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Practical Data Analysis – Examples

Scatterplot Scatterplot matrices can give useful insights on
matrices data that will be used for regression or related

calculations.

Transformation Data often require transformation prior to entry
into a regression model.

Model Fitting a regression or other such model gives,
objects in the first place, a model object.

Generic plot(), print() and summary() are examples
functions of generic functions. With a dataframe as

argument plot() gives a scatterplot matrix.
With an lm object, it gives diagnostic plots.

Extractor Use an extractor function to extract output from
function a model object. Extractor fucntions are generic

functions

List objects An lm model object is a list object. Lists are
used extensively in R.

Issues that will be noted include
the use of generic functions such
as plot() and print(), the way
that regression model objects are
structured, and the use of extractor
functions to extract information
from model objects.

This chapter will use examples to illustrate common issues in the
exploration of data and the fitting of regression models. It will round
out the discussion of Chapters 1 to 2 and 4 by adding some further
important technical details.

Notation, when referring to datasets

Data will be used that is taken from several di↵erent R packages.
The notation MASS::mammals, which can be used in code as well
as in the textual description, makes it clear that the dataset mammals
that is required is from the MASS package. Should another attached
package happen to have a dataset mammals, there is no risk of confu-
sion.
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5.1 The Uses of Scatterplot Matrices

## Below, the dataset MASS::mammals will be required
library(MASS, quietly=TRUE)

5.1.1 Transformation to an appropriate scale
Among other issues, is there a
wide enough spread of distinct
values that data can be treated as
continuous.

A first step is to elicit basic information on the columns in the data,
including information on relationships between explanatory vari-
ables. Is it desirable to transform one or more variables?

Transformations are helpful that ensure, if possible, that:

• All columns have a distribution that is reasonably well spread out
over the whole range of values, i.e., it is unsatisfactory to have
most values squashed together at one end of the range, with a
small number of very small or very large values occupying the
remaining part of the range.

• Relationships between columns are roughly linear.

• the scatter about any relationship is similar across the whole range
of values.

It may happen that the one transformation, often a logarithmic trans-
formation, will achieve all these at the same time.

The scatterplot in Figure 5.1A, showing data from the dataset
MASS::mammals, is is an extreme version of the common situation
where positive (or non-zero) values are squashed together in the
lower part of the range, with a tail out to the right. Such a distribu-
tion is said to be “skewed to the right”.

Code for Figure 5.1A
plot(brain ~ body, data=mammals)
mtext(side=3, line=0.5, adj=0, "A: Unlogged data")
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B: Log scales (both axes)

Figure 5.1: Brain weight (g)
versus Body weight (kg), for 62
species of mammal. Panel A plots
the unlogged data, while Panel B
has log scales for both axes, but
with axis labels in the original
(unlogged) units.

Figure 5.1B shows the scatterplot for the logged data. Code for
Figure 5.1B is:
plot(brain ~ body, data=mammals, log="xy")
mtext(side=3, line=0.5, adj=0,

"B: Log scales (both axes)")

Where, as in Figure 5.1A, values are concentrated at one end of
the range, the small number (perhaps one or two) of values that lie at
the other end of the range will, in a straight line regression with that
column as the only explanatory variable, be a leverage point. When
it is one explanatory variable among several, those values will have
an overly large say in determining the coe�cient for that variable.

As happened here, a logarithmic transformation will often re-
move much or all of the skew. Also, as happened here, such transfor-
mations often bring the added bonus that relationships between the
resulting variables are approximately linear.
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5.1.2 The Uses of Scatterplot Matrices

Subsequent chapters will make extensive use of scatterplot matrices.
A scatterplot matrix plots every column against every other column,
with the result in the layout used for correlation matrices. Figure 5.2
shows a scatterplot matrix for the datasets::trees package.

The datasets package is, in
an out-of-the-box installation,
attached when R starts.

Interpreting Scatterplot Matrices:
For identifying the axes for each panel

- look across the row to the diagonal to identify the
variable on the vertical axis.

- look up or down the column to the diagonal for the
variable on the horizontal axis.

Each below diagonal panel is the mirror image of the
corresponding above diagonal panel.

## Code used for the plot
plot(trees, cex.labels=1.5)
# Calls pairs(trees)
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Figure 5.2: Scatterplot matrix for
the trees data, obtained using
the default plot() method for
data frames. The scatterplot matrix
is a graphical counterpart of the
correlation matrix.

Notice that plot(), called with the dataframe trees, has
in turn called the plot method for a data frame, i.e., it has called
plot.data.frame() which has in turn called the function
pairs().

The scatterplot matrix may be examined, if there are enough
points, for evidence of:

The scatterplot matrix is best
used as an initial coarse screening
device. Skewness in the individual
distributions is better checked
using plots of density estimates.

1. Strong clustering in the data, and/or obvious outliers;

2. Clear non-linear relationships, so that a correlation will underesti-
mate the strength of any relationship;

3. Severely skewed distributions, so that the correlation is a biased
measure of the strength of relationship.

5.2 World record times for track and field events

The first example is for world track and road record times, Note also the use of these data in
the exercise at the end of Chapter
2 (Section 2.6.2)

as at 9th August 2006. Data, copied down from the web page
http://www.gbrathletics.com/wrec.htm, are in the dataset
DAAG::worldRecords.

Data exploration

First, use str() to get information on the data frame columns:
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library(DAAG, quietly=TRUE)

str(worldRecords , vec.len=3)

'data.frame': 40 obs. of 5 variables:
$ Distance : num 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 ...
$ roadORtrack: Factor w/ 2 levels "road","track": 2 2 2 2 2 2 2 2 ...
$ Place : chr "Athens" "Cassino" "Atlanta" ...
$ Time : num 0.163 0.247 0.322 0.514 ...
$ Date : Date, format: "2005-06-14" ...

Distinguishing points for track events from those for road events
is easiest if we use lattice graphics, as in Figure 5.3.

## Code
library(lattice)
xyplot(Time ~ Distance, scales=list(tck=0.5),

groups=roadORtrack , data=worldRecords ,
auto.key=list(columns=2), aspect=1)

## On a a colour device the default is to use
## different colours, not different symbols,
## to distinguish groups.
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Figure 5.3: World record times
versus distance, for field and road
events.

Clearly increases in Time are not proportional to increases in
Distance. Indeed, such a model does not make sense; velocity
decreases as the length of the race increases. Proportionality when
logarithmic scales are used for the two variables does make sense.

Figure 5.4 uses logarithmic scales on both axes. The two panels
di↵er only in the labeling of the scales. The left panel uses labels on
scales of loge, while the right panel has labels in the orginal units.
Notice the use of auto.key to obtain a key.
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Figure 5.4: World record times
versus distance, for field and road
events, using logarithmic scales.
The left panel uses labels on scales
of loge, while in the right panel,
labeling is in the orginal units,
expressed as powers of 10.

## Code for Left panel
xyplot(log(Time) ~ log(Distance),

groups=roadORtrack , data=worldRecords ,
scales=list(tck=0.5),
auto.key=list(columns=2), aspect=1)

## Right panel
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xyplot(Time ~ Distance, groups=roadORtrack ,
data=worldRecords ,
scales=list(log=10, tck=0.5),
auto.key=list(columns=2), aspect=1)

Fitting a regression line

The plots suggest that a line is a good fit. Note however that the
data span a huge range of distances. The ratio of longest to shortest
distance is almost 3000:1. Departures from the line are of the order
of 15% at the upper end of the range, but are so small relative to this
huge range that they are not obvious.

The following uses the function lm() to fit a straight line fit to The name lm is a mnemonic for
linear model.the logged data, then extracting the regression coe�cients:

The equation gives predicted
times:
[Time = e0.7316 ⇥Distance1.1248

= 2.08 ⇥Distance1.1248

This implies, as would be ex-
pected, that kilometers per minute
increase with increasing distance.
Fitting a line to points that are on a
log scale thus allows an immediate
interpretation.

worldrec.lm <- lm(log(Time) ~ log(Distance),
data=worldRecords)

coef(worldrec.lm)

(Intercept) log(Distance)
0.7316 1.1248

There is no di↵erence that can be detected visually between the
track races and the road races. Careful analysis will in fact find no
di↵erence.

5.2.1 Summary information from model objects

In order to avoid recalculation of the model information each time The name worldrec.lm is used
to indicate that this is an lm object,
with data from worldRecords.
Use any name that seems helpful!

that some di↵erent information is required, we store the result from
the lm() calculation in the model object worldrec.lm.

Plot points; add line:

plot(log(Time) ~ log(Distance),
data = worldRecords)

abline(worldrec.lm)

Note that the function abline() can be used with the model
object as argument to add a line to the plot of log(Time) against
log(Distance).

Diagnostic plots

Insight into the adequacy of the line can be obtained by examining
the “diagnostic” plots, obtained by “plotting” the model object.
Figure 5.5 following shows the first and last of the default plots:

## Code
plot(worldrec.lm , which=c(1,5),

sub.caption=rep("",2))

By default, there are four “diagnostic” plots. Panel A is designed
to give an indication whether the relationship really is linear, or
whether there is some further systematic component that should
perhaps be modeled. It does show systematic di↵erences from a line.
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Figure 5.5: First and last of the
default diagnostic plots, from the
linear model for log(record time)
versus log(distance), for field and
road events.

The largest di↵erence is more than a 15% di↵erence.1 There are 1 A di↵erence of 0.05 on a scale of
loge translates to a di↵erence of
just over 5%. A di↵erence of 0.15
translates to a di↵erence of just
over 16%, i.e., slightly more than
15%.

mechanisms for using a smooth curve to account for the di↵erences
from a line, if these are thought important enough to model.

The plot in panel B allows an assessment of the extent to which
individual points are influencing the fitted line. Observation 40 does
have both a very large leverage and a large Cook’s distance. The plot
on the left makes it clear that this is the point with the largest fitted
time. Observation 40 is for a 24h race, or 1440 min. Examine

worldRecords["40", ]

Distance roadORtrack Place Time Date
40 290.2 road Basle 1440 1998-05-03

5.2.2 The model object

Functions that are commonly used to get information about model
objects are: print(), summary() and plot(). These are all
generic functions. The e↵ect of the function depends on the class
of object that is printed (ie, by default, displayed on the screen) or or
plotted, or summarized.

The function print() may display relatively terse output, while
summary() may display more extensive output. This varies from
one type of model object to another.

Compare the outputs from the following:

print(worldrec.lm) # Alternatively , type worldrec.lm

Call:
lm(formula = log(Time) ⇠ log(Distance), data = worldRecords)

Coefficients:
(Intercept) log(Distance)

0.732 1.125



practical data analysis – examples 47

summary(worldrec.lm)

Call:
lm(formula = log(Time) ⇠ log(Distance), data = worldRecords)

Residuals:
Min 1Q Median 3Q Max

-0.0807 -0.0497 0.0028 0.0377 0.1627

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.73160 0.01241 59 <2e-16
log(Distance) 1.12475 0.00437 257 <2e-16

Residual standard error: 0.0565 on 38 degrees of freedom
Multiple R2 : 0.999, Adjusted R2 : 0.999
F-statistic: 6.63e+04 on 1 and 38 DF, p-value: <2e-16

Internally, summary(wtvol.lm)
calls UseMethod("summary"). As
wtvol.lm is an lm object, this calls
summary.lm().

Used with lm objects, print() calls print.lm(), while
summary() calls summary.lm(). Note that typing worldrec.lm
has the same e↵ect as print(worldrec.lm).

5.2.3 The lm model object is a list

The model object is actually a list. Here are the names of the list
elements:

names(worldrec.lm)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

These di↵erent list elements hold very di↵erent classes and dimen-
sions (or lengths) of object. Hence the use of a list; any collection of
di↵erent R objects can be brought together into a list.

The following is a check on the model call:

worldrec.lm$call

lm(formula = log(Time) ⇠ log(Distance), data = worldRecords)

Use extractor function coef():
coef(worldrec.lm)

Commonly required information is best accessed using generic
extractor functions. Above, attention was drawn to print(),
summary() and plot(). Other commonly used extractor func-
tions are residuals(), coefficients(), and fitted.values().
These can be abbreviated to resid(), coef(), and fitted().
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5.3 Regression with two explanatory variables

The dataset nihills in the DAAG package will be used for a regres-
sion fit in Section 11.6. This has record times for Northern Ireland
mountain races. Overview details of the data are:

str(nihills)

'data.frame': 23 obs. of 4 variables:
$ dist : num 7.5 4.2 5.9 6.8 5 4.8 4.3 3 2.5 12 ...
$ climb: int 1740 1110 1210 3300 1200 950 1600 1500 1500 5080 ...
$ time : num 0.858 0.467 0.703 1.039 0.541 ...
$ timef: num 1.064 0.623 0.887 1.214 0.637 ...

The function splom() is a lattice
alternative to pairs(), giving a
di↵erent panel layout.

Figure 5.6 uses the lattice function splom() (from the lattice
package) to give scatterplot matrices, one for the unlogged data,
and the other for the logged data. The left panel shows the unlogged
data, while the right panel shows the logged data:

A: Untransformed data
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B: Log transformed data
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Figure 5.6: Scatterplot matrices
for the Northern Ireland mountain
racing data. The left panel is for
the unlogged data, while the right
panel is for the logged data. Code
has been added that shows the
correlations, in the lower panel.

The following panel function was used to show the correlations:

showcorr <- function(x,y,...){
panel.xyplot(x,y,...)
xy <- current.panel.limits()
rho <- paste(round(cor(x,y),3))
eps <- 0.035*diff(range(y))
panel.text(max(x), min(y)+eps, rho,

pos=2, offset=-0.2)
}

Code for the scatterplot matrix in the left panel is:
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## Scatterplot matrix; unlogged data
library(lattice)
splom(~nihills, xlab="",

main=list("A: Untransformed data", x=0,
just="left", fontface="plain"))

For the right panel, create a data frame from the logged data:
lognihills <- log(nihills)
names(lognihills) <- paste0("l", names(nihills))
## Scatterplot matrix; log scales
splom(~ lognihills , lower.panel=showcorr, xlab="",

main=list("B: Log transformed data", x=0,
just="left", fontface="plain"))

Unlike paste(), the function
paste0() does not leave spaces
between text strings that it pastes
together.

Note that the data are positively skewed, i.e., there is a long tail
to the right, for all variables. For such data, a logarithmic transfor-
mation often gives more nearly linear relationships. The relation-
ships between explanatory variables, and between the dependent
variable and explanatory variables, are closer to linear when loga-
rithmic scales are used. Just as importantly, issues with large lever-
age, so that the point for the largest data values has a much greater
leverage and hence much greater influence than other points on the
the fitted regression, are greatly reduced.

Notice also that the correlation of 0.913 between climb and
dist in the left panel of Figure 5.6 is very di↵erent from the corre-
lation of 0.78 between lclimb and ldist in the right panel. Corre-
lations where distributions are highly skew are not comparable with
correlations where distributions are more nearly symmetric. The
statistical properties are di↵erent.

The following regresses log(time) on log(climb) and
log(dist):
nihills.lm <- lm(ltime ~ lclimb + ldist,

data=lognihills)

5.4 One-way Comparisons

A common strategy for getting a
valid comparison is to grow the
plants in separate pots, with a
random arrangement of pots.

The dataset tomato has weights of plants that were grown under one
of four di↵erent sets of experimental comditions. Five plants were
grown under each of the treatments:

- water only

- conc nutrient

- 2-4-D + conc nutrient

- x conc nutrient

Notice that “water only” has been made the referrence level. This
is done as a preferred starting point for the analysis of variance
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calculations that appear below. Figure 5.7, created using the function
quickplot() from the ggplot2 package, shows the plant weights.
Are the apparent di↵erences between treatments large enough that
they can be distinguished statistically?

● ●● ● ●●

●●● ● ●●

●●● ●● ●

● ● ●●● ●

water only

2−4−D + conc nutrient

3x conc nutrient

conc nutrient

1.0 1.5 2.0 2.5 3.0
Weight (g)

Figure 5.7: Weights (g) of tomato
plants grown under four di↵erent
treatments.

## Code
library(ggplot2)
tomato <- within(tomato, trt <- relevel(trt, ref="water only"))
quickplot(weight, trt, data=tomato, xlab="Weight (g)", ylab="")

Observe that, to get estimates
and SEs of treatment e↵ects,
tomato.aov can be treated as an
lm (regression) object.

The command aov(), followed by a call to summary.lm(), can
be used to analyse these data, thus:
tomato.aov <- aov(weight ~ trt, data=tomato)
round(coef(summary.lm(tomato.aov)), 3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.683 0.187 9.019 0.000
trt2-4-D + conc nutrient -0.358 0.264 -1.358 0.190
trt3x conc nutrient -0.700 0.264 -2.652 0.015
trtconc nutrient 0.067 0.264 0.253 0.803

Because we made “water only” the reference level,
“(Intercept)” is the mean for water only, and the other coe�-
cients are for di↵erences from water only. None of the treatments
can be distinguished statistically from water only.

Growing conditions in a laboratory or glasshouse or growth
chamber — temperature, humidity and air movement — are rarely
totally uniform. The preferred way to deal with this is to repeat the
comparison between treatments in several di↵erent locations.2 Con- 2 Technically, each di↵erent loca-

tion (or set of conditions) is known
as a block.

ditions will vary between locations, but each comparison between
treatments is conducted under the relatively uniform conditions at
one particular location.

The dataset rice (DAAG) is from such experiment. There are
two treatment factors — three types of fertilizer and two varieties
of rice plant. The six treatment combinations are each repeated six
times, in each of two blocks.

For these data, Figure 5.8 gives a clear picture of the result. For
fertilizers NH4Cl and NH4NO3, any di↵erence between the varieties
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is inconsequential. There is strong “interaction” between fert and
variety. A formal analysis will confirm what is already rather
clear. Experimenters are rarely thus fortunate.
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## Code
library(DAAG)
with(rice, interaction.plot(x.factor=fert,

trace.factor=variety,
ShootDryMass ,
cex.lab=1.4))

Figure 5.8: Interaction plot for the
terms fert and variety, with
ShootDryMass as the dependent
variable. Notice that for fertilizer
F10, there is a huge variety di↵er-
ence in the response. For the other
fertilizers, there is no di↵erence of
consequence.

5.5 Time series – Australian annual climate data
Data are from the website
http://www.bom.gov.au/
climate/change/

The data frame bomregions2012 from the DAAG package has
annual rainfall data, both an Australian average and broken down by
location within Australia, for 1900 – 2012. Figure 5.9 shows annual
rainfall in the Murray-Darling basin, plotted against year.
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Figure 5.9: Annual rainfall in
the Australian Murray-Darling
Basin. by year. The lowess()
function is used to The dashed
curve with f=2/3 captures the
overall trend, while the solid curve
with f=0.1 captures trends on a
scale of around eleven years. (10%
of the 113 year range from 1900
to 2012 is a little more than 11
years.)

## Code
library(DAAG)
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plot(mdbRain ~ Year, data=bomregions2012)
## Calculate and plot curve showing long-term trend
with(bomregions2012 , lines(lowess(mdbRain ~ Year, f=2/3), lty=2))
## Calculate and plot curve of short-term trends
with(bomregions2012 , lines(lowess(mdbRain ~ Year, f=0.1),

lty=1, col="gray45"))

For each smoothing window, a line
or other simple response function
is fitted. Greatest weight to points
near the centre of the smoothing
window, with weights tailing o↵ to
zero at the window edge.

The lowess() function has been used to fit smooth curves,
formed by moving a smoothing window across the data. The dashed
curve with f=2/3 (include 2/3 of the data in the smoothing window)
captures the overall trend in the data. The choice of f=0.1 for the
solid curve has the e↵ect that somewhat more than ten years of data
are used in determining each fitted value on the smooth.

The functions acf() and pacf()
might be used to examine the cor-
relation structure in the residuals.

This graph is exploratory. A next step might to model a correla-
tion structure in residuals from the overall trend. There are extensive
abilities for this. For graphical exploration, note lag.plot() (plot
series against lagged series).

The cube root of average rainfall has a more symmetric distri-
bution than rainfall. Thus, use this in preference to average rainfall
when fitting models.

5.6 Exercises

1. Plot Time against Distance, for the worldRecords data. Ignor-
ing the obvious curvature, fit a straight line model. Use plot.lm
to obtain diagnostic plots. What do you notice?

2. The data set LakeHuron (datasets package) has mean July aver-
age water surface elevations (ft) for Lake Huron, for 1875-1972.
The following reates a data frame that has the same information:

Year=as(time(LakeHuron), "vector")
huron <- data.frame(year=Year, mean.height=LakeHuron)

(a) Plot mean.height against year.
This plots the level in each year
against the level in the previous
year.

(b) To see how each year’s mean level is related to the previous
year’s mean level, use

lag.plot(huron$mean.height)

(c) *Use the function acf() to plot the autocorrelation function. For an explanation of the au-
tocorrelation function, look up
“Autocorrelation” on Wikepedia.

Compare with the result from the pacf() (partial autocorrela-
tion). What do the graphs suggest?


