Lecture 5

Revisiting the Binary Euclidean

Algorithm*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent.
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Summary

The binary Euclidean algorithm is a variant of
the classical Euclidean algorithm. It avoids
divisions and multiplications, except by powers
of two, so is potentially faster than the classical
algorithm on a binary machine. In this lecture I
describe the classical and binary algorithms,
and compare their worst case and average case
behaviour. In particular, I correct some small
but significant errors in the literature, discuss
some recent results of Brigitte Vallée, and
describe a numerical computation which verifies
Vallée’s conjecture to 44 decimal places.
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Notation
lg(z) denotes logy(z).
Valy(u) denotes the dyadic valuation of the

positive integer u, i.e. the greatest integer j
such that 27 | u.
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The Classical Euclidean Algorithm

The Euclidean algorithm finds the greatest
common divisor (GCD) of two positive integers
m and n. It is one of the best known of all
algorithms. Knuth (§1.1) gives the algorithm as:

Algorithm E
El. r <~ mmodn
E2. If r = 0 terminate with n as the result.

E3. Set m < n, n < r, and go to E1

Of course, Euclid did not describe the algorithm
in this way. In fact, it is not quite clear what
Euclid intended at step E1. For a translation of
Euclid’s description, see Knuth, §4.5.2.

The algorithm was probably known about 200
years before Euclid. Nevertheless, we shall call
Algorithm E the “classical Euclidean
algorithm” or just the “classical algorithm”.
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One-line Version

while n.# 0 do (1) < (,, e 4 ,,); Teturn m.
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Relation to Continued Fractions

Assume m > n. The first execution of step E1
gives

m=qXn-+r

where ¢ is the quotient and r is the remainder
on division of m by n. By definition,

0<r<n.
Define ng = m, n1 = n, no = r = m mod n.
Suppose step E3 is executed k times. Then
nj = qj X Mjy1+ Njto

holds for j =0,1,...,k and ngo = 0.
We can write this as

n; Nniy
j :q].+1/i
Nj+1 Nj+2

S0, in the usual notation for continued fractions,
m
—=q@+1/a+1/gp+ - +1/q.

n
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The Worst Case

We have seen that there is an intimate
connection between the classical Euclidean
algorithm for computing GCD(m,n) and the
continued fraction expansion of the rational
number m/n.

The worst case for the classical algorithm
occurs when all the quotients g; are 1. This
happens when the inputs are consecutive
Fibonacci numbers. (These are defined by
Fy=0, F, =1, Fj+2 = Fj+1 +FJ for j > 0)

For example,
(m,n) = (Fs, Fs) = (8,5) = (5,3) = (3,2) — (2,1).
Since Fy, ~ p*/\/5, where p = @ ~ 1.618,

the worst case number of iterations of the
classical algorithm is

log, N + O(1),

where N = max(m,n).
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The Continuous Model of Gauss

To investigate the average behaviour of the
classical algorithm, we can restrict attention to
the case 0 < m < n (so go = 0). We assume
that n = N is large and that m is equally likely
to take the values {1,2,..., N — 1}. Thus, m/n
will be approximately uniformly distributed in
(0,1), and the sequence of quotients ¢1, g2, . . .
will “look like” the quotients in the continued
fraction expansion of a uniformly distributed
random number.
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Gauss’s Recurrence

Suppose zg € (0,1), and zo has a continued
fraction expansion

vo=1/q1+1/g2+ ... +1/(qr + zp41),

where qi, ..., qr are positive integers and
zr4+1 € (0,1).

We can express the probability distribution
function Fy41(z) of zx+1 in terms of the
distribution function Fy(z) of z. Using the fact
that 1/z = qx + T+1, we see that

Frii(z) = Pr(0<zpp <x)

= Y Pr(¢<1/zp<q+z)

g>1
1 1
= ZPT<—§$I¢§—>
qu q+$ q
1 1
- 2 (m ;) -m(52)
=t q q+z
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The Limiting Distribution

To investigate average case behaviour in the
continuous model, we assume Fy(x) = z for
z € (0,1) (the uniform distribution of m/n),
and consider Fy(z) as k — oo.

If we assume that a limit distribution

F(z) = limg_, oo Fi(x) exists, then F(x) satisfies
the functional equation

-5 (r(2) -+ (122))

Gauss noticed the simple solution

F(z) =1g(1 + z).

However, Gauss was not able to prove
convergence. It was eventually proved by
Kuz’min (1928). Sharper results were
proved by Lévy (1929), Wirsing (1974),
and Babenko (1978).
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Babenko’s Theorem
The definitive result, due to Babenko (1978), is
Fi(z) =1g(1 +2) + Y Xj¥;(2),
Jj>2
where [Aa| > [Ag] > | Mg > -+,

—X2 = A = 0.3036630028 - - -

is called Wirsing’s constant, and the ¥;(z) are
certain analytic functions (see Knuth, §4.5.3 for
more details).

The expected number of iterations is

12In 2
2

~

InN ~ 0.8428In N ~ 0.58421g N
which can be compared with

~log, N ~2.0781In N ~ 1.44041g N

for the worst case.



Remainder of the Lecture

In the time remaining, I will describe what
progress has been made towards a similar
analysis of the binary Euclidean algorithm.
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The Binary Euclidean Algorithm

The idea of the binary Euclidean algorithm is to
avoid the “division” operation r < m mod n of
the classical algorithm, but retain O(log N)
worst (and average) case.

We assume that the algorithm is implemented
on a binary computer so division by a power of
two is easy. In particular, we assume that the
“shift right until odd” operation

U u/2Valz ()

or equivalently
while even(u) do u + u/2

can be performed in constant time (although
time O(Valy(u)) would be sufficient).

Definition of the Binary Algorithm

There are several almost equivalent ways to
define the algorithm. For simplicity, let us

assume that v and v are odd positive integers.

Following is a simplified version of the
algorithm given in Knuth, §4.5.2.

Algorithm B

B1. ¢« |u—vf;
if ¢ = 0 terminate with result u

B2. t « t/2Val(®)

B3. if u > v then u « ¢ else v « t;
go to B1.
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History

The binary Euclidean algorithm is attributed to
Silver and Terzian (unpublished, 1962) and
Stein (1967). However, it seems to go back
almost as far as the classical Euclidean
algorithm. Knuth (§4.5.2) quotes a translation
of a first-century AD Chinese text Chiu Chang
Suan Shu on how to reduce a fraction to lowest
terms:

If halving is possible, take half.

Otherwise write down the
denominator and the numerator,
and subtract the smaller from the
greater.

Repeat until both numbers are
equal.

Simplify with this common value.

This looks very much like Algorithm B!



Another Formulation

It will be useful to rewrite Algorithm B in the

following equivalent form (using pseudo-Pascal):

Algorithm V { Assume u < v }

while u # v do
begin
while u < v do
begin
J « Valg(v — u);
v (v—u)/2;

Continued Fractions

Vallée [15] shows a connection between
Algorithm V and continued fractions of a
certain form:

u

—=1/a1+ 2" Jay + 2%/ ... Ja, + 2%
v

where a; is odd, k; > 0, and 0 < a; < 2k; |

end;
U > U;
end;
return u.
5-17 5-18
Example Vallée’s Results — More Details

Consider u = 9, v = 55. The inner loop of
Algorithm V finds

55 = 9+2x23
= 9+2x(9+2x7)
= 3x944x7

and on the next iteration
9 = 7T+2x1

SO

55 7
oY 4 x ~
9 3+4x 9"
9 2
142
7 +7’
and finally
9 1
55 34 —2
I+

which we write as

%:1/3+4/1+2/3+4.
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Algorithm V has two nested loops. The outer
loop exchanges u and v. Between two
exchanges, the inner loop performs a sequence of
subtractions and shifts which can be written as

v u—|-2b11)1;
V1 u+25202;

Un—1 < U+ 2b’"um
with v, < u.
If xo = u/v at the beginning of an inner loop,

the effect of the inner loop followed by an
exchange is the rational 21 = v, /u defined by

1

ryg = —13—
a+ 2%z,

where a is an odd integer given by
a=1+ 251 + 2b1+52 I 2b1+"'bm—l ,
and the exponent k is given by

E=b+- by .

5 20



Thus, the rational u/v, for 1 < u < v, has a
unique binary continued fraction expansion of
the form

1

2k
2k

<

a1+

ag + o

+7
ar+2kT

Vallée studies three parameters related to this
continued fraction

1. The height or the depth (i.e. the number
of exchanges) r.

2. The total number of operations necessary
to obtain the expansion; if p(a) denotes
the number of “1”s in the binary
expansion of the integer a, it is equal to
p(a1) +p(az) + - - + p(ar).

3. The sum of exponents of 2 in the
numerators of the binary continued
fraction, k1 + - - - + k.
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Vallée’s Theorems

Vallée’s main results give the average values of
the three parameters above: the average values
are asymptotically A;log N for certain constants
Aq, Ag, A related to the spectral properties of
an operator Vg (to be defined later).
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The Worst Case

At step B1, u and v are odd, so t is even. Thus,
step B2 always reduces t by at least a factor of
two. Using this fact, it is easy to show that step
B3 is executed at most

llg(u +v)]

times (Knuth, exercise 4.5.2.37). Thus, if
N = max(u,v), step B3 is executed at most

lg(N)+ 0O(1)

times.

Remark

Even if step B2 is replaced by single-bit shifts

while even(t) do t + t/2

the overall worst case is still O(log N).
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Extended Binary Algorithm

It is possible to give an extended binary GCD
algorithm which computes multipliers o and 3
such that

au + v = GCD(u,v)

(Bojanczyk and Brent [2], 1987).

Systolic Binary Algorithm

For hardware implementation, there is a systolic
array variant of the binary GCD algorithm
(Brent and Kung [5], 1985). This takes time
O(log N) using O(log N') 1-bit processors and
nearest-neighbour communication. The overall
bit-complexity is O(log N)?.

5 24



A Heuristic Continuous Model

To analyse the expected behaviour of
Algorithm B, we can follow what Gauss did for
the classical algorithm. This was first attempted
in my 1976 paper [3] and there is a summary in
Knuth (Vol. 2, third edition, §4.5.2).

Assume that the initial inputs ug, vg to
Algorithm B are uniformly and independently
distributed in (0, N), apart from the restriction
that they are odd. Let (uy,v,) be the value of
(u,v) after n iterations of step B3.

Let
_ min(un, vp)
max(Un, Un)
and let F,(z) be the probability distribution
function of z, (in the limit as N — co). Thus

Fy(z) =z for z € [0,1].

We assume that Valy(t) takes the value k with
probability 27 at step B2. (Vallée does not
make this assumption — we will discuss her
rigorous analysis later.)
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The Recurrence for F,

Consider the effect of steps B2 and B3. We can
assume that u > v sot =u—wv. If Valp(t) = k
then X = v/u is transformed to

. u—v 2ky
min ,———
2ky Tu—v
_(1-X 2FX
min| —— ,—— | .
26X '1-X

It follows that X' < z iff

XI

1 1
X< or X>—— .
STyt T Tk

Thus, the recurrence for G, (z) =1 — F,(z) is

_ 1 1
G"“(””):Zz i (G" (1+2’=/z) ~Cn (1+2k1)) ’

k>1

and Go(z) =1 —z for z € [0,1].
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The Recurrence for f,

Differentiating the recurrence for G, we obtain
(formally) a recurrence for the probability
density fn(z) = F.(z) = -G (z):

fanr(z) = ) <zi2k)2f" <zf2’°)

k>1

+ () ()

k>1

Operator Notation

The recurrence for f,, may be written as

f’n+1 = Ban;

where the operator By is the case s = 2 of a
more general operator Bs which will be defined
later.
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Conjectured and Empirical Results

In my 1976 paper [3] I gave numerical and
analytic evidence that F,,(x) converges to a
limiting distribution F(z) as n — oo, and that
fn(z) converges to the corresponding
probability density f(z) = F'(z) (note that
f=DBsf so fis a “fixed point” of the operator
Bj). Assuming the existence of F, it is shown
in [3] that the expected number of iterations of
Algorithm B is ~ K1g N as N — oo, where

K =0.705... is a constant defined by

K=mn2/Fy,
and
B = In24
[ (S(ewm)-mis) o
o 1+ (2F = 1)z 2(1+ x)
k=2
5 28



A Simplification

We can simplify the expression for K to obtain
K=2/b,
where
1
b:2—/ le(1 - z) f(z) de
0

Using integration by parts we obtain an
equivalent expression

11_
1n2/ 1—x

For the proofs, see Knuth, third edition, §4.5.2.
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An Error in the Literature

In (Brent, 1976) I claimed that, for all n > 0
and z € (0,1],

Fn(z) = an(z)1g(z) + Bn(z) ,

where o, (z) and f,(z) are analytic and regular
in the disk |z| < 1. However, this is incorrect,
even in the case n = 1.

The error appeared to go unnoticed until 1997,
when Don Knuth was revising Volume 2 in
preparation for publication of the third edition.
Knuth computed the constant K using
recurrences for the analytic functions o, (z) and
fn(z), and I computed K directly using the
defining integral and recurrences for F,(z). Our
computations disagreed in the 14th decimal
place ! Knuth found

K = 0.70597 12461 01945 99986 - - -
but I found
K = 0.70597 12461 01916 39152 - - -
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Some Detective Work

After a flurry of emails we tracked down the

error. It was found independently, and at the
same time (within 24 hours), by Flajolet and
Vallée.

The source of the error is illustrated by
Lemma 3.1 of my 1976 paper [3], which is
wrong (and corrected in the solution to

ex. 4.5.2.29 of Knuth, third edition).

The Mellin transform of a function g(z) is

defined by
:/ g(z)z*ldz .
0

If f(x) = Y j>127%g(2%z) then the Mellin
transform of f is

Z 9— s+1 g (s)

s+1 __
k>1 2 1

Under suitable conditions we can apply the
Mellin inversion formula to obtain

5 31

c+100
1@ =5 [ F(s)a s,

271 — 00

Applying these results to g(z) = 1/(1 + ),
whose Mellin transform is g*(s) = 7/ sinns
when 0 < Rs < 1, we find

27}6

k>1

as a sum of residues of

< ) :
Sin TS 2 1 1
fOI' RS < 0 This giVeS

2 4
fz)= 1+a:1gz+g+a:P(lga:)—Ig;2+§x3_. .

where

2m & sin 2nrt

PO =103 2 sinh(ene?/n2)
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The “Wobbles” Caused by P(t)

P(t) is a very small periodic function:
|P(t)| < 7.8 x 10712

for real ¢t. In [3, Lemma 3.1], the term zP(lgx)
is omitted.

Essentially, we only considered poles on the real
axis and ignored those at s = —1 & 2win/In2,
n=12,...

Because the residues at these poles are tiny
(thanks to the sinh term in the denominator)
numerical computations performed using
single-precision floating-point arithmetic did not
reveal the error.
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An Analogy

Ramanujan made a similar error when he gave
a formula for 7(z) (the number of primes < z)
which essentially ignored the residues of
x5¢'(s)/¢(s) arising from zeros of ((s) off the

real axis.

It is easier to work with

NgE

f#) = 3 (et

Il
-

n

than with 7(z). From f(z) we can find 7(z) by
MGébius inversion:

oon n
0=y M.

n=1

Riemann’s formula

Riemann’s explicit formula® for f(z) is

x)—llx—th”-l-/ —1tlnt —1n2.

The sum is over all the complex zeros p of the
Riemann zeta function (summed in order of
increasing |p|), and liz is the logarithmic
integral.

Ramanujan’s error was essentially to ignore the
sum over p.

!Stated by Riemann in 1859, and proved by Von Man-
goldt in 1885.
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Some Useful Operators

Operators Bs, Us, Us, Vs, useful in the analysis
of the binary Euclidean algorithm, are defined
on suitable function spaces by

Uslfllx) = <1 +12kx)s f (1 +12kz> ’

E>1
i@ = (1) uin (3),
Bs = U, +Us,
9= % (ows) armm)

In these definitions s is a complex variable, and
the operators are called Ruelle operators [12].
They are linear operators acting on certain
function spaces.

The case s = 2 is of particular interest. Bo
encodes the effect of one iteration of the inner
“while” loop of Algorithm V, and V5 encodes
the effect of one iteration of the outer “while”
loop.
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Relations between Operators

Bs (denoted T') was introduced in my 1976
paper [3], and generalised to B, by Vallée. V
was introduced by Vallée. We shall call By the
binary Fuclidean operator and V, Vallée’s
operator. Not surprisingly, the operators are
related, as the following Lemma and Theorem
show.

Lemma 1

The following Theorem (which follows from the
Lemma) gives a simple relationship between B,
Vs and Us.

Theorem 1

(Vs —I)Us = Vs(Bs - I).
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Algorithmic interpretation

Algorithm V gives an interpretation of

Lemma 1 in the case s = 2. If the input density
of z =u/v is f(z) then execution of the inner
“while” loop followed by the exchange of v and
v transforms this density to V[f](z). However,
by considering the first iteration of this loop
(followed by the exchange if the loop
terminates) we see that the transformed density
is given by

Valhs[f)(z) + Us[f](2),

where the first term arises if u < v without an
exchange, and the second arises if an exchange
occurs.
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A Conjecture of Vallée

Let A = f(1), where f is the limiting probability
density (conjectured to exist) as above. Vallée
(see Knuth, third edition, §4.5.2(61))
conjectured that

A 2In2

b w2

or equivalently that

_ 4In2

o
Vallée proved the conjecture under the
assumption that the operator B, satisfies a

certain spectral condition. We have verified the
conjectures numerically to 44 decimal places.
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Recent Results of Vallée

Using her operator Vg, Vallée recently proved
that

21n2

_W29(1 Z 92— ngan< )

a odd,

a>0
where g is a nonzero fixed point of Vo (i.e.
g="V29 #0) and G(z) = [ g(t) dt . This is yet
another expression for K (the only one which
has been proved).

Warning: G here is not the same as
G(z) =1— F(z) ! Unfortunately Knuth and
Vallée use incompatible notation.

Because Vg can be proved to have nice spectral
properties, the existence and uniqueness (up to
scaling) of g can be proved rigorously.



Fixed Points of some Operators

It follows immediately from Theorem 1 that, if

g=Usf,

then
(Vo —T)g =Va(B2 —I)f.

Thus, if f is a fixed point of the operator B,
then g is a fixed point of the operator V5. From
the recent result of Vallée [15, Prop. 4] we know
that Va, acting on a certain Hardy space
H2(D), has a unique positive dominant simple
eigenvalue 1, so g must be (a constant multiple
of) the corresponding eigenfunction (provided

g € H*(D)). Also, from the definitions of By
and Vs, we have

A=f(1)=29(1):22<1+12k)2f(1432’“)’

E>1

which is useful for proving the consistency of
two of the expressions for K given above.
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Numerical Results

Using an improvement of the “discretization
method” of [3], and the MP package with the
equivalent of more than 50 decimal places (50D)
working precision, we computed the limiting
probability density f, then K, A = f(1), and
K. The results were

K
A
KX

0.7059712461 0191639152 9314135852 8817666677
0.3979226811 8831664407 6707161142 6549823098
0.2809219710 9073150563 5754397987 9880385315

These are believed to be correctly rounded
values.

One of Vallée’s conjectures is that
KX=4mn2/7?.

The computed value of K\ agrees with 4 In 2/7?
to 40 decimals (in fact to 44 decimals).
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Conclusion and Open Problems

Since Vallée’s recent work [14, 15], analysis of
the average behaviour of the binary Euclidean
algorithm has a rigorous foundation. However,
some interesting open questions remain.

For example, does the binary Euclidean
operator By have a unique positive dominant
simple eigenvalue 17 Vallée [15, Prop. 4] has
proved the corresponding result for her
operator Vs.

In order to estimate the speed of convergence of
fn to f (assuming f exists), we need more
information on the spectrum of Bs. What can
be proved ? Preliminary numerical results
indicate that the sub-dominant eigenvalue(s)
are a complex conjugate pair:

A2 = A3 =0.1735 £ 0.08841 ,
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