
Computations for Linear Models

J.H. Maindonald∗

August 7, 2007

Abstract

These notes

review the theory of linear models, noting the utility of Householder reflections and
the QR decomposition both for computation and for theory;
[c.f., Chapter 1 of Wood (2006)]

discuss regression splines, noting in passing the further extension into generalized ad-
ditive models;
Maindonald & Braun (2007, Section 7.1, pp. 234–238).

demonstrate the use of resmampling and simulation methods for comparing models;

give brief summary details of the theory of Generalized Linear Models, with logistic
regression and Poisson regression as special cases.
[Maindonald & Braun (2007, Sections 8.1 – 8.5); Wood (2006, Sections 2.1 – 2.3)]

∗Centre for Mathematics & Its Applications, Australian National University, Canberra ACT 0200, Australia.
mailto:john.maindonald@anu.edu.au

1

mailto:john.maindonald@anu.edu.au

CONTENTS 2

Contents

1 Linear Models – Key Concepts 3
1.1 Terminology . 3
1.2 Basis Functions . 3
1.3 Terms – groups of basis functions . 3
1.4 Factor basis functions . 3
1.5 Spline basis functions . 5

2 Solving Least Squares Systems 5
2.1 Householder Reflections, and QR . 5

2.1.1 Properties of Householder reflections . 5
2.2 Least Squares . 8

2.2.1 Normal equations . 8
2.2.2 Computational issues . 9

2.3 Demonstrations of the computational steps . 9
2.4 The Analysis of Variance Table . 12
2.5 Weighted Least Squares . 13
2.6 Unbalance – implications for addition or deletion of model terms 13

3 Model Assumptions and Model Choice 15
3.1 Limitations of the classical theory . 15

3.1.1 Distributional Results – the classical theory 16
3.2 Summary of the classical theory . 16

4 Regression splines 17
4.0.1 How many degrees of freedom? . 18

5 Comparing Models – Resampling Approaches 20
5.1 Notation & Strategy . 20
5.2 Examples – Bootstrap, parametric bootstrap and permutation approaches 22
5.3 References to worked examples . 23

6 Generalized Linear Models (GLMs) 23
6.1 Brief summary of theory . 24
6.2 Computation for GLMs . 25

7 References 25

1 LINEAR MODELS – KEY CONCEPTS 3

1 Linear Models – Key Concepts

1.1 Terminology

Note the distinction between fixed and random effects. In

yi = α+ βxi + εi, i = 1, 2, . . . n

α and β are fixed effects, while the εi are random effects. A common assumption is that the εi
are distributed as N(0, σ2), independently between observations. This is commonly known as
the iid normal asssumption.

1.2 Basis Functions

We begin by defining what we mean by a “linear model”. Define basis functions

φ1(x1, x2, . . . xk), φ2(x1, x2, . . . xk), . . . , φp(x1, x2, . . . xk)

In the simplest case p = k and φ1(x1, x2, . . . xp) = x1, φ2(x1, x2, . . . xp) = x2, . . . , φp(x1, x2, . . . xp) =
xp.

Then any function with values on the real line such that

f(x1, x2, . . . xk) = β1φ1(x1, x2, . . . xk) + β2φ2(x1, x2, . . . xk) + . . .+ βpφp(x1, x2, . . . xk)

where the elements of β = (β1, β2, . . . βp) are the only unknowns, specifies a linear model. In
words, any model in which E[y] is a linear combination of the φi is a linear model.

Note three important non-trivial special cases:

• Several φi’s are defined that together account for a factor term. See below for the definition
of “term”.

• Several φi’s are defined that together account for a spline term.

• Interaction terms may be created by multiplying together columns that relate to other
terms in the model.

The model is linear in the values that the φ’s take on the sample data. It is not, in general,
linear in the xi’s.

1.3 Terms – groups of basis functions

A factor with k levels requires, assuming that the model already has a constant term, k− 1 basis
elements to represent it. These basis elements together constitute a “term”, in this case a factor.
The Wilkinson & Rogers notation makes it possible to specify the factor as a term in the model,
leaving code that is called by R’s lm() function to determine the basis functions that are needed.

Similarly a 4 degree of freedom spline term requires four basis elements. Again, code that
is called by R’s bs() (B-splines) or ns() (natural splines) function will determine the basis
functions.

Quite generally, the basis functions φ1, φ2, . . . , φp can be categorized into groups, with one
group for each term the model, thus:

φ1, . . . , φm1︸ ︷︷ ︸
Term1

, φm1+1, . . . , φm2︸ ︷︷ ︸
Term2

, . . .

1.4 Factor basis functions

A simple example will do for now. Consider the sugar data frame in the R package. There are
three levels of trt – Control, A, B and C. Type into R:

1 LINEAR MODELS – KEY CONCEPTS 4

> contrasts(sugar$trt)
A B C

Control 0 0 0
A 1 0 0
B 0 1 0
C 0 0 1

The first factor level, ie Control, is taken as the baseline. The parameter associated with A is
then its difference from the baseline, and similarly for B and C.

Now see how this works in practice:

> sugar.lm <- lm(weight ~ trt, data=sugar)
> model.matrix(sugar.lm)

(Intercept) trtA trtB trtC
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 1 0 0
5 1 1 0 0
6 1 1 0 0
7 1 0 1 0
8 1 0 1 0
9 1 0 1 0
10 1 0 0 1
11 1 0 0 1
12 1 0 0 1
attr(,"assign")
[1] 0 1 1 1
attr(,"contrasts")
attr(,"contrasts")$trt
[1] "contr.treatment"

In the above, (Intercept) is really Control. The columns trtA, trtB and trtC measure differ-
ences from Control

Another possibility is

> sugar.lm0 <- lm(weight ~ -1 + trt, data=sugar)
> model.matrix(sugar.lm0)

trtControl trtA trtB trtC
1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 0 1 0 0
5 0 1 0 0
6 0 1 0 0
7 0 0 1 0
8 0 0 1 0
9 0 0 1 0
10 0 0 0 1
11 0 0 0 1
12 0 0 0 1
attr(,"assign")
[1] 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$trt
[1] "contr.treatment"

Omission of the “constant term” from the formula forces the use of one parameter for each
different factor level. With this parameterization no restriction on the parameters is needed.

2 SOLVING LEAST SQUARES SYSTEMS 5

1.5 Spline basis functions

We will come to these later. Spline basis functions are, in essence, a construction kit for con-
structing curves that have some predefined flexibility.

2 Solving Least Squares Systems

Least squares may be used because it seems intuitively sensible. Or it may be justified by
maximum likelihood, assuming independently and identically distributed normal errors.

The QR decomposition, usually achieved by a sequence of Householder reflections, is widely
used in the practical computer solution of linear least squares systems. As well as giving details of
the computational steps, it will be shown that important theoretical results follow rather directly
from the computational theory.

An understanding of the computational details can be important when efficient computation is
important, e.g., a computation is repeated a large number of times. Certain special types of least
squares problems are more efficiently handled by other methods, or by one or other adaptation
of QR methods. Sparse linear systems are an important special case. For very large linear least
squares systems, highly efficient computations and/or minimization of storage requirements can
be crucial to completing calculations within reasonable time or even to getting calculations to
run at all. See for example Bates (2006); Koenker and & Ng (2003).

Algorithms that are highly efficient on single processor systems may require substantial adap-
tation to get maximum advantage from multiple processor systems. Or different algorithms may
be required.

2.1 Householder Reflections, and QR

Given an n× p matrix X, the QR decomposition derives an orthogonal matrix Q and an upper
triangular matrix R such that

Q′X =
[

R
0

]
Then

X = Q
[

R
0

]
In the sequel, it will be shown that the decomposition can be achieved by constructing a

sequence of reflections that successively reduce to zero below diagonal elements in columns 1, 2,
. . . p of X.

A Householder reflection of a vector is achieved by pre-multiplication by a Householder matrix,
ie a matrix of the form:

H = I− γuu′, where γ =
2
||u||2

In least squares applications, with a model matrix X and vector of observations y, a sequence
of Householder reflections is used to reduce X to upper triangular from. The same sequence of
reflections is applied also to y. The first reflection yields H1X. The second reflection, which
operates only on rows of H1X subsequent to the first, replaces below diagonal elements in the
second column with zeros, yielding H2H1X.

Figure 1 shows diagrammatically the sequence of Householder reflections, applied to a 9× 4
model matrix X, for reducing a 9× 4 model matrix X to upper triangular form.

Before proceeding, note important properties of Householder reflections.

2.1.1 Properties of Householder reflections

1. A Householder matrix is orthogonal, ie, H′H = I.

2. The product of two Householder matrices is an orthogonal matrix.

2 SOLVING LEAST SQUARES SYSTEMS 6

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 0 0 0● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 0● ● ● ● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0● ● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0 0● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0 0● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0 0● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0 0● ● ● ● ● ● ● ● ● ●

0 0 0 00 0 00 0 0● ● ● ● ● ● ● ● ● ●

k == 0 k == 1 k == 2 k == 3 k == 4

x x x x
X H1X H2H1X H3H2H1X H4H3H2H1X

H1 H2 H3 H4

Figure 1: Diagrammatic representation of the sequence of steps that are applied to a 9×4 model
matrix X when Householder reflections are used in least squares calculations. The vector x whose
final n− k elements are used in forming uk and hence Hk is identified, for each of the successive
steps, with an arrow (↓). Thus H1 is formed using the first column of X (k = 0), H2 is formed
using the second and later elements in the second column of H1X (k = 1), H3 is formed using the
third and later elements in the third column of H2H1X (k = 2), and so on. The same sequence
of Householder reflections is applied to y.

3. For a suitable choice of H

Hx =

x1

x2

.
xk−1

ηk

0
.
.
0

The proof of (1) is a straightforward use of matrix algebra.

For (2), observe that

(H2H1)′(H2H1) = H′1H
′
2)H2H1

= H′1(H′2H2)H1

= H′1IH1

= H′1H1

For (3), observe that
(I− γuu′)x = x− uγ(u′x)

Consider the case k = 1. We set ui = xi (i = 2, . . . n), and require that γ(u′x) = 1. The
elements xi, i = 2, . . . n will then be replaced by zeros.

We ensure that γ(u′x) = 1 by a suitable choice of u1; it is convenient to write u1 = x1 + α.
Thus we have

u =

x1 + α
x2

.

.
xn

Then

γu′x =
2
‖u‖2

(‖x‖2 + αx1)

2 SOLVING LEAST SQUARES SYSTEMS 7

Hx

x
u

Figure 2: Geometrical representation of the reflection of x in the plane that is orthogonal to u.
Here H = I − γuu′, with u = x1 + sgn(x1)‖x‖.

For this to equal 1

2(‖x‖2 + αx1) = ‖u‖2

= ‖x‖2 + 2αx1 + α2

Thus
α2 = ‖x‖2 α = ±‖x‖

Figure 2 gives a geometrical representation of the reflection of x in the plane that is orthogonal
to u. Note that Hx is a positive or negative multiple (1, 0, . . . 0).

For numerical stability, we require α = sgn(x1)‖x‖, thus ensuring that x1 and α have the
same sign. It follows that

‖u‖2 = 2α(x1 + α)

u′x = α(x1 + α)

γ =
2
‖u‖2

=
1

α(x1 + α)

More generally, choose

u(k) =

0
.
0
xk + αk

xk+1

.

.
xn

2 SOLVING LEAST SQUARES SYSTEMS 8

where

αk = sgn(xk)

√√√√ n∑
i=k

x2
i

Then
Hk = I− γu(k)u′(k), where γ =

2
‖u(k)‖2

=
1

α(xk + α)

The sequence of reflections H1, H2, . . . , with x chosen as indicated in Figure 1, then achieves
the result that is required for the QR reduction.

2.2 Least Squares

Form

Q′X =
[

R
0

]
, Q′y =

[
f
r

]
where R (p×p) is upper triangular, 0 is an (n−p)×p array of zeros, f is p×1 and r is (n−p)×1.
Then

‖y −Xb‖2 = ‖Q′y −Q′Xb‖2

=
∥∥∥∥ f −Rb

r

∥∥∥∥2

= ‖f −Rb‖2 + ‖r‖2

Hence ‖y −Xb‖2 is minimized by choosing b such that

Rb = f

Solve first for bp, then for bp−1, . . . bp, in a procedure called backward elimination. The residual
sum of squares is ‖r‖2.

2.2.1 Normal equations

We have
Rb = f

Then
R′Rb = R′f

i.e.
R′Rb = R′f

Observe that

R′f =
[

R′ 0
] [f

r

]
= X′QQ′y = X′y

and that
R′Rb == X′QQ′X = X′X

Hence the so-called normal equations

X′Xb = X′y

Writing Xb = µ (the fitted values), the normal equations can then be written

X′µ = X′y

This form of the least squares equations carries over to generalized linear models, in the special
case where the canonical link is specified.

2 SOLVING LEAST SQUARES SYSTEMS 9

2.2.2 Computational issues

1. Algebraically, one can write
Q′X = HpHp−1 . . .H1X

Neither Q′ nor any of the matrices Hi is ever formed explicitly. For large matrices, this
would be an impossibly computationally expensive way to do the computations. In

HX = (I− γ uu′)X

it is important to do the calculation as

X− γ u(u′X)

Thus for each column xj of X, first form γ u′xj , then subtract this multiple of u from xj .

2. For calculation of row k of the array resulting from pre-multiplication by Hk, formulae
are available that are simplified and numerically more accurate than from direct use of
equation 1. A further simplification is to form the diagonal element as |αk|, multiplying
remaining elements in the ith row by sgn(αk). In the examples shown below, sequences
of such modified Householder reflections have been used. We no longer have Householder
reflections, but the Hi are, just as before, orthogonal matrices. The difference is that when
αk is negative, all elements in row k change sign relative to the Householder matrix Hk.

3. If the calculated diagonal element is zero to within machine precision, the easiest recourse
is to set all elements in the row to zero. The vector b is no longer uniquely defined. The
residual sum of squares is unique, independent of the action that may be taken to resolve
the indeterminacy in the parameters.

4. Let Xk be the matrix that consists of the first k columns of X. Then the information
needed to minimize

‖y −Xkb‖2

is available once the first k Householder steps are complete. It is found in the k×k submatrix
of R and in the first k elements of Q′y.

2.3 Demonstrations of the computational steps

Example 1

We will start with

X =

1 −6 0
1 −3 6
1 6 15
1 21 9

 y =

−3

1
2
6

The aim is to minimize

[−3− (b0 − 6b1)]2 + [1− (b0 − 3b1 + 6b2))]2 + [2− (b0 + 6b1 + 15b2)]2 + [6− (b0 + 21b1 + 9b2)]2

The sequence of sweeps is
1 −6 0 −3
1 −3 6 1
1 6 15 2
1 21 9 6

→

2 9 15 3
1 −4 1 1
1 5 10 2
1 20 4 6

→

2 9 15 3
1 21 6 6
1 5 9 1
1 20 0 2

The first sweep is equivalent to pre-multiplication by H1, and the second to to pre-multiplication

by H2. At this point, the element in the (4,3) position is zero, and use of H3 is not needed. (H3,
if it were formed, would be the identity matrix.)

Notice that, rather than recording below diagonal elements in the ith column as zero once
calculations for row i are complete, the values that were there previously have been left in place,
albeit printed in small type. It is straightforward to ensure that any computations with the upper
triangular matrix treat those elements as zeros. The values that are left in place can be used,
should they be required, to reconstruct the sequence of Householder steps.

2 SOLVING LEAST SQUARES SYSTEMS 10

Use of R

X1df <- data.frame(X1=c(-6,-3,6,21), X2=c(0,6,15,9), y=c(-3,1,2,6))
lm(y ~ X1+X2, data=X1df)
summary(lm(y ~ X1+X2, data=X1df)) # Gives more information
anova(lm(y ~ X1+X2, data=X1df)) # Gives different information
lm(y ~ X1+X2, data=X1df)$qr # qr decomposition

Observe that R stores somewhat different information in below diagonal positions.
Alternatively, R has a suite of functions that can be used for the underlying computations of

least squares calculations. These include qr(), qr.coef() and qr.solve(). Because they work
with matrices rather than data frames, they may be much faster than lm() for the handling of
large least squares problems. Approaches to the calculations that use these will be demonstrated
for the second slightly more substantial example that will now be presented.

Example 2

Table 1 shows the application of a sequence of 4 modified Householder reflections to a 9 × 5
array

(X, y) =

X0 X1 X2 X3
1 1 -1 -14
1 -1 6 -2
1 1 9 8
1 -2 8 -3
1 0 5 1
1 0 3 -1
1 4 2 9
1 7 0 8
1 8 -5 3

y
-7.7
8.5

19.6
11.4
11.4
6.8
2.5

-1.6
-13

The numbers in the X-matrix have been chosen so that the values in the R-matrix are integers.
The least squares system is for a model in which there is a constant term X0 and explanatory
variables X1, X2 and X3.

The least squares estimates are obtained by solving
3 6 9 3
0 10 −10 10
0 0 8 16
0 0 0 8

b =

12.63
−20.04

19.95
4

Observe the subsystems for which information is available

[
3
]

12.63←

Solve 3b0 = 12.63 ⇒ b0 = 4.21.
SS reduces by 12.632 (to CSSa)

aSS = sum of squares; RSS = residual SS; CSS =
corrected SS, i.e., RSS about mean

[
3 6
0 10

]
12.63

-20.04←
10b1 = −20.04 ⇒ b1 = −2.004; 3b0 +
6b1 = 12.63 ⇒ b0 = 8.22.
Additional reduction in RSS = 20.042.

 3 6 9
0 10 -10
0 0 8

 12.63
-20.04
19.95←

8b2 = 19.95; 10b1−10b2 = −20.04; 3b0 +6b1 +
9b2 = 12.63.
Additional reduction in RSS = 19.952.

In the full model, the RSS reduces by a further 42. The residual sum of squares from the full

2 SOLVING LEAST SQUARES SYSTEMS 11

1 1 -1 -14
1 -1 6 -2
1 1 9 8
1 -2 8 -3
1 0 5 1
1 0 3 -1
1 4 2 9
1 7 0 8
1 8 -5 3

7.7
8.5

19.6
11.4
11.4
6.8
2.5

-1.6
-13.0

→

3 6 9 3
1 -2.75 4 0.75
1 -0.75 7 10.75
1 -3.75 6 -0.25
1 -1.75 3 3.75
1 -1.75 1 1.75
1 2.25 0 11.75
1 5.25 -2 10.75
1 6.25 -7 5.75

12.63
7.27

18.37
10.17
10.17
5.57
1.27

-2.83
-14.23

→

3 6 9 3
1 10 -10 10
1 -0.75 6.18 11.29
1 -3.75 1.88 2.47
1 -1.75 1.08 5.02
1 -1.75 -0.92 3.02
1 2.25 2.47 10.12
1 5.25 3.76 6.94
1 6.25 -0.14 1.22

12.63
-20.04

16.76
2.14
6.42
1.82
6.09
8.41

-0.85

→

3 6 9 3
1 10 -10 10
1 -0.75 8 16
1 -3.75 1.88 -1.15
1 -1.75 1.08 2.94
1 -1.75 -0.92 4.79
1 2.25 2.47 5.36
1 5.25 3.76 -0.31
1 6.25 -0.14 1.48

12.63
-20.04
19.95
-2.74
3.63
4.21

-0.31
-1.34
-0.49

→

3 6 9 3
1 10 -10 10
1 -0.75 8 16
1 -3.75 1.88 8
1 -1.75 1.08 2.94

1 -1.75 -0.92 4.79

1 2.25 2.47 5.36

1 5.25 3.76 -0.31

1 6.25 -0.14 1.48

12.63
-20.04
19.95

4
1.46
0.68

-4.26
-1.11
-1.58

Table 1: Reduction of a 9 × 4 array to upper triangular form, with the same operations applied
to the fifth column y. Four modified Householder reflections are applied to the 9 × 5 array
(X,y).

model is
1.462 + 0.682 + 4.262 + 1.112 + 1.582 = 24.46

(Note that 24.46 is the result of rounding the RSS when it is calculated to full machine accuracy.)

Use of R

X2df <- data.frame(X1=c(1, -1, 1, -2, 0, 0, 4, 7, 8),
X2=c(-1, 6, 9, 8, 5, 3, 2, 0, -5),
X3=c(-14, -2, 8, -3, 1, -1, 9, 8, 3),
y=c(-7.7, 8.5, 19.6, 11.4, 11.4, 6.8, 2.5, -1.6, -13))

lm(y ~ X1+X2+X3, data=X2df)
summary(lm(y ~ X1+X2+X3, data=X2df)) # Gives more information
anova(lm(y ~ X1+X2+X3, data=X2df)) # Gives different information
lm(y ~ X1+X2+X3, data=X2df)$qr # qr decomposition

2 SOLVING LEAST SQUARES SYSTEMS 12

Alternatives to lm()

For computationally intensive least squares calculations, consider the use of qr() and associated
functions. For use of this approach, the user must first extract or construct the design matrix.
The following demonstrates the use of qr() and allied functions:

X <- with(X2df, model.matrix(~ X1+X2+X3))
X <- cbind(rep(1,9), X2df[, 1:3]) # More efficient alternative
QR <- qr(X)
qr.coef(QR, X2df$y)
qr.resid(QR, X2df$y)
etc, etc

Calculations may be computationally intensive because a major component of the calculation
is repeated a large number of times, and/or because they involve one or more large design
matrices.

2.4 The Analysis of Variance Table

We show the sequential analysis of variance table that is relevant to Example 2 in Subsection
2.3. From Table 1, we see that

Q′y =

12.63
-20.04
19.95

4
1.46
0.68

-4.26
-1.11
-1.58

The usual form of sequential analysis of variance table, which partitions the sum of squares

about the mean, is obtained by picking off the elements of Q′y in turn:

Term Sum of squares DF
X1 20.042 1
X2 19.952 1
X3 42 1

Residual 24.46 n− p

Compare this with

X2df.lm <- lm(y ~ X1+X2+X3, data=X2df)
anova(X2df.lm)

Now observe how this table can be obtained from the output of qr() and friends.

Now extract the table from the successive components of Qy
QR <- qr(cbind(rep(1,9), as.matrix(X2df[,1:3])))
Qty <- qr.qty(QR, X2df$y)
duetoSS <- Qty[2:4]^2 # Why is Qty[1] omitted?
rss <- sum(Qty[-(1:4)]^2)
aovtab <- data.frame(row.names=c("X1", "X2", "X3", "Residual"),
Df=c(rep(1,3), length(Qty)-4), SS=c(duetoSS, rss))

aovtab

It is important to note that this is a sequential analysis of variance table. In general the
contribution of each term depends on which (if any) term(s) precede it in the model.

2 SOLVING LEAST SQUARES SYSTEMS 13

2.5 Weighted Least Squares

If var[y] = V is known to within the scale factor σ2, then a linear transformation of the vector
y can be determined such that elements of the linearly transformed vector are iid.

A suitable linear transformation is conveniently obtained from the Cholesky decomposition
of V, by which

V = LL′

Then

var[L−1y] = L−1var[y]L′−1

= L−1VL′−1

= Inσ
2

Then we minimize
‖L−1(y −Xb)‖2

For this, replace y by y∗ = L−1y, and X by X∗ = L−1X, and proceed as before.
The normal equations become

X′WXb = X′Wy

i.e.,X∗′X∗b = X∗′y∗

where W = V−1

Then setting Xb = µ (the fitted values), this becomes

X′Wµ = X′Wy

This is form of the equations that carries across to Generalized Linear Models.

2.6 Unbalance – implications for addition or deletion of model terms

In data with suitable balance coefficients do not change when terms are added to, or dropped
from, the model. This is reflected in the R-matrix. It is insightful to observe how the R-matrix
(and regression coefficients) change when balanced data are modified, by use of unequal weights
or by dropping observations.

> pain <- data.frame(vasScore=c(0.67, 0.05, 3.67, 3.13),
+ trt=factor(rep(c("placebo", "baclofen"), 2),

levels=c("placebo", "baclofen")),
+ gender=factor(rep(c("male", "female"), c(2,2)),

levels=c("male", "female")),
+ number=c(3, 9, 15, 7))
> pain

vasScore trt gender number
1 0.67 placebo male 9
2 0.05 baclofen male 3
3 3.67 placebo female 7
4 3.13 baclofen female 15

> pain.lm <- lm(vasScore ~ gender + trt, data=pain)
> round(coef(pain.lm), 2)
(Intercept) genderfemale trtbaclofen

0.65 3.04 -0.58

Now omit consideration of the Gender effect:

2 SOLVING LEAST SQUARES SYSTEMS 14

> pain1.lm <- lm(vasScore ~ trt, data=pain)
> round(coef(pain1.lm), 2)
(Intercept) trtbaclofen

2.17 -0.58

Observe that the estimate of the treatment effect is unchanged.

Weighted analysis

> pain.wlm <- lm(vasScore ~ gender + trt, weight=number, data=pain)
> round(coef(pain.wlm), 2)
(Intercept) genderfemale trtbaclofen

0.66 3.03 -0.57

Observe that the estimate of the treatment effect has hardly changed. In general, the change
may not be so small, but will not reverse an effect that goes in the same direction for the genders
separarately.

Now omit consideration of the gender effect:

> pain.wlm1 <- lm(vasScore ~ trt, weight=number, data=pain)
> round(coef(pain.wlm1), 2)
(Intercept) trtbaclofen

1.98 0.63

Observe that the treatment effect now goes in the other direction. The combination of unequal
weights and omission of a relevant factor generates this misleading result.

Implications for the R-matrix

First, form the matrix on which the calculations will be performed.

> Xy <- cbind(model.matrix(~ gender + trt, data=pain),
vasScore = pain$vasScore)

> Xy
(Intercept) genderfemale trtbaclofen vasScore

1 1 0 0 0.67
2 1 0 1 0.05
3 1 1 0 3.67
4 1 1 1 3.13

Now use my function house() for the calculation. This modifies the Householder reflections
so that diagonal elements are positive. Relative to the result from use of Householder reflections
all elements in rows with a negative diagonal element are multiplied by -1.

> house(Xy, showzeros=3)
(Intercept) genderfemale trtbaclofen vasScore

1 2 1 1 3.76
2 0 1 0 3.04
3 0 0 1 -0.58
4 0 0 0 0.04

To obtain estimates of the model parameters, solve:

X =

 2 1 1
0 1 0
0 0 1

b =

 3.76
3.04
−0.58

Here are the calculations for the weighted analysis:

3 MODEL ASSUMPTIONS AND MODEL CHOICE 15

> house(Xy*sqrt(pain$number), showzeros=3)
(Intercept) genderfemale trtbaclofen vasScore

1 5.830952 3.772969 2.743977 13.62041763
2 0.000000 2.786522 -1.203271 9.17652419
3 0.000000 0.000000 2.650043 -1.49894659
4 0.000000 0.000000 0.000000 0.09892627

Now solve (values are rounded to three decimal places): 5.831 3.773 2.744
0 2.787 −1.203
0 0 2.650

b =

 13.620
9.177
−1.499

A key difference is that the R matrix no longer has a zero in the (2, 3) position. The consequence
is that the estimate of the treatment effect changes (and changes in sign) if there is no allowance
for Innings.

Further examples

An interesting experiment is to observe how dropping a few rows from a balanced design affects
the R matrix and hence the parameter estimates. For example, try the following:

house(model.matrix(lm(headwt ~ Cult + Date, data=cabbages))
xtabs(~ Cult + Date, data=cabbages[11:14,])
house(model.matrix(lm(HeadWt ~ Cult + Date, data=cabbages[-(11:14),])),

showzeros=4)[1:4,]
The (2,3) and (2,4) positions are not now occupied by zeros.

Drop out row 11
house(model.matrix(lm(HeadWt ~ Cult + Date, data=cabbages[-(11),])),

showzeros=4)[1:4,]

3 Model Assumptions and Model Choice

This section will discuss the the classical theory, and note implications for model choice. Finally,
recourses will be noted that can be used when the classical theory fails or is in doubt.

The classical theory that will now be described assumes that conditional on X

y ∼ N(Xβ, Inσ
2) (1)

3.1 Limitations of the classical theory

According to the strict requirements of the theory, the model must be known in advance. Neither
data based choice of transformation(s) nor variable selection are permitted. It is however per-
missible to divide the data set into two parts – a training set that is used to develop the model,
and a test set that is used to derive the eventual model fit. Or three parts may be required – a
training set, a holdout set on which which performance is optimized in order to tune the model,
and a test set that is used for the eventual model fit. An objection is that this makes poor use of
the data, which may be a serious issue for smallish data sets. Matters can be improved somewhat
by repeating the process, with the roles of training, test and any holdout set interchanged.

With respect to Equation 1, note that:

• Depending on how the fitted model will be used, the normality assumption is commonly
not of critical importance; approximate normality is enough. Independence is more crucial,
and less open to checking. If the form of departure from independence is known or can
be guessed, the dependence can be modelled. This leads into areas (time series modeling,
multi-level models, repeated measures, etc.) whose details are beyond the scope of the
present course.

3 MODEL ASSUMPTIONS AND MODEL CHOICE 16

• In practice limited use of plots or other mechanisms to determine appropriate transforma-
tions may be essential, to get a model fit that does not do violence to the data. Depending
on the details of the specific model and associated data, this may not not seriously inval-
idate assumptions. Limited variable selection, e.g., choose two explanatory variables out
of four, may be similarly acceptable. Again, much will depend on the details of the model
and associated data. Selection effects are in general a more serious problem than effects
from limited use of data-based transformations.

• Where one model emerges as very substantially superior to other models considered, selec-
tion effects are not an issue. Why?

When the model is fitted to the data used to select the model from a set of possible models,
the effect is anti-conservative. Thus, standard errors will be smaller than indicated by the theory,
and coefficients and t-statistics larger. Such anti-conservative estimates of standard errors and
other statistics may, unless the bias is huge, nevertheless provide the useful guidance.

Almost inevitably, none of the models on offer will be strictly correct. Mis-specification of
the fixed effects, and to a lesser extent of the random effects, is likely to bias model estimates,
at the same time inflating the error variance or variances, i.e., it may to some extent work in the
opposite direction to selection effects.

Recourses that are available when the classical theory fails will be discussed below.

3.1.1 Distributional Results – the classical theory

Observe that
var[Qy] = Q′InQσ2 = Inσ

2

Then

E
[

f
r

]
= E[Q′y] = Q′Xβ =

[
R
0

]
β

Thus,
f ∼ N(Rβ, Ipσ

2), r ∼ N(0, In−pσ
2)

Moreover ‖f‖2 and ‖r‖2 are each sums of independent σ2χ2
1 terms and therefore independent.

Finally b = R−1f is distributed as

N(β,R−1R′−1σ2), i.e., as N(β, (X′X)−1σ2)

As we will use an estimate of σ2 that has n− p degrees of freedom, individual elements of b are
distributed as tn−p. Elements bi of b are independent if and only if X′X is diagonal.

3.2 Summary of the classical theory

Models with iid errors

• y (n by 1) is a vector of observed values, X (n by p) is model matrix, and β (p by 1) is a
vector of coefficients.

• The model is y = Xβ + ε, i.e. yi = Xiβ + εi where the vector ε of residuals is n by 1

• Least squares normal equations are

X′Xβ = X′y

(assuming εi are iid normal, these are the maximum likelihood estimates)

• If variances are unequal, modify the normal equations to

X′WXβ = X′Wy

where W is a diagonal matrix with elements equal to the inverses of the variances (jus-
tification is from maximum likelihood, or argue that leverage should be independent of
variance)

• Assume [E[y] = µ = Xβ, i.e. E[ε] = 0.

4 REGRESSION SPLINES 17

General known variance-covariance matrix

More generally, if ε is multivariate normal with known variance-covariance matrix Σ, then ML
theory gives the equation as above with W = Σ−1.

Two values with a high positive correlation contain, jointly, less information than two in-
dependent values. Consider an extreme case; if the correlation is 1, they duplicate the same
information.

If the variance-covariance matrix Σ is not known, many different special methods are available
for various special cases that occur in pracitce. Models that may be relevant include time-series
models, spatial analysis and multi-level models.

Limitations

Standard errors, t- and F -statristics may be optimistic, because of model selection. Almost
inevitably, none of the models on offer will be strictly correct. Mis-specification of the fixed
effects, and to a lesser extent of the random effects, is likely to bias model estimates, at the same
time inflating the error variance or variances.

4 Regression splines

See Maindonald & Braun (2007, Section 7.5, pp. 234–238). See Ruppert et al (2003) for a more
complete account of regression splines.

We will use cubic splines, i.e., cubic polynomial curves are joined at internal knots, with the
requirement that the slopes and the second derivative must be continuous over the whole ranges of
values. Specifically, the slope and the second derivative must agree at the knots. Cubic splines are
the most commonly used form of spline, and have “nice” theoretical properties. Natural splines
have the (often sensible) further constraint that the second derivative is zero at the boundary
points, or boundary knots. Boundary knots are commonly taken to coincide with the extremes
of the data, but this is not necessary. It turns out that such curves can be expressed as a linear
combination of basis functions.

For our purposes, spline basis terms are a kitset for constructing a flexible variety of curves.
As the number of degrees of freedom increases, it becomes possible to accommodate an ever
increasing variety of curves. We will use natural splines, generated by the function ns() in R’s
spline() package.

A good way to get a feel for spline functions is to plot the basis functions. These depend on
the x-values that are chosen. We will examine (Figure 3) the spline basis functions when x-values
range from 1 to 50 in increments of one.

Generate the matrix of values of the basis functions
x <- 1:50
Xns <- ns(x, df=5)

Observe the attributes knots and Boundary.knots

> attributes(Xns)$knots
20% 40% 60% 80%
10.8 20.6 30.4 40.2
> attributes(Xns)$Boundary.knots
[1] 1 50

Code that will create the plots is

Create the plots
plot(1:50, Xns[,1], ylim=range(Xns), pch="1")
points(1:50, Xns[,2], pch="2", col="red")
points(1:50, Xns[,3], pch="3", col="green")
points(1:50, Xns[,4], pch="4", col="blue")
points(1:50, Xns[,5], pch="5", col="magenta")

4 REGRESSION SPLINES 18

11111111111
1
1
1
1
1
11111111

1
1
1
1
1
111111111111111111111

0 10 20 30 40 50

−
0.

2
0.

2
0.

4
0.

6

x

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2

2
2

2
2

2
2

2
2 2 2 2 2

2
2

2
2

2
2

2
2

2
2 2 2 2 2 2 2 2 23 3

3
3

3
3

3
3

3
3

3 3 3 3 3
3

3
3

3

3

3

3

3

4
4

4
4

4
4

4
4 4 4 4 4 4

4
4

4
4

4
4

4
4 4

5
5

5
5

5
5

5 5 5 5 5 5 5 5 5 5
5

5 5
5

5
5

5
5

5
5

5

5

5

Figure 3: Spline basis functions, with x = 1:50. Basis function 1 is plotted with 1’s, and so on.

The figure shows the first five curves in the kitset (all that are available with df=5), when x
ranges from 1 to 50 in increments of 1.

4.0.1 How many degrees of freedom?

A quadratic (hill or valley-shaped curve) has one degree of freedom for the intercept, plus one
degree of freedom for the slope, plus one degree of freedom for the curvature. Every additional
point where the second derivative is zero (the slope instantaneously ceases changing) accounts
for one additional degree of freedom.

Consider the following sine curve

x <- seq(from=0, to = 6*pi, length=50)
y <- sin(x)
plot(x,y)

The first ”hill” accounts for two degrees of freedom. There are five additional valleys/hills,
accounting in total for seven degrees of freedom, additional to the intercept. Hence we try

lines(x, fitted(lm(y~ns(x,7))), col="red")

Any fewer degrees of freedom is grossly inadequate. The choice df=6 shows how bad the
spline fit can be when there are not enough degrees of freedom to capture the major features of
the data. The choice df=8 is an obviously worthwhile improvement on df=7. Figure 4 provides
a comparison.

Note If B-splines are used (function bs()), two extra degrees of freedom might seem required to
capture the broad shape of the curve. There is however a choice in whether the available degrees
of freedom are used to give freedom to change shape near the boundary knots, or whether to fit
the necessary number of hills and valleys. The least squares algorithm uses that discretion to
good effect.

Regression splines – an example

The covsample dataset that is in the DAAGxtras package gives forest cover type (one of eight
types) as a function of various environmental attributes. There is no information on geo-
graphical coordinates. However, it might be expected that there would be an ordering in

4 REGRESSION SPLINES 19

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

0 5 10 15

−
1.

0
0.

0
1.

0

θθ (radians)

si
n(

θθ)

df=6

df=7
df=8
df=9

Figure 4: Regression spline fit to points that are determined by a sine curve, over the range 0
to 6π. A 6 d.f. natural spline curve is clearly grossly inadequate. A 7 d.f. curve gets the broad
shape more or less correct. An 8 d.f. curve is clearly preferable. The improvement with a 9 d.f.
curve is more marginal.

the data, reflecting some kind of geographical ordering. If so, this is likely to be reflected
in a systematic variation in the environmental attributes. The first 10 of there are continu-
ous variables. These are: Elevation, Aspect, Slope, Horizontal Distance To Hydrology, Verti-
cal Distance To Hydrology, Horizontal Distance To Roadways, Hillshade 9am, Hillshade Noon,
Hillshade 3pm, Horizontal Distance To Fire Points.

We will investigate whether the first of these (Elevation) seems to vary systematically through
the data. We create a variable dist that measures distance through the data.

covdf <- cbind(covsample[, 1:10], dist=(1:11318-0.5)/11318)
First, investigate use of lowess()
with(covdf, plot(lowess(dist, V1))) ## too smooth
with(covdf, plot(lowess(dist, V1, f=0.1))) ## less smooth
with(covdf, plot(lowess(dist, V1, f=0.01))) ## reasonable?

Now, use regression splines. The final plot from the lowess has 11 or 12 features that might
be characterised as hills or valleys or plateaus. We will try 15 d.f.

hat <- fitted(lm(V1 ~ ns(dist,15), data=covdf))
Overplot on the earlier lowess smooth
lines(hat ~ dist, data=covdf, col="red")

This seems not quite adequate. It does rather poorly at approximating one of the major features,
as identified by the lowess curve. Use of a much higher number of degrees of freedom makes
little difference, however. The difference is probably that lowess() gives a robust smooth. This
can be checked by using rlm() (a robust version of lm()) for the fit. We will be generous in the
number of degrees of freedom that are allowed.

with(covdf, plot(lowess(dist, V1, f=0.01)))
hat <- fitted(rlm(V1 ~ bs(dist,40), data=covdf))
lines(hat ~ dist, data=covdf, col="red")
Compare with use of lm() with 40 d.f.

5 COMPARING MODELS – RESAMPLING APPROACHES 20

hat <- fitted(lm(V1 ~ bs(dist,40), data=covdf))
lines(hat ~ dist, data=covdf, col="blue")

5 Comparing Models – Resampling Approaches

Here our interest will be in comparing residual sums of squares for models that are not necessarily
nested. The methodology will be demonstrated using the fruitohms data in the DAAG package.

Resampling methods can be a useful recourse when theoretical results are unavailable, or when
the accuracy of asymptotic results cannot be guaranteed. They allow a removal or weakening of
normality assumptions. While a recourse that is often useful, they are not the answer to every
problem of failure of assumptions.

Three methods will be noted:

1. Permutation methods locate a fitted model statistic (e.g., the residual mean square) within
the distribution that is obtained when observed values are randomly permuted. If the
residual mean square for the fitted model is in the upper tail of this distribution, this is
taken as evidence that the model has some predictive power. Another possibility is to work
with permuted residuals, thus estimating a permutation distribution for model coefficients.

2. In cross-validation, observations are split into k parts. For each of i = 1, 2, . . . , k, the ith
part is left aside for use in testing, the model is fitted to the remaining k − 1 parts, and
predictions made for the ith part. This yields predictions for all observations that have been
derived independently of those observations. An accuracy measure can then be computed.

3. The idea of the bootstrap is to regard the sample as a microcosm of the population. Re-
peated with replacement resamples are taken, and the model fitted to each resample, yield-
ing a sampling distribution of parameter estimates. There are many variations on this
simple scheme.

5.1 Notation & Strategy

For this initial discussion, denote the models as M1 and M2. We first fit the model M1 to the
original data, then obtaining fitted values and residuals. Also, we fit M2, and note the change as
measured by a statistic F̃12 that is calculated just as for the usual F -statistic.

If M2 is not giving an improvement, then F̃12 will differ only by statistical error from the
F12 observed when a random set of residuals are added. It will, in effect, be a random sample
from the distribution obtained when repeated random sets of residuals are added on to the fitted
values, and F12 is calculated for each such new set of “observations”. We can then locate F̃12

within this distribution. If F̃12 falls above its 95th percentile then we will judge that, at the 5%
significance level, M2 improves on M1. The change when the residuals are correctly attached is,
on this criterion, more than statistical variation.

With slight modification, the argument applies if the resdiduals are obtained by permuting the
original residuals. If model M2 is not improving on M1, then the change when new “observations”
are derived by adding randomly permuted residuals back onto the fitted values will be attributable
to statistical variation.

It also applies, again in slightly modified from, if repeated boostrap samples of the original
residuals are used. Note that we are not, here, deriving bootstrap estimates of some parameter.
While there are theoretical issues even with this use of the bootstrap, we do not have the issues
of bias that commonly arise when the bootstrap is used to estimate variance-like statistics.

Note that the three distributions contemplated above are different. There will, accordingly,
be differences of power between the three approaches.

The methodology can be varied or extended in various ways:

• We can choose M2 if it appears, on average, to improve on M1, i.e., choose M2 if the p-value
is less than 0.5.

• This same style of approach can be used if M2 is selected from a wider class of models. The
model selection step must then be repeated for each new bootstrap or permutation sample.

5 COMPARING MODELS – RESAMPLING APPROACHES 21

Code

Here are functions that can handle the calculations:

‘funF‘ <-
function(mmat1, mmat2, y,

showstats=FALSE, divide=10^6){
mmat1 & mmat2 must be model matrices
M1 <- mmat1
M2 <- mmat2
n <- dim(M1)[1]
qrM1 <- qr(M1)
qrM2 <- qr(M2)
ss <- c(sum(qr.resid(qrM1, y)^2),

sum(qr.resid(qrM2, y)^2))
df <- dim(mmat1)[1] - c(qrM1$rank, qrM2$rank)
ssd <- ss[1] - ss[2]
F12 <- ssd/ss[2]*df[2] # F-like statistic
if(showstats){
print(paste("Estimates of sigma^2 (Xply by ", divide, ")", sep=""))
names(ss) <- paste(df, "df", sep="")
print(ss/df/divide)
print(paste("’F-statistic’ = ", round(F12,4),

" (df=", df[1]-df[2], " & ", df[2],")", sep=""))
}
invisible(F12)

}

First try running funF() with the initial data:

> M1.lm <- lm(ohms ~ poly(juice, 3), data=fruitohms)
> M2.lm <- lm(ohms ~ ns(juice, 4), data=fruitohms)
> M1 <- model.matrix(M1.lm)
> M2 <- model.matrix(M2.lm)
> funF(M1, M2, y=fruitohms$ohms,showstats=TRUE)
[1] "Estimates of sigma^2 (Xply by 1e+06)"

124df 123df
0.9723468 0.9343716
[1] "’F-statistic’ = 6.0397 (df=1 & 123)"

The function bootF now shown can be used for the calculations. The default is to use
bootstrap samples of the residuals (type="ordinary"). Other options are type="permutation"
and type="parametric".

‘bootF‘ <-
function(data=fruitohms, statistic=funF, R=999,

form1= ohms ~ poly(juice, 3), form2= ohms ~ ns(juice,4),
type=c("ordinary", "parametric", "permutation")){

By default, type[1]="ordinary" is used.
Alternatives are type="parametric" or type="permutation"
M1mod <- lm(form1, data=data)
sigma <- summary(M1mod)$sigma
n <- dim(data)[1]
M1 <- model.matrix(M1mod)
M2 <- model.matrix(form2, data=data)
M1fit <- fitted(M1mod)
M1resid <- resid(M1mod)
R2 <- R+1

5 COMPARING MODELS – RESAMPLING APPROACHES 22

y <- M1fit+M1resid
boot.out <- numeric(R2)
boot.out[1] <- funF(mmat1=M1, mmat2=M2, y=y, showstats=TRUE)
for(i in 2:R2){
if(type[1] =="permutation")
index <- resid <- M1resid[sample(1:n)] else

if(type[1] ==
"ordinary") resid <- M1resid[sample(1:n, replace=TRUE)] else

if(type[1] =="parametric") resid <- rnorm(n, sd=sigma)
y <- M1fit+resid
boot.out[i] <- statistic(mmat1=M1, mmat2=M2, y=y)

}
testval <- boot.out[1]
pval <- sum(boot.out >= testval)/R2
print(c("p-value" = round(pval,5)))
invisible(boot.out)

}

5.2 Examples – Bootstrap, parametric bootstrap and permutation ap-
proaches

Bootstrap samples of the residuals

We will now test the use of ordinary bootstrap samples in a situation where we pretty much know
the answer. For this purpose, we take the models to be ohms$poly(juice,2) and ohms$poly(juice,3),
so that the models are nested.

> poly45stats <- bootF(form1=ohms ~ poly(juice,4), form2 = ohms ~ poly(juice,5))
[1] "Estimates of sigma^2 (Xply by 1e+06)"

123df 122df
0.8878564 0.8859704
[1] "’F-statistic’ = 1.2618 (df=1 & 122)"
p-value
0.263

Here, this statistic is an analysis of variance F -statistic. Thus, we may, provided iid normality
assumptions are acceptable, refer it to the relevant theoretical F -distribution. This gives a p-value
that is essentially the same as the bootstrap distribution p-value.

> 1-pf(1.2618, 1,122)
[1] 0.2635162

Saving the values in poly45stats allows us, if we wish, to examine other percentiles of the bootstrap
distribution.

For the comparison between poly(juice,3) and ns(juice, 4) we have:

> poly3ns4ord <- bootF(form1=ohms ~ poly(juice,3), form2 = ohms ~ ns(juice, 4))
[1] "Estimates of sigma^2 (Xply by 1e+06)"

124df 123df
0.9723468 0.9343716
[1] "’F-statistic’ = 6.0397 (df=1 & 123)"
p-value
0.015

The parametric bootstrap

This is not, strictly, a bootstrap. Rather it is a simulation that is based on a theoretical distribu-
tion. Here, the residuals are sampled from the theoretical normal, with the standard deviation
taken to be the square root of the mean residual sum of squares from fitting the model M1.

6 GENERALIZED LINEAR MODELS (GLMS) 23

> poly3ns4sim <- bootF(form1=ohms ~ poly(juice,3),
+ form2 = ohms ~ ns(juice, 4), type="parametric")
[1] "Estimates of sigma^2 (Xply by 1e+06)"

124df 123df
0.9723468 0.9343716
[1] "’F-statistic’ = 6.0397 (df=1 & 123)"
p-value
0.011

The permutation distribution

> poly3ns4perm <- bootF(form1=ohms ~ poly(juice,3),
+ form2 = ohms ~ ns(juice, 4), type="permutation")
[1] "Estimates of sigma^2 (Xply by 1e+06)"

124df 123df
0.9723468 0.9343716
[1] "’F-statistic’ = 6.0397 (df=1 & 123)"
p-value
0.021

The permutation distribution is widely useful in contexts where the asymptotic or other theory
is in doubt, and where the null hypothesis implies that permuting the y-values, or permuting the
values of an explanatory variable, should on average not affect the model’s fitted values. It can
be useful in the fitting of logistic regression models.

5.3 References to worked examples

For examples of the use of resampling methods, see Maindonald & Braun (2007) thus:

p.90: Brief general comments;

pp.129–134 (Section 4.7): Permutation methods & the bootstrap;

pp.159–164 (Section 5.5): Cross-validation & the bootstrap, in straight line regression;

pp.257–258 (Subsection 8.2.3): Cross-validation, in logistic regression;

pp.381–383 (Subsections 12.1.2): Use of the bootstrap to check the stability of a principal
components plot;

pp.386–388 (Subsections 12.2.2 & 12.2.3): Cross-validation, in discriminant analysis.

pp.400–403 (Subsection 12.3.3): Use of cross-validation in variable selection for discriminant
analysis.

6 Generalized Linear Models (GLMs)

The main case of interest will be logistic regression models, where the outcome is binary, i.e. 0
or 1. There will be some discussion of the general theory, but mainly for its relevance to this
special case.

For examples of logistic regression models, see Maindonald & Braun (2007, Sections 8.1 &
8.2). Suitable texts for further reading and reference, in increasing order of technical demands,
are Faraway (2006); Wood (2006); McCullagh and Nelder (1989).

In principle, models with a 0/1 outcome can be fitted using least squares. If unweighted least
squares is used, and the variance really is that for a Binomial(n, p) distribution with n = 1, then
estimates will be inefficient, though the effect will be of little consequence if fitted proportions lie
between perhaps 0.25 and 0.75. Some fitted values may be less than 0 or greater than 1. Where

6 GENERALIZED LINEAR MODELS (GLMS) 24

a continuous explanatory variable has a non-zero coefficient, extrapolation to suitably small or
suitably large values will always yield predicted proportions that are outside the range (0,1).

The efficiency of least squares estimates can be improved by taking the fitted proportions
from an initial least squares fit, and using these to determine weights for a second fit. This is a
step on the way to using a maximum likelihood fit for a generalized linear model. The remedy
for preventing silly predicted values is to fit a linear model on the scale of a suitably transformed
predicted value, which is exactly what GLMs are designed to do.

It will be interesting to compare logistic regression fits with least squares fits, for roughly
equivalent models, to see what difference it makes.

6.1 Brief summary of theory

• As before, we have µ = E[y] (n by 1), X (n by p), β (p by 1), and ε (n by 1).

• The model is now
f(µ) = Xβ, where E[y] = µ

Here, f(), which must be monotonic, has the name link function. For example,

f(µi) = log(
µi

Ni − µi

)

• The distribution of yi is a function of the predicted value µi, independently for different
observations. The distributions thus cannot be described as identical.

• An extension is to the quasi-exponential family, where the variance is a constant multiple
of an exponential family variance. The multiplying constant is estimated as part of the
analysis.

• Commonly used distributions are the normal, binomial and Poisson. Applications for mod-
els with quasibinomial and quasipoisson errors may be more extensive than for their expo-
nential family counterparts.

• GLMs with binomial errors are formally equivalant to discriminant models where there are
two categories. The GLM framework has advantages for some problems.

• Output is in much the same form as for the lm models. There are additional subtleties of
interpretation – a z value is not a t-statistic, though for some GLMs that yield z values
there are specific circumstances where it is reasonable to treat them z values as t-statistics.
[More technically, they are Wald statistics.]

GLMs – commentary on the theory

Maximum likelihood parameter estimates

• Recall that the equation is
f(µ) = E (y) = Xβ

where µ = E [y]

• Assuming a distribution from the exponential family, the maximum likelihood estimates of
the parameters are given by

X′Wµ = X′Wy

where f(µi) = Xiβ, and W is a diagonal matrix.

• Note that the (diagonal) elements Wii of W are functions both of var[yi] and of f(µi)

7 REFERENCES 25

Adequacy of theoretical approximations

• Except in special cases, the statistical properties of parameters rely on asymptotic results.
Standards errors and t-statistics rely on first-order Taylor series approximations that, in
the worst case, can fail badly. This applies, especially, to binary logistic regression.

• For logistic regression models, and Poisson models with small expected values, assess-
ments of predictive accuracy should be derived using a resampling approach, perhaps cross-
validation.

6.2 Computation for GLMs

Above, it was noted that
X′Wµ = X′Wy

where
f(µ) = E (y) = Xβ,

for a suitable monotonic “link” function f(). Here, µ = g(Xβ) where g() is the inverse function
to f(). For all the common link functions f(), other than the identity, µ is a non-linear function
of the regression parameters. Also, the matrix W is in general a function of the parameters that
are to be estimated. Iteratively reweighted least squares is used, i.e. Newton-Raphson. Each step
involves a standard least squares calculation with a diagonal matrix of weights. [To be expanded
. . .]

7 References

References

Bates, D, 2007. Comparing least squares calculations. Vignette “Comparisons” accompanying
the package “Matrix” for R.

Bishop, C. M, 2006. Pattern Recognition and Machine Learning. Springer.
[Chapters 3 and 4 offer an interesting and somewhat novel perspective on regression and
discriminant methods. The theoretical framework is that of Bayesian Decision theory. This is a
demanding text. There is helpful comparative commentary on the methods that are described.]
Cook, R D and Weisberg, S., 1999. Applied Regression Including Computing and Graphics.
Wiley.
[This emphasizes geometric insights, linear predictors (transformation of predictors, if possible,
so that pairwise regression relationships are linear), and dimension reduction.]

Faraway, J. J. 2006. Extending the Linear Model with R. Chapman & Hall/CRC.

Koenker, R and Ng, P, 2003. SparseM: A sparse matrix package for R. Journal of Statistical
Software 8(6).

Maindonald, J. H. and Braun, W.J. 2007. Data Analysis and Graphics Using R – An Example-
Based Approach. 2nd edition, Cambridge University Press.
URL:http://wwwmaths.anu.edu.au/~johnm/r-book.html

McCullagh, P. and Nelder, J. A., 1989. Generalized Linear Models. Chapman and Hall, 2nd

edition.

Ruppert, D., Wand, M., and Carroll, R. 2003. Semiparametric Regression. Cambridge University
Press.

Wood, S. N., 2006. Generalized Additive Models. An Introduction with R. Chapman & Hall/CRC.
[This has an elegant treatment of linear models and generalized linear models, as a lead-in to
generalized additive models.]

http://wwwmaths.anu.edu.au/~johnm/r-book.html

	Linear Models -- Key Concepts
	Terminology
	Basis Functions
	Terms -- groups of basis functions
	Factor basis functions
	Spline basis functions

	Solving Least Squares Systems
	Householder Reflections, and QR
	Properties of Householder reflections

	Least Squares
	Normal equations
	Computational issues

	Demonstrations of the computational steps
	The Analysis of Variance Table
	Weighted Least Squares
	Unbalance -- implications for addition or deletion of model terms

	Model Assumptions and Model Choice
	Limitations of the classical theory
	Distributional Results -- the classical theory

	Summary of the classical theory

	Regression splines
	How many degrees of freedom?

	Comparing Models -- Resampling Approaches
	Notation & Strategy
	Examples -- Bootstrap, parametric bootstrap and permutation approaches
	References to worked examples

	Generalized Linear Models (GLMs)
	Brief summary of theory
	Computation for GLMs

	References

