
The Great Trinomial Hunt

Richard P. Brent
MSI, ANU

joint work with
Paul Zimmermann

INRIA, Nancy

31 October 2009

Richard Brent The Great Trinomial Hunt



Trinomials and Polynomials over a Field

A trinomial is a polynomial in one variable with three nonzero
terms, for example

P = 6x7 + 3x3 − 5.

If the coefficients of a polynomial P (in this case 6,3,−5) are in
some ring or field F , we say that P is a polynomial over F , and
write P ∈ F [x ].

The operations of addition and multiplication of polynomials in
F [x ] are defined in the usual way, with the operations on
coefficients performed in F .

Richard Brent The Great Trinomial Hunt



The Ground Field

Classically the most common cases are F = Z,Q,R or C,
respectively the integers, rationals, reals or complex numbers.
However, polynomials over finite fields are important in
applications.

We restrict our attention to polynomials over the simplest finite
field: the field GF(2) of two elements, usually written as 0
and 1.

Other notations for GF(2) are Z2 and Z/2Z. The field operations
of addition and multiplication are defined as for integers
modulo 2, so 0 + 1 = 1, 1 + 1 = 0, 0× 1 = 0, 1× 1 = 1, etc.

Richard Brent The Great Trinomial Hunt



Squaring in GF(2)[x ]

An important consequence of the definitions is that, for
polynomials P,Q ∈ GF (2)[x ], we have

(P + Q)2 = P2 + Q2

because the “cross term” 2PQ vanishes.

High school algebra would have been much easier if we had
used polynomials over GF(2) instead of over R.

Richard Brent The Great Trinomial Hunt



Fibonacci-like Recurrences

Trinomials over GF(2) are important in cryptography and
random number generation. To illustrate why this might be true,
consider a sequence (z0, z1, z2, . . .) satisfying the recurrence

zn = zn−s + zn−r mod 2,

where r and s are given positive integers, r > s > 0, and the
initial values z0, z1, . . . , zr−1 are also given. The recurrence
then defines all the remaining terms zr , zr+1, . . . in the
sequence.

Richard Brent The Great Trinomial Hunt



Hardware Implementation
It is easy to build hardware to implement the recurrence
zn = zn−s + zn−r mod 2. All we need is a shift register capable
of storing r bits, and a circuit capable of computing the addition
mod 2 (equivalently, the “exclusive or”) of two bits separated by
r − s positions in the shift register and feeding the output back
into the shift register. For example, with r = 7, s = 3:

!! ! ! ! !

+
!

!!!

!!

Output

Richard Brent The Great Trinomial Hunt



Pseudo-Random Sequences

The recurrence zn = zn−s + zn−r mod 2 looks similar to the
well-known Fibonacci recurrence

Fn = Fn−1 + Fn−2;

indeed the Fibonacci numbers mod 2 satisfy our recurrence
with r = 2, s = 1. This gives a sequence (0,1,1,0,1,1, . . .)
with period 3: not very interesting. However, if we take r larger
we can get much longer periods.

Richard Brent The Great Trinomial Hunt



Getting a Long Period

The period can be as large as 2r − 1, which makes such
sequences interesting as components in pseudo-random
number generators or stream ciphers. In fact, the period is
2r − 1 if the initial values are not all zero and the associated
trinomial

x r + xs + 1,

regarded as a polynomial over GF(2), is primitive.

A primitive polynomial is one that is irreducible (it has no
nontrivial factors), and satisfies an additional condition (to be
described soon).

Richard Brent The Great Trinomial Hunt



Mersenne Primes

A Mersenne prime is a prime of the form 2r − 1.

They are named after Marin Mersenne (1588–1648), who
corresponded with many of the scholars of his day, and in 1644
gave a list (containing several errors) of the Mersenne primes
with r ≤ 257.

A Mersenne exponent is the exponent r of a Mersenne prime
2r − 1. A Mersenne exponent is necessarily prime, but not
conversely.

For example, 11 is not a Mersenne exponent because

211 − 1 = 23 · 89

is not prime.

Richard Brent The Great Trinomial Hunt



The Trinomial Search

This talk is about a search for primitive trinomials of large
degree r , and its interplay with a search for large Mersenne
primes.

First, we need to explain the connection between these two
topics, and briefly describe the GIMPS project.

Next we describe the algorithms used in our search, which can
be split into two distinct periods, “classical” and “modern”.

Finally, we describe the results obtained in the modern period.

Richard Brent The Great Trinomial Hunt



Mathematical Foundations

We consider polynomials over the finite field GF(2). An
irreducible polynomial is a polynomial that is not divisible by any
non-trivial polynomial other than itself.

For example, x5 + x2 + 1 is irreducible, but x5 + x + 1 is not,
since x5 + x + 1 = (x2 + x + 1)(x3 + x2 + 1) in GF(2)[x ].

We do not consider binomials x r + 1, because they are divisible
by x + 1, and thus reducible for r > 1.

Richard Brent The Great Trinomial Hunt



Representing Large Finite Fields

An irreducible polynomial P of degree r > 1 yields a
representation of the finite field GF(2r ) of 2r elements: any
polynomial of degree less than r represents an element.
Addition is just polynomial addition.
Multiplication is defined modulo P: one first multiplies both
inputs, and then reduces their product modulo P.
Thus

GF(2r ) ' GF(2)[x ]/P(x) .

Richard Brent The Great Trinomial Hunt



Primitive polynomials

An irreducible polynomial P of degree r > 0 over GF(2) is said
to be primitive iff P(x) 6= x and the residue classes
xk mod P, 0 ≤ k < 2r − 1, are distinct.
In other words, P is primitive if x is a generator of the
multiplicative group of GF(2r ) ' GF(2)[x ]/P(x).
In order to check primitivity of an irreducible polynomial P, it is
only necessary to check that xk 6= 1 mod P for those k that are
maximal non-trivial divisors of 2r − 1.
For example, x5 + x2 + 1 is primitive, as 25 − 1 = 31 is prime.
x6 + x3 + 1 is irreducible but not primitive, since
x9 = 1 mod (x6 + x3 + 1). Here 9 divides 26 − 1 = 63 and is a
maximal divisor as 63/9 = 7 is prime.

Richard Brent The Great Trinomial Hunt



Testing Primitivity for Large Degrees

If r is large and 2r − 1 is not prime, it can be difficult to test
primitivity of a polynomial of degree r , because we need to
know the prime factors of 2r − 1. Thanks to the Cunningham
project, these are known for all r < 863, but not in general for
larger r .
On the other hand, if 2r − 1 is prime, then all irreducible
polynomials of degree r are primitive. This is the reason why
we consider degrees r that are Mersenne exponents.

Richard Brent The Great Trinomial Hunt



Starting the Search

In the year 2000 Paul Zimmermann, Samuli Larvala and I were
in contact via email (mainly because of our common interest in
factoring large integers) when the topic of efficient algorithms
for testing irreducibility or primitivity of trinomials over GF(2)
arose.
Publication of a paper by Kumada et al., describing a search for
primitive trinomials of degree 859 433 (a Mersenne exponent),
prompted the three of us to embark on a search for primitive
trinomials of degree r , for r ranging over all known Mersenne
exponents.

Richard Brent The Great Trinomial Hunt



The computational challenge

At that time, the largest known Mersenne exponents were
3 021 377 and 6 972 593. The existing programs took time
proportional to r3.
Since (6972593/859433)3 ≈ 534, and the computation by
Kumada et al. had taken three months on 19 processors,
it was quite a challenge.
Using Kumada’s program and computational resources, the
task would take about 133 years!

Richard Brent The Great Trinomial Hunt



The GIMPS project

GIMPS stands for Great Internet Mersenne Prime Search. It is
a distributed computing project started by George Woltman,
with home page www.mersenne.org. The goal of GIMPS is
to find new Mersenne primes.
As of October 2009, GIMPS has found 13 new Mersenne
primes in 13 years, and has held the record of the largest
known prime since the discovery of M35 in 1996.
Mersenne primes are usually numbered in increasing order of
size: M1 = 22 − 1 = 3, M2 = 23 − 1 = 7, M3 = 25 − 1 = 31,
M4 = 27 − 1 = 127, . . . , M38 = 26972593 − 1, etc.

Richard Brent The Great Trinomial Hunt

www.mersenne.org


The ordering problem

Since GIMPS does not always find Mersenne primes in order,
there can be some uncertainty in numbering the largest known
Mersenne primes. We write M ′n for the n-th Mersenne prime in
order of discovery.
There are gaps in the search above M39 = 213466917 − 1.
Thus we can have M ′n > M ′n+1 for n > 39.
For example, M ′45 = 243112609 − 1 was found before
M ′46 = 237156667 − 1 and M ′47 = 242643801 − 1.
At the present time, 47 Mersenne primes are known, and the
largest is M ′45 = 243112609 − 1.
To avoid ambiguity, we’ll write rn for the exponent of Mn, and r ′n
for the exponent of M ′n. For example, r ′45 = 43 112 609.

Richard Brent The Great Trinomial Hunt



Swan’s Theorem

We state a useful theorem, known as Swan’s theorem, since it
appeared in a paper by Swan (1962), although the result was
actually found much earlier by Pellet (1878) and
Stickelberger (1897).
Swan’s theorem gives information on the parity of the number
of irreducible factors of a trinomial.

Richard Brent The Great Trinomial Hunt



Theorem [Swan]

Let r > s > 0, and assume r + s is odd. Then
Tr ,s(x) = x r + xs + 1 has an even number of irreducible factors
over GF(2) in the following cases:
a) r even, r 6= 2s, rs/2 = 0 or 1 mod 4.
b) r odd, s not a divisor of 2r , r = ±3 mod 8.
c) r odd, s a divisor of 2r , r = ±1 mod 8.
In all other cases x r + xs + 1 has an odd number of irreducible
factors.

Applying the theorem in other cases
If both r and s are even, then Tr ,s is a square. If both r and s
are odd, we can apply the theorem to Tr ,r−s. Thus, Theorem 1
is applicable to any trinomial over GF(2).

Richard Brent The Great Trinomial Hunt



Application of Swan’s theorem

For r an odd prime, and excluding the easily-checked cases
s = 2 or r − 2, case (b) says that the trinomial has an even
number of irreducible factors, and hence must be reducible, if
r = ±3 mod 8.
Thus, we only need to consider those Mersenne exponents
with r = ±1 mod 8.
Of the 14 known Mersenne exponents r > 106, only 8 satisfy
this condition.

Richard Brent The Great Trinomial Hunt



Cost of the Basic Operations

The basic operations that we need are squarings modulo the
trinomial T = x r + xs + 1, multiplications modulo T , and
greatest common divisors (GCDs) between T and a polynomial
of degree less than r .
We measure the cost of these operations in terms of the
number of bit or word-operations required to implement them.
In GF(2)[x ], squarings cost O(r), due to the fact that the square
of x i + x j is x2i + x2j .
The reduction modulo T of a polynomial of degree less than 2r
costs O(r), due to the sparsity of T ; thus modular squarings
cost O(r).

Richard Brent The Great Trinomial Hunt



Cost of modular multiplication

Modular multiplications cost O(M(r)), where M(r) is the cost of
multiplication of two polynomials of degree less than r over
GF(2).
The reduction modulo T costs O(r), so the multiplication cost
dominates the reduction cost.
The “classical” polynomial multiplication algorithm has
M(r) = O(r2), but an algorithm due to Schönhage has
M(r) = O(r log r log log r).
Note: this algorithm is not the Schönhage-Strassen
integer-multiplication algorithm, although both are based on the
idea of using a fast Fourier transform.

Richard Brent The Great Trinomial Hunt



Cost of GCD
A GCD computation for polynomials of degree bounded by r
costs O(M(r) log r) using a “divide and conquer” approach
combined with Schönhage’s fast polynomial multiplication. This
follows from the recurrence

G(2r) = 2G(r) + O(M(r)) .

Summary of costs
The costs are summarized in the table.

modular squaring O(r)
modular product O(M(r))

GCD O(M(r) log r)

Table: Cost of the basic operations.

Richard Brent The Great Trinomial Hunt



Testing Irreducibility
Let Pr (x) = x2r

+ x . (We could equally well write x2r − x .)
Then Pr (x) is the product of all irreducible polynomials of
degree d , where d runs over the divisors of r .
For example,

P3(x) = x(x + 1)(x3 + x + 1)(x3 + x2 + 1)

in GF(2)[x ]. Here x and x + 1 are the irreducible polynomials of
degree 1, and the other factors are the irreducible polynomials
of degree 3.
If r is an odd prime, then a polynomial P(x) ∈ GF(2)[x ] with
degree r is irreducible iff

x2r
= x mod P(x) . (1)

If r is not prime, we have to check a further condition to
guarantee irreducibility.

Richard Brent The Great Trinomial Hunt



Testing irreducibility for odd prime r

When r is an odd prime, equation (1) gives a simple test for
irreducibility (or primitivity, in the case that r is a Mersenne
exponent): just perform r modular squarings, starting from x ,
and check if the result is x . Since the cost of each squaring is
O(r), the cost of the irreducibility test is O(r2).
“Faster” irreducibility tests
There are more sophisticated algorithms for testing
irreducibility, based on modular composition (Kedlaya and
Umans, 2008) and fast matrix multiplication (Brent and Kung,
1978). However, these algorithms are actually slower than the
classical algorithm when applied to trinomials of degree less
than about 107.

Richard Brent The Great Trinomial Hunt



The reciprocal trinomial

When searching for irreducible trinomials of degree r , we can
assume that s ≤ r/2, since

T (x) = x r + xs + 1

is irreducible iff the “reciprocal polynomial”

x r T (1/x) = x r + x r−s + 1

is irreducible.
This simple observation saves a factor of 2.
In the following, we always assume that s ≤ r/2.

Richard Brent The Great Trinomial Hunt



Degrees of Factors

In order to predict the expected behaviour of our algorithm, we
need to know the expected distribution of degrees of irreducible
factors.
Our complexity estimates are based on the assumption that
trinomials of degree r behave like the set of all polynomials of
the same degree, up to a constant factor:

Richard Brent The Great Trinomial Hunt



Assumption 1

Over all trinomials x r + xs + 1 of degree r over GF(2), the
probability πd that a trinomial has no non-trivial factor of degree
≤ d is at most c/d , where c is a constant and 1 < d ≤ r/ ln r .

This assumption is plausible and in agreement with
experiments, though not proven. It is not critical, because the
correctness of our algorithms does not depend on the
assumption – only the predicted running time depends on it.

Richard Brent The Great Trinomial Hunt



Evidence for the Assumption

Some evidence for the assumption, in the case r = r38, is
presented in the Table. The maximum value of dπd is 2.08,
occurring at d = 226 887.

d dπd d dπd
1 1.00 2 1.33
3 1.43 4 1.52
5 1.54 6 1.60
7 1.60 8 1.67
9 1.64 10 1.65

100 1.77 1000 1.76
10000 1.88 226887 2.08

It would be interesting to try to explain the exact values of dπd
for small d , but this would lead us too far afield.

Richard Brent The Great Trinomial Hunt



Sieving

When testing a large integer N for primality, it is sensible to
check if it has any small factors before applying a primality test
such as the AKS, ECPP, or (if we are willing to accept a small
probability of error) Rabin-Miller test.
Similarly, when testing a high-degree polynomial for
irreducibility, it is wise to check if it has any small factors before
applying the O(r2) test.
Since the irreducible polynomials of degree d divide Pd(x), we
can check if a trinomial T has a factor of degree d (or some
divisor of d) by computing

gcd(T ,Pd).

If T = x r + xs + 1 and 2d < r , we can reduce this to the
computation of a GCD of polynomials of degree less than 2d .

Richard Brent The Great Trinomial Hunt



How to Sieve Efficiently

Let d ′ = 2d − 1, r ′ = r mod d ′, s′ = s mod d ′. Then
Pd = x(xd ′ − 1),

T = x r ′
+ xs′

+ 1 mod (xd ′ − 1),

so we only need to compute

gcd(x r ′
+ xs′

+ 1, xd ′ − 1).

The process is called “sieving” by analogy with the process of
sieving out small prime factors of integers, even though it is
performed using GCD computations.
If the trinomials that have factors of degree less than log2(r) are
excluded by sieving, then by Assumption 1 we are left with
O(r/ log r) trinomials to test.
Thus the overall search has cost O(r3/ log r).

Richard Brent The Great Trinomial Hunt



The “Missing” Trinomial

Primitive trinomials of degree r < r32 = 756 839 are listed in
Heringa et al (1992). Kumada et al (2000) reported a search for
primitive trinomials of degree r33 = 859 433.
They found one primitive trinomial; however they missed the
trinomial

x859433 + x170340 + 1

because of a bug in their sieving routine.
We discovered the missing trinomial in June 2000 while testing
our program on the known cases.

Richard Brent The Great Trinomial Hunt



Certificates

This motivated us to produce certificates of reducibility for all
the trinomials that we tested (excluding, of course, the small
number that turned out to be irreducible).
A certificate of reducibility is, ideally, a non-trivial factor. If a
trinomial T is found by sieving to have a small factor, then it is
easy to keep a record of this factor.
If we do not know a factor, but the trinomial fails an irreducibility
test, then we can record the residue R(x) = x2r − x mod T .
Because the residue can be large, we might choose to record
only part of it, e.g., R(x) mod x32.

Richard Brent The Great Trinomial Hunt



The Classical Period

The period 2000–2003 could be called the classical period. In
this period we used efficient implementations of the classical
algorithms.
Since different trinomials could be tested on different
computers, it was easy to conduct a search in parallel, using as
many processors as were available. We often made use of PCs
in an undergraduate teaching laboratory during the vacation,
when the students were away.
In this way, we found three primitive trinomials of degree
r32 = 756 839 (in June 2000), two of degree r37 = 3 021 377
(August and December 2000), and one of degree
r38 = 6 972 593 (in August 2002).
Primitive trinomials of degree r34, r35 and r36 were ruled out by
Swan’s theorem, as were r39 and r ′40..

Richard Brent The Great Trinomial Hunt



Degree 6 972 593

The computation for degree r38 = 6 972 593 was completed
and double-checked by July 2003.
There turned out to be only one primitive trinomial x r + xs + 1:

x6972593 + x3037958 + 1 .

The trinomial was named Bibury after the village that the three
authors BLT were visiting on the day that it was discovered.

Richard Brent The Great Trinomial Hunt



Bibury

“The most beautiful village in England” (William Morris)

Richard Brent The Great Trinomial Hunt



Unreliability of Long Computations

How can we be sure that we did not miss any primitive
trinomials?
For each non-primitive trinomial we had a certificate, and these
certificates were checked in an independent computation.
We found a small number of discrepancies, possibly due to
memory parity errors in some of the older PCs that were used.
This is a risk in any long computation – we should not assume
that computers are infallible.
The same phenomenon was observed by Nicely in his
computation of Brun’s constant (which also uncovered the
infamous “Pentium bug”).

Richard Brent The Great Trinomial Hunt



What Next?

Since we had caught up with the GIMPS project, we thought
(not for the last time) that this game had finished, and published
our results in Math. Comp.
However, GIMPS soon overtook us by finding several larger
Mersenne primes with exponents ±1 mod 8:
r ′41 = 24 036 583, . . . , r ′44 = 32 582 657.
The search for degree r38 = 6 972 593 had taken more than two
years (February 2001 to July 2003), so it did not seem feasible
to tackle the new Mersenne exponents r ′41, . . . , r

′
44.

Richard Brent The Great Trinomial Hunt



The Modern Period

We realised that, in order to extend the computation, we had to
find more efficient algorithms. The expensive part of the
computation was testing irreducibility using repeated squaring.
If we could sieve much further, we could avoid most of the
irreducibility tests. From Assumption 1, if we could sieve to
degree r/ ln r , then we would expect only O(log r) irreducibility
tests.
What we needed was an algorithm that would find the smallest
factor of a sparse polynomial (specifically, a trinomial) in a time
that was fast on average.

Richard Brent The Great Trinomial Hunt



Factoring polynomials

There are many algorithms for factoring polynomials over finite
fields. The cost of most of them is dominated by GCD
computations.
It is possible to replace most GCD computations by modular
multiplications, using a process called blocking, introduced by
Pollard (1975) in the context of integer factorization, and by von
zur Gathen and Shoup (1992) for polynomial factorization.
The idea of blocking is simple: instead of computing
gcd(T ,P1), . . . ,gcd(T ,Pk ) in the hope of finding a non-trivial
GCD (and hence a factor of T ), we compute
gcd(T ,P1P2 · · ·Pk mod T ), and backtrack if necessary to split
factors if they are not irreducible.
Since a GCD typically takes about 40 times as long as a
modular multiplication for r ≈ r ′41, blocking can give a large
speedup.

Richard Brent The Great Trinomial Hunt



A New Idea – More Blocking

In February 2007, we realised that a second level of blocking
could be used to replace most modular multiplications by
squarings.
Since a modular multiplication might take 400 times as long as
a squaring (for r ≈ r ′41), this second level of blocking can
provide another large speedup.
We won’t describe the details here, since they are rather
technical, but note that m multiplications and m squarings can
be replaced by one multiplication and m2 squarings.
The optimal value of m is m0 ≈

√
M(r)/S(r), where M(r) is the

cost of a modular multiplication and S(r) is the cost of a
modular squaring, and the resulting speedup is about m0/2.
If M(r)/S(r) = 400, then m0 ≈ 20 and the speedup over
single-level blocking is roughly a factor of ten.

Richard Brent The Great Trinomial Hunt



Consequences of the New Idea

Using two levels of blocking, combined with a fast
implementation of polynomial multiplication and a subquadratic
GCD algorithm, we were able to find ten primitive trinomials of
degrees r ′41, . . . , r

′
44 by January 2008.

Once again, we thought we were finished and published our
results, only to have GIMPS leap ahead again by discovering
M ′45 in August 2008, and M ′46 and M ′47 shortly afterwards.

Richard Brent The Great Trinomial Hunt



The Last Two Exponents(?)

The exponent r ′46 was ruled out by Swan’s theorem, but we had
to set to work on degrees r ′45 = 43 112 609 and (later) the
slightly smaller r ′47 = 42 643 801.
The search for degree r ′45 ran from September 2008 to May
2009, with assistance from Dan Bernstein and Tanja Lange
who kindly allowed us to use their computing resources in
Eindhoven, and resulted in four primitive trinomials of record
degree.
The search for degree r ′47 ran from June 2009 to August 2009,
and found five primitive trinomials. In this case we were lucky to
have access to a new computing cluster with 224 processors at
the Australian National University, so the computation took less
time than the earlier searches.

Richard Brent The Great Trinomial Hunt



Computational Results

The results of our computations in the “Modern Period” are
given in the table. There does not seem to be any predictable
pattern in the s values.

r s
24 036 583 8 412 642, 8 785 528
25 964 951 880 890, 4 627 670, 4 830 131, 6 383 880
30 402 457 2 162 059
32 582 657 5 110 722, 5 552 421, 7 545 455
42 643 801 55 981, 3 706 066, 3 896 488,

12 899 278, 20 150 445
43 112 609 3 569 337, 4 463 337, 17 212 521, 21 078 848

The number of primitive trinomials for a given Mersenne
exponent r = ±1 mod 8 appears to follow a Poisson distribution
with mean about 3.2.

Richard Brent The Great Trinomial Hunt



The Modern Algorithm – Summary

To summarize the “modern” algorithm for finding primitive
trinomials, we improve on the classical algorithm by sieving
much further to find a factor of smallest degree, using a
factoring algorithm based on fast multiplication and two levels
of blocking.
Given a trinomial T = x r + xs + 1, we search for a factor of
smallest degree d ≤ r/3 (using Swan’s theorem).
If such a factor is found, we know that T is reducible, so the
program outputs “reducible” and saves the factor for a
certificate of reducibility. The factor can be found by taking the
GCD of T and x2d

+ x ; if this GCD is non-trivial, then T has at
least one factor of degree dividing d . If factors of degree
smaller than d have already been ruled out, then the GCD only
contains factors of degree d (possibly a product of several such
factors). This is known as distinct degree factorization (DDF).

Richard Brent The Great Trinomial Hunt



Equal Degree Factorization and Unique Certificates
If the GCD has degree λd for λ > 1, and one wants to split the
product into λ factors of degree d , then an equal degree
factorization algorithm (EDF) is used.
If the EDF is necessary it is usually cheap, since the total
degree λd is usually small if λ > 1.
In this way we produce certificates of reducibility that consist
just of a non-trivial factor of smallest possible degree, and the
lexicographically least such factor if there are several.
It is worth going to the trouble to find the lexicographically least
factor, since this makes the certificate unique and allows us to
compare different versions of the program and locate bugs
more easily than would otherwise be the case.
The certificates can be checked, for example with an
independent program using NTL, much faster than the original
computation (typically in less than one hour for any of the
degrees considered).

Richard Brent The Great Trinomial Hunt



Large Factors

The critical fact is that most trinomials have a small factor, so
the search runs fast on average. However, occasionally we
encounter a trinomial with no small factor.
After searching unsuccessfully for factors of degree d < 106

say, we could switch to the classical irreducibility test, which is
faster than factoring if the factor has degree greater than about
106.
However, in that case our list of certificates would be
incomplete. Since it is rare to find a factor of degree greater
than 106, we let the program run until it finds a factor or outputs
“irreducible”.
Of course, we verify irreducibility using the classical test,
just in case there is a bug in the factoring program.
So far no discrepancies have been found.

Richard Brent The Great Trinomial Hunt



The Largest Smallest Factor

Of the smallest irreducible factors found during our searches
(apart from irreducible trinomials themselves), the largest is a
factor

P(x) = x10199457 + x10199450 + · · ·+ x4 + x + 1

of the trinomial

x42643801 + x3562191 + 1 .

Although the trinomial is sparse and has a compact
representation, the factor is dense and hence too large to
present here in full!

Richard Brent The Great Trinomial Hunt



Comparison: Classical versus Modern

For simplicity we’ll use the Õ notation which ignores log factors.
For example, 27r3/2 log r/ log log r is Õ(r3/2).

The “classical” algorithm takes an expected time Õ(r2) per
trinomial, or Õ(r3) to cover all trinomials of degree r .

The “modern” algorithm takes expected time Õ(r) per trinomial,
or Õ(r2) to cover all trinomials of degree r .
In practice, the new algorithm is faster by a factor of about 160
for r = r38 = 6 972 593, and by a factor of about 1000 for
r = r ′45 = 43 112 609.
Comparing the computation for r = r ′45 with that for r = r38:
using the classical algorithm would take about 240 times longer
(impractical), but using the modern algorithm saves a factor of
1000.

Richard Brent The Great Trinomial Hunt



How to Speed up the Search – Classical and Modern

I Since the computations for each trinomial can be
performed independently, it is easy to conduct a search in
parallel, using as many computers as are available.

I There is a one-one correspondence between polynomials
of degree < d and binary numbers with d bits. Thus, on a
64-bit computer we can encode a polynomial of degree d
in d(d + 1)/64e computer words and do 64 operations in
parallel (word-parallelism).

I Squaring of polynomials over GF(2) can be done in linear
time (linear in the degree of the polynomial), because the
cross terms in the square vanish.

I Reduction of a polynomial of degree 2(r − 1) modulo a
trinomial T = x r + xs + 1 of degree r can also be done in
linear time.

Richard Brent The Great Trinomial Hunt



How to Speed up the Search – Modern

I Most GCD computations involving polynomials can be
replaced by multiplication of polynomials, using the
“blocking” technique described above.

I Most multiplications of polynomials can be replaced by
squarings, using another level of blocking.

I Asymptotically fast algorithms can be used for the
polynomial multiplications and GCDs that are unavoidable.

Richard Brent The Great Trinomial Hunt



Conclusion

The combination of these seven ideas makes it feasible to find
primitive trinomials of very large degree.
In fact, the current record degree is the same as the largest
known Mersenne exponent, r = r ′45 = 43 112 609.
We are ready to find more primitive trinomials as soon as
GIMPS finds another Mersenne prime that is not ruled out by
Swan’s Theorem.
Our task is easier than that of GIMPS, because finding a
primitive trinomial of degree r , and verifying that a single value
of r is a Mersenne exponent, both cost about the same: Õ(r2).

Richard Brent The Great Trinomial Hunt



Byproducts

The trinomial hunt has resulted in improved software for
operations on polynomials over GF(2), and has shown that the
best algorithms in theory are not always the best in practice.
It has also provided a large database of factors of trinomials
over GF(2), leading to several interesting conjectures which are
a topic for future research.

Richard Brent The Great Trinomial Hunt



Acknowledgements

Thanks to Allan Steel for verifying many of our primitive
trinomials using Magma.
Philippe Falandry, Shuhong Gao, Robert Hedges, Samuli
Larvala, Brendan McKay, Éric Schost, Julian Seward, Victor
Shoup, Andrew Tridgell and George Woltman provided advice
and assistance in various ways.
Nate Begeman, Dan Bernstein, Nicolas Daminelli, Tanja Lange,
Ernst Mayer, Barry Mead, Mark Rodenkirch, Juan Luis Varona,
and Mike Yoder contributed machine cycles to the search.
The University of Oxford, the Australian National University, and
INRIA provided computing facilities.
Images of Bibury courtesy of http://www.cotswolds-calling.com/
and http://www.thecotswoldsguide.com/Bibury/ .

Richard Brent The Great Trinomial Hunt



References

W. Bosma and J. Cannon, Handbook of Magma Functions,
School of Mathematics and Statistics, University of Sydney,
1995. http://magma.maths.usyd.edu.au/

R. P. Brent, P. Gaudry, E. Thomé and P. Zimmermann, Faster
multiplication in GF (2)[x ], Proc. ANTS VIII 2008, Lecture Notes
in Computer Science 5011, 153–166.

R. P. Brent and H. T. Kung, Fast algorithms for manipulating
formal power series, J. ACM 25 (1978), 581–595.

R. P. Brent, S. Larvala and P. Zimmermann, A fast algorithm for
testing reducibility of trinomials mod 2 and some new primitive
trinomials of degree 3021377, Math. Comp. 72 (2003),
1443–1452.

R. P. Brent, S. Larvala and P. Zimmermann, A primitive trinomial
of degree 6972593, Math. Comp. 74 (2005), 1001–1002,

Richard Brent The Great Trinomial Hunt

http://magma.maths.usyd.edu.au/


R. P. Brent and P. Zimmermann, A multi-level blocking
distinct-degree factorization algorithm, Finite Fields and
Applications: Contemporary Mathematics 461 (2008), 47–58.

R. P. Brent and P. Zimmermann, Ten new primitive binary
trinomials, Math. Comp. 78 (2009), 1197–1199.

J. von zur Gathen and J. Gerhard, Modern Computer Algebra,
Cambridge Univ. Press, 1999.

J. von zur Gathen and V. Shoup, Computing Frobenius maps
and factoring polynomials, Computational Complexity 2 (1992),
187–224.

J. R. Heringa, H. W. J. Blöte and A. Compagner, New primitive
trinomials of Mersenne-exponent degrees for random-number
generation, International J. of Modern Physics C 3 (1992),
561–564.

Richard Brent The Great Trinomial Hunt



K. Kedlaya and C. Umans, Fast modular composition in any
characteristic, Proc. FOCS 2008, 146–155.

T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive
t-nomials (t = 3, 5) over GF(2) whose degree is a Mersenne
exponent, Math. Comp. 69 (2000), 811–814. Corrigenda: ibid
71 (2002), 1337–1338.

T. Nicely, A new error analysis for Brun’s constant, Virginia
Journal of Science 52 (2001), 45–55.

A.-E. Pellet, Sur la décomposition d’une fonction entière en
facteurs irréductibles suivant un module premier p, Comptes
Rendus de l’Académie des Sciences Paris 86 (1878),
1071–1072.

J. M. Pollard. A Monte Carlo method for factorization, BIT 15
(1975), 331–334,

Richard Brent The Great Trinomial Hunt



A. Schönhage, Schnelle Multiplikation von Polynomen über
Körpern der Charakteristik 2, Acta Informatica 7 (1977),
395–398.

V. Shoup, NTL: A library for doing number theory.
http:www.shoup.net/ntl/

L. Stickelberger, Über eine neue Eigenschaft der
Diskriminanten algebraischer Zahlkörper, Verhandlungen des
ersten Internationalen Mathematiker-Kongresses, Zürich, 1897,
182–193.

R. G. Swan, Factorization of polynomials over finite fields,
Pacific J. Math. 12 (1962), 1099–1106.

S. Wagstaff, Jr., The Cunningham Project.
http://homes.cerias.purdue.edu/~ssw/cun/

G. Woltman et al., GIMPS, The Great Internet Mersenne Prime
Search. http://www.mersenne.org/

Richard Brent The Great Trinomial Hunt

http:www.shoup.net/ntl/
http://homes.cerias.purdue.edu/~ssw/cun/
http://www.mersenne.org/

