1/ε.
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Comparison of the algorithms

So the last shall be first,
and the first last

Matthew 20:16

The theoretical time bounds predict that the third algorithm should be
the fastest, and the first algorithm the slowest. However, this is only for
sufficiently large degrees r .

In practice, for r up to at least 4.3× 107, the situation is reversed! The
first algorithm is the fastest, and the third algorithm is the slowest.
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Parallel implementation

A minor drawback of the first (squaring) algorithm is that it is hard to
speed up on a parallel machine. The other algorithms are much easier
to parallelise.

Fortunately, this is not so relevant when we are considering many
trinomials, as we can let different processors of a parallel machine
work on different trinomials in parallel.
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Example, r = 32 582 657
Following are actual or estimated times on a 2.2 Ghz AMD Opteron
275 for r = 32 582 657 (a Mersenne exponent).

1 Squaring (actual): 64 hours
2 Brent-Kung (estimates):

I classical: 265 hours (19% mm)
I Strassen: 254 hours (15% mm)
I Four Russians: 239 hours (10% mm)

(plus Strassen for n > 1024)
3 Kedlaya-Umans (estimate): > 1010 years

The Brent-Kung algorithm would be the fastest if the matrix
multiplication were dominant; unfortunately the O(r1/2M(r)) overhead
term dominates.

Since the overhead scales roughly as r1.5, we estimate that the
Brent-Kung algorithm would be faster than the squaring algorithm for
r > 7× 108 (approximately).
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Note on Kedlaya-Umans

Éric Schost writes:
The Kedlaya-Umans algorithm reduces modular

composition to the multipoint evaluation of a multivariate
polynomial, assuming the base field is large enough.

The input of the evaluation is over Fp; the algorithm works
over Z and reduces mod p in the end. The evaluation over Z
is done by CRT modulo a bunch of smaller primes, and so on.
At the end-point of the recursion, we do a naive evaluation on
all of Fpm , where p is the current prime and m the number of
variables. So the cost here is ≥ pm.

[Now he considers choices of m in the case
r = 32 582 657; all give pm ≥ 1.36× 1027.]

Our estimate of > 1010 years is based on a time of 1 nsec per
evaluation (very optimistic).
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The “best” algorithm
Comparing the second algorithm with the first, observe that the
modular compositions do not all save equal numbers of squarings. In
fact the last modular composition saves br/2c squarings, the
second-last saves br/4c squarings, etc.

Each modular composition has the same cost. Thus, if we can use
only one modular composition, it should be the one that
saves the most squarings.

If we use br/2c squarings to compute x2br/2c
mod P(x), then use one

modular composition (and one further squaring, if r is odd), we can
compute x2r

mod P(x) faster than with any of the algorithms
considered so far, provided r exceeds a certain threshold.

In the example, the time would be reduced from 64 hours to 44 hours,
a saving of 31%.

Doing two modular compositions would reduce the time to 40 hours, a
saving of 37%.
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Computational results
In 2007-8 Paul Zimmermann and I conducted a search for irreducible
trinomials x r + xs + 1 whose degree r is a (known) Mersenne
exponent. Since 2r − 1 is prime, irreducible implies primitive. The
previous record degree of a primitive trinomial was r = 6 972 593.

r s
24 036 583 8 412 642, 8 785 528
25 964 951 880 890, 4 627 670, 4 830 131, 6 383 880
30 402 457 2 162 059
32 582 657 5 110 722, 5 552 421, 7 545 455

Table: Ten new primitive trinomials x r + xs + 1 of degree a Mersenne
exponent, for s ≤ r/2.

We used the first algorithm to test irreducibility of the most difficult
cases. Most of the time was spent discarding the vast majority of
trinomials that have a small factor, using a new factoring algorithm with
good average-case behaviour (the topic of the second half of this talk).
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Part 2: Factoring
The problem of factoring a univariate polynomial P(x) over a finite field
F often arises in computational algebra. An important case is when F
has small characteristic and P(x) has high degree but is sparse (has
only a small number of nonzero terms).

Since time is limited, I will make the same assumptions as in Part 1:
F = GF(2) and P(x) is sparse, typically a trinomial

P(x) = x r + xs + 1, r > s > 0,

although the ideas apply more generally.

The aim is to give an algorithm with good amortized complexity, that is,
one that works well on average. Since we are restricting attention to
trinomials, we average over all trinomials of fixed degree r .

Equivalently, we can use probabilistic language, and assume a uniform
distribution over all trinomials of fixed degree r .
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Simplifications

Square-free factorisation
We assume that P(x) is square-free. This is trivial for trinomials; in
general we can consider P(x)/GCD(P(x),P ′(x)).

Distinct-degree factorization
We only consider distinct-degree factorization. That is, if P(x) has
several factors of the same degree d , the algorithm will produce the
product of these factors. The Cantor-Zassenhaus algorithm can be
used to split this product into distinct factors. This is usually cheap
because in most cases the product has small degree or consists of just
one factor.
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Small factors and certificates
Factor of smallest degree
To simplify the complexity analysis and speed up the algorithm in the
common application of searching for irreducible polynomials, I only
consider the time required to find one nontrivial factor or output
“irreducible”.

Certificates of reducibility
A nontrivial factor (preferably of smallest degree) gives a “reducibility
certificate” that can quickly be checked. For example, if we claim that
there are exactly two primitive trinomials of degree 859433, this
statement can easily be checked using the certificates for degree
859433.

Kumada et al [Math. Comp. 2000] failed to do this, and missed the
primitive trinomial

x859433 + x170340 + 1

because of a bug in their program!
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Factorization in GF(2)[x ]

From now on we write “+” instead of “−” (they are equivalent in
GF(2)[x ]).

As we already mentioned, x2d
+ x is the product of all irreducible

polynomials of degree dividing d . For example,

x23
+ x = x(x + 1)(x3 + x + 1)(x3 + x2 + 1) .

Thus, a simple (slow) algorithm to find a factor of smallest degree of
P(x) is to compute GCD(x2d

+ x ,P(x)) for d = 1,2, . . .. The first time
that the GCD is nontrivial, it contains a factor of minimal degree d . If
the GCD has degree > d , it must be a product of factors of degree d .

If no factor has been found for d ≤ r/2, where r = deg(P(x)), then
P(x) must be irreducible.

Note that x2d
should not be computed explicitly; instead compute

x2d
mod P(x) by repeated squaring.
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Application to trinomials

Some simplifications are possible when P(x) = x r + xs + 1 is a
trinomial.

We can skip the case d = 1 because a trinomial can not have a
factor of degree 1.
Since x r P(1/x) = x r + x r−s + 1, we only need consider s ≤ r/2.
In the cases of interest (r and s not both even), P(x) is squarefree.
By applying Swan’s theorem, we can usually show that the
trinomial under consideration has an odd number of factors; in this
case we only need check d ≤ r/3.
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Complexity of squares and multiplications

In Part 1 we already considered the complexity of computing squares
and products in GF(2)[x ]/P(x). Recall that, with our usual assumption
that P(x) is sparse, squaring can be performed in time

S(r) = Θ(r)� M(r)

and multiplication can be performed in time

M(r) = O(r log r log log r) .

In the complexity estimates we assume that M(r) is a sufficiently
smooth and well-behaved function.
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Complexity of GCD
For GCDs we use a sub-quadratic algorithm that runs in time
G(r) = O(M(r) log r).

More precisely,
G(2r) = 2G(r) + O(M(r)) ,

so
M(r) = O(r log r log log r)⇒ G(r) = Θ(M(r) log r) .

In practice, for r ≈ 2.4× 107 and our implementation on a 2.2 Ghz
Opteron,

S(r) ≈ 0.005 seconds,

M(r) ≈ 2 seconds,

G(r) ≈ 80 seconds,

M(r)/S(r) ≈ 400 ,

G(r)/M(r) ≈ 40 .
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Avoiding GCD computations
In the context of integer factorization, Pollard (1975) suggested a
blocking strategy to avoid most GCD computations and thus reduce
the amortized cost; von zur Gathen and Shoup (1992) applied the
same idea to polynomial factorization.

The idea of blocking is to choose a parameter ` > 0 and, instead of
computing

GCD(x2d
+ x ,P(x)) for d ∈ [d ′,d ′ + `) ,

compute
GCD(p`(x2d′

, x),P(x)) ,

where the interval polynomial p`(X , x) is defined by

p`(X , x) =
`−1∏
j=0

(
X 2j

+ x
)
.

In this way we replace ` GCDs by one GCD and `− 1 multiplications
mod P(x).
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Backtracking

The drawback of blocking is that we may have to backtrack if P(x) has
more than one factor with degrees in [d ′,d ′ + `), so ` should not be too
large. The optimal strategy depends on the expected size distribution
of factors and the ratio of times for GCDs and multiplications.
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New idea - multi-level blocking

We introduce a finer level of blocking to replace most multiplications by
squarings, which speeds up the computation in GF(2)[x ]/P(x) of the
interval polynomials pm(x2d

, x), where

pm(X , x) =
m−1∏
j=0

(
X 2j

+ x
)

=
m∑

j=0

xm−jsj,m(X ) ,

sj,m(X ) =
∑

0≤k<2m, w(k)=j

X k ,

and w(k) denotes the Hamming weight of k .

Note that sj,m(X 2) = sj,m(X )2 in GF(2)[x ]/P(x). Thus, pm(x2d
, x) can

be computed with cost m2S(r) if we already know sj,m(x2d−m
) for

0 < j ≤ m.

Richard Brent (ANU) Factoring Polynomials over Finite Fields 27 August 2009 38 / 64



Effect of multi-level blocking

Using multi-level blocking, we replace m multiplications and m
squarings by one multiplication and m2 squarings. Choosing

m ≈
√

M(r)/S(r),

(about 20 if M(r)/S(r) ≈ 400), the speedup over single-level blocking
is about m/2 ≈ 10.
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Fast initialization

The polynomials
sj,m(x) =

∑
0≤k<2m, w(k)=j

xk

satisfy a “Pascal triangle” recurrence relation

sj,m(x) = sj,m−1(x2) + x × sj−1,m−1(x2)

with boundary conditions

sj,m(x) = 0 if j > m ,

s0,m(x) = 1 .

Thus, we can compute

{sj,m(x) mod P(x) | 0 ≤ j ≤ m}

in time O(m2r), even though the definition of sj,m(x) involves O(2m)
terms.
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Recapitulation

To summarize, we use two levels of blocking:

The outer level replaces most GCDs by multiplications.
The inner level replaces most multiplications by squarings.
The blocking parameter m ≈

√
M(r)/S(r) is used for the inner

level of blocking.
A different parameter ` = km is used for the outer level of blocking.
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Example

Figure: ` = 15, m = 5

In the example, S = 1/25, M = 1, G = 10

No blocking: cost 15G + 15S = 150.6

1-level blocking: G + 14M + 15S = 24.6

2-level blocking: G + 2M + 75S = 15.0

More realistically, suppose ` = 80, m = 20,
S = 1/400, M = 1, G = 40

No blocking: cost 80G + 80S = 3200.2

1-level blocking: G + 79M + 80S = 119.2

2-level blocking: G + 3M + 1600S = 47.0
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Sieving

A small factor is one with degree d < 1
2 log2 r , so 2d <

√
r .

It would be inefficient to find small factors in the same way as large
factors. Instead, let d ′ = 2d − 1, r ′ = r mod d ′, s′ = s mod d ′. Then

P(x) = x r + xs + 1 = x r ′ + xs′ + 1 mod (xd ′ − 1) ,

so we only need compute

GCD(x r ′ + xs′ + 1, xd ′ − 1) .

The cost of finding small factors is negligible (both theoretically and in
practice), so will be ignored.

In the definition, the fraction 1
2 is rather arbitrary; it can be replaced by

1− ε for any ε > 0.
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Distribution of degrees of factors

In order to predict the expected behaviour of our algorithm, we need to
know the expected distribution of degrees of irreducible factors. Our
complexity estimates here are based on the assumption that trinomials
of degree r behave like the set of all polynomials of the same degree,
up to a constant factor:

Assumption 1. Over all trinomials x r + xs + 1 of degree r over GF(2),
the probability πd that a trinomial has no nontrivial factor of degree ≤ d
is at most c/d , where c is a constant and 1 < d ≤ r .

This assumption is plausible and in agreement with experiments,
though not proven. Under the assumption, we use an amortized model
to obtain the total complexity over all trinomials of degree r .

From Assumption 1, the probability that a trinomial does not have a
small factor is O(1/ log r).
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Simpler approximation

Let pd = πd−1 − πd be the probability that the smallest nontrivial factor
of a randomly chosen trinomial has degree d ≥ 2. Although not strictly
correct, the following is a good approximation.

Assumption 2. pd is of order 1/d2, provided d is not too large.

I will use Assumption 2 because it simplifies the amortized complexity
analysis, but the same results can be obtained from Assumption 1
using summation by parts.

Some empirical evidence for Assumptions 1–2 in the case
r = 6 972 593 is given on the next slide. Results for other large
Mersenne exponents are similar.
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Statistics for r = 6972593

d dπd d2pd

2 1.33 1.33
3 1.43 1.71
4 1.52 1.52
5 1.54 1.84
6 1.60 1.47
7 1.60 1.85
8 1.67 1.29
9 1.64 2.10
10 1.65 1.73

100 1.77
1000 1.76

10000 1.88
100000 1.62
226887 2.08

r − 1 2.00
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Analogies

The following have similar distributions in the limit as n→∞:

1 Degree of smallest irreducible factor of a random monic
polynomial of degree n over a finite field (say GF(2)).

2 Size of smallest cycle in a random permutation of n objects.
3 Size (in base-b digits) of smallest prime factor in a random integer

of n digits.
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Analogies — more details

More precisely, let Pd be the limiting probability that the smallest
irreducible factor has degree > d , that the smallest cycle has length
> d , or that the smallest prime factor has > d digits, in cases 1–3
respectively. Then

Pd ∼ c/d as d →∞

(the constant c is different in each case).

For example, in case 3, let x = bd ; then

Pd =
∏

prime p<x

(
1− 1

p

)
∼ e−γ

ln x
=

(
e−γ

ln b

)
1
d

by the theorem of Mertens.
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Outer level blocking strategy

The blocksize in the outer level of blocking is ` = km. We take an
increasing sequence

k = k0j for j = 1,2,3, . . . ,

where k0m is of order log r (since small factors will have been found by
sieving). This leads to a quadratic polynomial for the interval bounds.

There is nothing magic about a quadratic polynomial, but it is simple to
implement and experiments show that it is reasonably close to optimal.
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Optimal blocking strategy?

Using the data that we have obtained on the distribution of degrees of
smallest factors of trinomials, and assuming that this distribution is
insensitive to the degree r , we could obtain a strategy that is close to
optimal.

The choice k0j with suitable k0 is simple and not too far from optimal.
The number of GCD and sqr/mul operations is usually within a factor of
1.5 of the minimum possible.
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Expected cost of sqr/mul
Recall that the inner level of blocking replaces m multiplications by m2

squarings and one multiplication, where m ≈
√

M(r)/S(r) makes the
cost of squarings about equal to the cost of multiplications.

For a smallest factor of degree d , the expected number of squarings is
m(d + O(

√
d)). Averaging over all trinomials of degree r , the expected

number is

O

m
∑

d≤r/2

d + O(
√

d)

d2

 = O (m log r) .

Thus, the expected cost of sqr/mul operations per trinomial is

O
(

S(r) log r
√

M(r)/S(r)
)

= O
(

log r
√

M(r)S(r)
)

= O
(

r(log r)3/2(log log r)1/2
)
.
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Expected cost of GCDs

Suppose that P(x) has smallest factor of degree d . The number of
GCDs required to find the factor, using our (quadratic polynomial)
blocking strategy, is O(

√
d). By Assumption 2, the expected number of

GCDs for a trinomial with no small factor is

1 + O

 ∑
(lg r)/2<d≤r/2

√
d

d2

 = 1 + O

(
1√
log r

)
.

Thus, the expected cost of GCDs per trinomial is

O(G(r)/ log r) = O(M(r)) = O(r log r log log r) .

This is asymptotically� expected cost of sqr/mul operations
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Cost of GCDs in practice

In practice, for r ≈ 4.3× 107, GCDs take about 65% of the time versus
35% for sqr/mul.

The asymptotic analysis is misleading. This is because√
log r

log log r

is a very slowly growing function of r .
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Comparison with classical algorithms

For simplicity I will use the Õ notation which ignores log factors. For
example, instead of

O(n log n(log log n)2)

we can write Õ(n).

The “classical” algorithm takes an expected time Õ(r2) per trinomial, or
Õ(r3) to cover all trinomials of degree r .

The new algorithm takes expected time Õ(r) per trinomial, or Õ(r2) to
cover all trinomials of degree r .
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Comparison in practice

In practice, the new algorithm is faster by a factor of about 160 for
r = 6 972 593, and by a factor of about 1000 for r = 43 112 609.

Thus, comparing the computation for r = 43 112 609 with that for
r = 6 972 593: using the classical algorithm would take about 240
times longer (impractical), but using the new algorithm saves a
factor of 1000.

Generally, our search for eight different Mersenne exponents
r ∈ {3 021 377, . . . ,43 112 609} took less time for larger r ,
due to incremental improvements in the search program!
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Computational results
In Sept 2008 Paul Zimmermann and I started searching for primitive
trinomials of degree 43 112 609 (the largest known Mersenne
exponent).

Dan Bernstein and Tanja Lange joined in the search and contributed
CPU cycles. With their help, the search was completed by April 2009.

We found four new primitive trinomials x r + xs + 1, r = 43 112 609:

s = 3 569 337, 4 463 337, 17 212 521, 21 078 848

Testing irreducibility took about 119 hours per trinomial on a 2.2 Ghz
AMD Opteron (bogong), using our first algorithm. The “best” algorithm
would take about 69 hours (saving 42%).

Most of the time (about 22 processor-years) was spent eliminating
reducible trinomials at an average rate of about 32 sec per trinomial
(×43112609/2 trinomials).
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Recent results

We thought we were finished with this project, but in April the GIMPS
project found another large Mersenne prime,

242643801.

Note that 42 643 801 < 43 112 609. The GIMPS project does not
guarantee to find Mersenne primes in increasing order of size!

Fortunately the new cluster orac arrived just in time. In June Paul
Zimmermann and I started a search for primitive trinomials of degree
r = 42 643 801.

So far the search is 99% complete, and we have found five new
primitive trinomials.
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Conclusion

The new double-blocking strategy works well and, combined with fast
multiplication and GCD algorithms, has allowed us to find new primitive
trinomials of record degree. This would have been impractical using
the classical algorithms.

The same ideas work over finite fields GF(p) for small prime p > 2, and
for factoring sparse polynomials P(x) that are not necessarily
trinomials: all we need is that the time for p-th powers (mod P(x)) is
much less than the time for multiplication (mod P(x)).
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