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The Monge-Ampère equation
and its geometric applications

Neil S. Trudinger & Xu-Jia Wang

Abstract

In this paper we present the basic theory of the Monge-Ampère equation together with
a selection of geometric applications, mainly to affine geometry. First we introduce the
Monge-Ampère measure and the resultant notion of generalized solution of Aleksandrov.
Then we discuss a priori estimates and regularity, followed by the existence and uniqueness
of solutions to various boundary value problems. As applications we consider the exis-
tence of smooth convex hypersurfaces of prescribed Gauss curvature, as well as various
topics in affine geometry, including affine spheres, affine completeness and affine maximal
hypersurfaces. In particular we describe our recent work concerning the affine Bernstein
and the affine Plateau problems.
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1 Introduction

In this paper we consider the Monge-Ampère equation

detD2u = f(x, u, Du) (1.1)

and its geometric applications, particularly in affine geometry. Here detD2u denotes
the determinant of the Hessian matrix D2u, u is a function in the Euclidean space Rn,
and f is a given function. This is a fully nonlinear, second order partial differential
equation. It is elliptic when the Hessian matrix D2u is positive definite, namely when
u is locally uniformly convex.

When f = K(x)[1 + |Du|2](n+2)/2, equation (1.1) becomes the prescribed Gauss
curvature equation, and has been extensively studied in the last century. The Monge-
Ampère equation is also fundamental in affine geometry. Let M be a locally convex
hypersurface in Rn+1. One can define the affine metric g = K− 1

n+2 II on M, where K is
the Gauss curvature and II is the second fundamental form. There are two important
topics in affine geometry which are closely related to the Monge-Ampère equation, one
is affine spheres and the other is affine maximal surfaces. An affine sphere in the graph
case satisfies the Monge-Ampère equation (1.1) while an affine maximal surface satisfies
the fourth order equation

n∑

i,j=1

U ij∂xi∂xj [detD2u]−
n+1
n+2 = 0, (1.2)

where {U ij} is the cofactor matrix of D2u.
In many other applications, such as in isometric embedding, optimal transporta-

tion, reflector shape design, there arise equations of Monge-Ampère type in the more
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general form,
det[D2u−A(x, u,Du)] = f(x, u,Du), (1.3)

where A = {aij} is a symmetric matrix. The Monge-Ampère equation also occurs
in the study of special Lagrangian sub-manifolds, prescribing Weingarten curvature,
and in complex geometry on toric manifolds. It also arises in meteorology and fluid
mechanics where the Monge-Ampère equation is coupled with a transport equation, such
as the semi-geostrophic equation. Due to this profusion of applications and beautiful
theory, equations of Monge-Ampère type are the most important fully nonlinear partial
differential equations.

The Monge-Ampère equation draws its name from its initial formulation in two
dimensions, by the French mathematicians, Monge [Mon] and Ampère [Am], about two
hundred years ago. It was subsequently studied by Minkowski, Bernstein, Schauder,
Lewy and many others. See [Go] for an early treatment of the equation. In the last
century the development of the Monge-Ampère equation was closely related to geometric
problems, such as the Minkowski problem of finding a convex body, whose boundary
has its Gauss curvature prescribed as a function of its normal [M1], the problem of local
isometric embedding of Riemannian surfaces in R3 and the related Weyl problem [We].
The first notable result is by Minkowski [M1, M2], who proved the existence of a weak
solution to the Minkowski problem by approximation by convex polyhedra with given
face areas. Using convex polyhedra with given generalized curvatures at the vertices,
Aleksandrov [A1, A3] also proved the existence of a weak solution to the Minkowski
problem (in all dimensions), as well as the C1 smoothness of solutions in two dimensions
[A2]. Moreover, Minkowski, Aleksandrov, and Lewy [L2], also proved the uniqueness
of weak solutions. Both notions of weak solutions by Minkowski and Aleksandrov have
continued to be frequently used in recent years. In fact, Aleksandrov’s generalized
solution corresponds to the curvature measure in the theory of convex bodies while the
weak solution of Minkowski is related to the area measure [Sch].

The regularity of weak solutions has been a much more difficult challenge. Lewy
[L1] proved that a C2 convex surface with analytic Gauss curvature is also analytic.
Lewy’s argument involves a “characteristic” theory, which was followed by Heinz [H1,
H2, H3] in a series of papers and was applied to the more general Monge-Ampère type
equation (1.3). In particular Heinz obtained the genuine interior C2,α a priori estimates
for the two dimensional Monge-Ampère equation (1.1), assuming the inhomogeneous
term f is Hölder continuous. A main ingredient in this “characteristic” theory is the so
called partial Legendre transform, which was introduced by Darboux in the 19th century
and used by many authors. This transform reduces the Monge-Ampère equation to a
quasilinear elliptic system. We refer the reader to [Scu] for details of Heinz’ work and
the partial Legendre transform.

For the existence of smooth (but not necessarily analytic) solutions to the Minkowski
problem, it suffices to establish global C2,α a priori estimate for solutions with suffi-
ciently smooth Gauss curvature. The second derivative estimate for the Weyl problem
was already proved by Weyl in 1916 [We], and by Miranda [Mir] for the Minkowski
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problem. By the second derivative bound, the equation becomes uniformly elliptic. So
the C2,α a priori estimate follows from Morrey’s regularity result for two dimensional
uniformly elliptic equation. Therefore Nirenberg [N1], based on Morrey and Miranda’s
estimates, developed a regularity theory for two dimensional elliptic equations and re-
solved the Minkowski problem by the continuity method [N2]. Meanwhile, Pogorelov
[P1] established the C2,α estimate, as well as the corresponding estimate for the Dirich-
let problem in a small disc [P2, P3], which implies the regularity of weak solutions to
the Minkowski problem. Note that the Weyl problem is of the same nature and can be
solved by similar arguments.

In high dimensions, based on his earlier works [A1, A3], Aleksandrov [A4], and
also Bakelman [B1] in dimension two, introduced a generalized solution to the Monge-
Ampère equation and proved the existence and uniqueness of solutions to the Dirichlet
problem. The treatment also lead to the Aleksandrov-Bakelman maximum principle
which plays a fundamental role in the study of non-divergence elliptic equations [GT].
The regularity of generalized solutions in high dimensions is a much harder problem.
A breakthrough was made by Calabi [Ca1]. He established the interior third derivative
estimate in terms of a uniform bound for the second derivatives. His computation is
intrinsic, regarding uxixj dxidxj as a metric. But in high dimensions (n ≥ 3), there is
no genuine local a priori estimate for the second derivatives. Pogorelov [P8] found a
convex function which contains a line segment and satisfies the Monge-Ampère equation
(1.1) with positive, analytic right hand side f . However, Pogorelov [P5] established an
interior second derivative estimate for solutions satisfying affine boundary condition. A
different proof was later given by Ivochkina [I1]. Therefore by Calabi and Pogorelov,
the a priori estimates were established for strictly convex solutions, or for solutions
which do not contain a line segment with both endpoints on boundary. In early 1980’s,
Evans [Ev] and Krylov [K1, K3] established the interior regularity for fully nonlinear,
uniformly elliptic equations satisfying a concavity or convexity condition. Therefore
Pogorelov’s second derivative estimate together with Evans [Ev] and Krylov [K1, K3]
also implied the smoothness of Aleksandrov’s generalized solutions [GT].

But to prove the interior regularity of Aleksandrov’s generalized solution, from the
a priori estimates is still very tricky, and was achieved independently by Cheng and Yau
[CY2] and Pogorelov [P8]. They first proved by the continuity method the existence of
a unique smooth solution to the multi-dimensional Minkowski problem [CY1, P8], and
then reduced the existence of regular solutions of the Dirichlet problem to the Minkowski
problem, assuming the boundary function is C2 smooth. See also [CW2] for a Gauss
curvature flow approach to the Minkowski problem. The C2 boundary condition can
be relaxed to C1,α with α > 1 − 2

n [P6, U3]. The existence of a regular solution was
also obtained by Cheng and Yau [CY4] and Lions [Ls1] by different arguments.

Because the Monge-Ampère equation is fully nonlinear, the estimates at the bound-
ary required different techniques and advances were not made until the 1980’s. The
global second derivative estimate, for general Dirichlet boundary value, was obtained
by Ivochkina [I2] (see also [CNS, GT]), and also by Nirenberg, Cheng and Yau. The
third derivative estimate requires completely new ideas and was obtained independently
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by Caffarelli-Nirenberg-Spruck [CNS] and Krylov [K2, K3]. Therefore by the continuity
method, one obtains globally smooth solutions to the Dirichlet problem, and so Alek-
sandrov’s generalized solution is smooth up to the boundary provided all given data are
smooth. Recently the authors proved the global C2,α estimate for the Dirichlet problem
under optimal conditions [TW7].

For the prescribed Gauss curvature equation, in addition to the Minkowski prob-
lem, one may also consider the Dirichlet problem and the more general Plateau type
problem, as suggested by Yau [Y2]. A necessary condition for the existence of a gener-
alized solution to the Dirichlet problem is that the total curvature is less than or equal
to 1

2 |Sn|. In the case when the total curvature is less than 1
2 |Sn|, the existence and

regularity were treated in [B2, TU]. When the total curvature is equal to 1
2 |Sn|, the

gradient of solutions will necessarily tend to infinity near the boundary, and one can
not prescribe the boundary value of the solutions anymore. The existence and regular-
ity in this extreme case were studied by Urbas [U1, U5, U6], who established a very
deep regularity result, namely the graph must be smooth and the boundary value must
also be a smooth function. The Plateau type problem was also treated and solved for
smooth manifolds by the authors [TW4], see also [GS2].

In the above discussions, one assumes that the inhomogeneous term f is positive
and sufficiently smooth (except in dimension two). When f is merely continuous, Caf-
farelli proved, by a perturbation argument, a surprising interior W 2,p estimate for any
p > 1, assuming that f is continuous, which turns out to be necessary [W2]. Caffarelli
also obtained an interior C2,α estimate for Hölder continuous f . See [W7, JW] for de-
tails of the C2,α estimate and extension to Dini continuous f . By the a priori estimates
of Calabi and Pogorelov, a crucial point for the perturbation argument is the strict
convexity of solutions, which in dimension two was known to Aleksandrov and Heinz
[H2] long ago, and was established by Caffarelli [C1] in high dimensions. In the two
dimensional case, the W 2,p estimate has been previously obtained in [NS] and the C2,α

estimate is due to Heinz [H2], see also [Scu].
When the assumption f > 0 is relaxed to f ≥ 0, equation (1.1) is degenerate

elliptic and has also been studied by many authors. A significant result, obtained by
C.S. Lin [Ln1] for dimension two, and Hong and Zuily [HZ] in high dimensions, is the
existence of a local smooth solution. A nontrivial global second derivative estimate
for the Dirichlet problem can be found in [GTW], but a satisfactory general regularity
theory is still lacking.

In recent years advances have been made in the investigation of the more general
Monge-Ampère equation (1.3), which arises in applications such as optimal transporta-
tion and reflector design, as prescribing the Jacobian determinant of an associated
mapping. A natural boundary condition, called the second boundary condition, is to
prescribe the image of the mapping. For the standard Monge-Ampère equation (1.1),
the interior regularity of solutions was proved in [C4] and the global regularity in [C5].
See also in [D3] for n = 2 and [U7] for n ≥ 2. For the general equation (1.3), a sufficient
condition for the interior regularity (see (3.43) below), whose degenerate form turns out
also to be necessary [Lo], was found in [MTW], and the global regularity was estab-
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lished in [TW8], under the degenerate form of the condition. We note that the global
regularity and existence of solutions to the Neumann problem were obtain in [LTU], but
the oblique boundary problem does not enjoy the global regularity in general [U4,W1],
see §4.2 below.

The application to affine geometry was a main motivation for the development of
the Monge-Ampère equation. A classical problem in affine geometry is the classification
of affine spheres. It was proved by Blaschke [Bls] in dimension two, and by Deicke [De]
and Calabi [Ca2] for high dimensions, that a (complete) elliptic affine sphere must be
an ellipsoid. See also [An] for a different proof by geometric flow. The classification of
parabolic affine spheres is related to the study of entire solutions to the Monge-Ampère
equation

detD2u = 1 in Rn. (1.4)

It was proved by Jörgens [Jo] for n = 2, Calabi [Ca1] for 3 ≤ n ≤ 5 [Ca1], and
Pogorelov [P7] for all n ≥ 2, that an entire solution must be a quadratic function.
Calabi’s restriction to the dimensions n ≤ 5 is due to that in these dimensions he was
able to show that his third derivative estimate at a point depends only on that of the
second derivative at the given point. Jörgens, Calabi, and Pogorelov’s result was re-
proved by Cheng and Yau [CY3] by a different argument. The hyperbolic affine sphere
problem is related to a Dirichlet problem for the Monge-Ampère equation (1.1) and was
also resolved by Cheng and Yau [CY2, CY3].

Applications to affine maximal surfaces are a more recent development. Note that
the affine maximal surface equation (1.2) can also be written as a system

U ijwij = f, (1.5)

detD2u = w−
n+2
n+2 , (1.6)

(with f = 0), where (1.5) is a linearized Monge-Ampère equation and (1.6) is the stan-
dard Monge-Ampère equation. By the C2,α estimate for the Monge-Ampère equation
[C2] and the Hölder estimate for the linearized Monge-Ampère equation [CG2], the au-
thors [TW2, TW6] established the W 4,p and C4,α estimates for strictly convex solution
u to equation (1.6). As in the minimal surface theory, one is interested in the Bernstein
and Plateau problems for the affine maximal surface equation. Chern [Ch] conjectured
that a locally convex, Euclidean complete, affine maximal surface in R3 is an elliptic
paraboloid. Calabi [Ca3] gave an affirmative answer to this Bernstein type problem
provided the surface is also affine complete. This conjecture was resolved by the au-
thors [TW2]. In a separate paper [TW3] we proved that affine completeness implies
Euclidean completeness for n ≥ 2, therefore the Euclidean completeness in Chern’s
conjecture can be replaced by affine completeness (see also [LJ] for a direct proof).

The affine Plateau problem is considerably more complicated. A special case is the
first boundary value problem, that is prescribing the solution and its gradient on the
boundary. The existence of weak solutions (in any dimension) and interior regularity
(in dimension 2) were obtained by the authors in [TW6]. We also proved the global
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regularity of solutions to the second boundary problem to the affine maximal surface
equation, namely prescribing the solution and its Hessian determinant on the boundary.
The second boundary problem was used in a penalty argument for the regularity of
solutions of the first boundary problem and the affine Plateau problem.

We now collect some basic properties of the Monge-Ampère operator which will
be used in later sections.

First, the Monge-Ampère operator detD2u is the Jacobian determinant of the
gradient mapping Du; and it is equal to the product of all eigenvalues of the Hessian
matrix D2u, namely,

detD2u = λ1 · · ·λn. (1.7)

The Monge-Ampère operator is also of divergence form,

detD2u =
1
n

U ij∂iju =
1
n

∂i[U ijuj ], (1.8)

where the co-factor matrix U ij is divergence free,
∑

i

∂iU
ij = 0 ∀ j = 1, · · · , n. (1.9)

It is easy to verify that the operator is invariant under linear transforms, namely for
any matrix A,

detD2u(Ax) = |detA|2f(Ax). (1.10)

The Monge-Ampère operator is also invariant if one subtracts a linear function ϕ,
namely,

detD2u = detD2(u− ϕ), (1.11)

and obviously it is also homogeneous,

detD2(tu) = tnf. (1.12)

The Legendre transform plays an important role in the study of the Monge-Ampère
equation. Let Ω be a convex domain and u be a convex function in Ω. The Legendre
transform of u is a convex function u∗ defined in Ω∗ = Du(Ω), given by

u∗(y) = sup{x̃ · y − u(x̃) : x̃ ∈ Ω}. (1.13)

It follows that u∗∗ = u and if u ∈ C2(Ω) is uniformly convex, then u∗(y) = x · y− u(x),
where x is determined by y = Du(x), and u∗ is also C2 and uniformly convex. By the
relation y = Du(x), we have x = Du∗(y) and

{D2u(x)} = {D2u∗(y)}−1. (1.14)

In particular if u satisfies (1.1), its Legendre transform u∗ satisfies

detD2u∗ = 1/f. (1.15)
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In this survey, we discuss the existence and regularity of solutions to the Monge-
Ampère equation and the prescribed Gauss curvature equation, and their applications
in affine geometry. We will consider convex functions in the Euclidean space, and deal
with elliptic solutions only. The hyperbolic or mixed type Monge-Ampère equation is
much more difficult but we refer the interested readers to [Ef, HH, Ho2, Ln2, Zu] for
works in these directions. For the arrangement of the paper, see the contents above.

To conclude this introduction, we point out that this paper is dedicated to Profes-
sor Shing-Tung Yau on the occasion of his 60th birthday. But we also wish to recognize
Professor Yau for the dominant and immense role he has played in the nurturing, pro-
motion, and eventual supremacy of geometric analysis during the last thirty to forty
years.

2 The Monge-Ampère measure

2.1 Locally convex hypersurfaces
A locally convex hypersurface M in the Euclidean space Rn+1 is an immersion

of an n-dimensional oriented and connected manifold N (possibly with boundary) in
Rn+1, that is a mapping T from N to M⊂ Rn+1, with the following property: for any
point q ∈ N , there exists a neighborhood ωq ⊂ N such that (i) T is a homeomorphism
from ωq to T (ωq); (ii) T (ωq) is a convex graph; (iii) the convexity of T (ωq) agrees with
the orientation.

A hyperplane P is a local supporting plane of M at p if there exists a neighborhood
ωp which lies on one side of P . We say M is locally strictly convex if ωp ∩ P = {p} for
all p ∈M; and M is locally uniformly convex if furthermore M is C2 and the principal
curvatures of M are positive.

We say M is convex if for any point p ∈M and any local supporting plane P at p,
the whole surface M lies on one side of P . In this case, P is simply called a supporting
plane. Accordingly we can define strict convexity and uniform convexity of M.

Note that in our definition, we allow nonsmooth locally convex hypersurfaces, and
condition (iii) is to rule out hypersurfaces such as xn+1 = x1 max(|x1| − 1, 0). Note
also that since M is an immersion of a manifold N in Rn+1, when referring to a point
p ∈ M we actually mean a point q ∈ N such that p = T (q). Similarly we say ωp ⊂M
is a neighborhood of p if it is the image of a neighborhood of q ∈ N under the mapping
T , and so on.

Let u be a function defined in a domain Ω ⊂ Rn. We say that u is convex (locally
convex, resp) if its graph Mu = {(x, u(x)) : x ∈ Ω} is convex (locally convex). For any
x0 ∈ Ω, a linear function xn+1 = ϕ(x) is a (local) supporting function of u at x0 if its
graph is a (local) supporting plane of Mu. Accordingly we say that u is strictly convex
or uniformly convex if Mu is strictly convex or uniformly convex. If u is locally convex
in Ω, it is Lipschitz continuous in any compact subset of Ω. By a classical theorem of
Aleksandrov, u is twice differentiable almost everywhere.

Let M be a locally convex hypersurface. Then at any given point p ∈M, one can
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choose a coordinate system such that locally M is the graph of a convex function u,

xn+1 = u(x), x = (x1, x2, · · · , xn) ∈ Rn.

Let η be a mollifier, namely η is a C∞ smooth, nonnegative function in Rn, with
support in the unit ball B1(0), satisfying the integral condition

∫
Rn η = 1. Then the

mollification

uε(x) = ε−n

∫

Rn

u(y)η(
x− y

ε
) (2.1)

is a smooth, locally convex function. In particular, a locally convex function u can be
approximated by smooth, locally convex functions.

Let u be a locally convex function in Ω. If the domain Ω is convex, then by Taylor’s
formula, u is convex. We also have the following lemma, which is useful in our argument
below.

Lemma 2.1. Let M be a locally convex hypersurface in Rn+1, n ≥ 2. Suppose that M
is strictly convex at some point p0 and the boundary ∂M lies on a hyperplane P̂ . Then
M is convex.

Proof. By choosing proper axes, we assume that p0 is the origin and locally M is
contained in {xn+1 ≥ 0}. For h > 0, denote by Mh the component of the set
{(x1, · · · , xn+1) ∈ M : xn+1 ≤ h} which contains p0. Then when h > 0 is small,
Mh is a convex hypersurface and its boundary ∂Mh is itself a closed convex hypersur-
face of dimension n − 1. If for any point p ∈ ∂Mh and any supporting plane P of M
at p, |γ · en+1| < 1, where γ is the normal of P , and en+1 = (0, · · · , 0, 1), one can move
the plane {xn+1 = h} upwards by a small distance δ > 0 such that Mh+δ is a convex
hypersurface and ∂Mh+δ is a closed convex hypersurface. Therefore we can increase h

to a level h̄ such that either Mh̄∩∂M 6= ∅, or en+1 is the normal of a supporting plane
of M at some point in Mh̄ ∩ {xn+1 = h̄}.

In the latter case, by delicate reasoning one concludes that M is a closed convex
hypersurface. In the former case, one can rotate M step by step, and apply the above
moving plane argument in each step, such thatM is in a position such that the boundary
∂M is on the plane P̂ = {xn+1 = ĥ} for some constant ĥ and Mh is convex for all
h < ĥ. For more details, see [TW4]. ¤

If we assume that M is compact with ∂M lying on a plane, then it is easy to see
that M must be strictly convex at a point. The moving plane argument above also
implies the following extension of the classical Hadamard theorem for smooth convex
bodies.

Corollary 2.1. Let M be a complete, locally convex hypersurface in Rn+1, n ≥ 2. If
M is strictly convex near some point p0. Then M is the boundary of an open convex
set in Rn+1. If M is locally strictly convex, M is the graph of a convex function.

2.2 The Monge-Ampère measure
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Let u be a locally convex function in a domain Ω ⊂ Rn. The normal mapping Nu

is a set valued mapping from Ω to Rn such that for any x0 ∈ Ω,

Nu(x0) = {y : y is the gradient of a local supporting function of u at x0}.
For any subset ω ⊂ Ω, we denote Nu(ω) =

⋃
x∈ω Nu(x). By our definition, Nu is a local

quantity, namely Nu(x0) depends only on the behavior of u near x0.
Recall that the Gauss mapping G is a mapping from M to the unit sphere Sn.

For any point p ∈M, G(p) is the set of normals of all local supporting planes of M at
p. When M is the graph of u, the normal mapping and Gauss mapping are related by

y ∈ Nu(x0) if and only if γ =
(y,−1)√
1 + |y|2 ∈ GM(p).

If u is differentiable at x0, it has a unique local supporting function at x0 and Nu(x0)
is a single point. Otherwise Nu(x0) is a convex set.

Let u be a locally convex function in Ω. If ω is closed in Ω, so is Nu(ω). Therefore
Nu(ω) is measurable for any open and closed subsets ω b Ω, and so also for any Borel
subset ω b Ω. Let Π denote the collection of all Borel subsets of Ω. The Monge-Ampère
measure µu is a function defined on the set Π, given by

µu(ω) = |Nu(ω)| ∀ ω ∈ Π, (2.2)

where | · | denotes the Lebesgue measure in Rn.
First let us consider two examples.

(i) The function u is C2 smooth. In this case, the normal mapping Nu coincides with
the gradient mapping Du, and

µu(ω) = |Du(ω)| =
∫

ω

detD2u. (2.3)

Therefore we have
µu = detD2u dx.

(ii) The function u is piecewise linear. Let {pi = (zi, u(zi)) : i = 1, 2, · · · , k} be
the vertices of the graph Mu. Then |Nu(Ω − Z)| = 0, where Z = {z1, · · · , zk}.
Suppose all zi are interior point of Ω. Then

µu(ω) =
∑

zi∈Z∩ω

|Nu(zi)|. (2.4)

Hence we have
µu =

∑
ciδzi ,

where ci = |Nu(zi)|, and δz is the Dirac measure at z.
To see that µu is a measure, first note that µu satisfies a monotonicity formula.

That is, if u, v are two convex functions in Ω, satisfying u ≤ v in Ω and u = v on ∂Ω,
then

µu(Ω) ≥ µv(Ω).

Indeed, if ϕ is a supporting function of v, then ϕ − c is a supporting function of u for
an appropriate constant c ≥ 0. Hence Nv(Ω) ⊂ Nu(Ω) and so µu(Ω) ≥ µv(Ω). The
following lemma shows that µu is a measure.
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Lemma 2.2. Let uk be a sequence of locally convex functions which converges to u

locally uniformly. Then µuk
converges weakly to µu.

Proof. It suffices to prove Lemma 2.2 for smooth uk. For any compact set K b Ω,
by the monotonicity formula and the finite covering, µuk

(K) is uniformly bounded.
Hence {µuk

} contains weakly convergent subsequence. Suppose µuk
sub-converges to a

measure µ̂ weakly. To prove that µ̂ = µu, it suffices to prove that for any closed small
balls Br b Ω, µ̂(Br) = µu(Br).

Since Br is compact, Nuk
(Br) is contained in the δ-neighborhood of Nu(Br) with

δ → 0 as k →∞. Hence by Fatou’s lemma, µu(Br) ≥ limk→∞ µuk
(Br) = µ̂(Br).

To prove µu(Br) ≤ µ̂(Br), first we show that if w is a smooth, convex function in
Br+ε, then

µwδ
(Br) ≤ µw(Br) + Cδ

where ε > 0 is a small constant, wδ = w + δ|x|2, and the constant C depends only on
n, r, and supBr+ε

|Dw|. Indeed, extend w to B2r(0) such that w is smooth, convex, and
w =constant on ∂B2r. Then extend w to B3r(0) such that w is smooth, convex, and
rotationally symmetric in the annulus 5

2r < |x| < 3r. We have

µwδ
(Br)− µw(Br) ≤ µwδ

(B3r)− µw(B3r)

=
∫

∂B3r

[W ij
δ ∂iwδ −W ij∂iw]γj ≤ Cδ,

where γ is the unit outer normal, W ij is the co-factor of the matrix D2w.
For any fixed small constants ε, δ > 0, it is easy to see that Nu(Br) ⊂ Nuk,δ

(Br+ε),
provided k is sufficiently large. Hence

µu(Br) ≤ lim
k→∞

µuk,δ
(Br+ε) ≤ µ̂(Br+ε) + Cδ.

Letting δ, ε → 0, we obtain µu(Br) ≤ µ̂(Br). ¤
Lemma 2.2 asserts that the Monge-Ampère measure is weakly continuous with

respect to the convergence of functions. By Lemma 2.2 and approximation by smooth
functions, we have

µu+v ≥ µu + µv (2.5)

for any locally convex functions u and v.
Recall that a measure has a regular part and a singular part,

µ = µ(r) + µ(s), (2.6)

where µ(r) is a measurable function and µ(s) is a measure supported on a set of Lebesgue
measure zero.
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Lemma 2.3. Let u be a locally convex function in Ω. Then

µ(r)
u = (det ∂2u) dx, (2.7)

where ∂2u(x) = D2u(x) if u is twice differentiable at x, and ∂2u(x) = 0 otherwise.

Proof. Let uh be the mollification of u. Then at any point x ∈ Ω where u is twice
differentiable, D2uh(x) → ∂2u(x) [Zi]. Hence for any measurable set E ⊂⊂ Ω,

∫

E

det∂2u ≤ lim
h→0

∫

E

detD2uh.

By the weak convergence (Lemma 2.2), it follows that

det∂2u ≤ µ(r)
u a.e..

To show the equality holds, we have, for a.e. x0 ∈ Ω,

µ(r)
u (x0) = lim

ε→0

µ
(r)
u (Bε(x0))
|Bε(x0)| ≤ lim

ε→0

µu(Bε(x0))
|Bε(x0)| .

If u is twice differentiable at x0, then for any x ∈ Bε(x0),

|Du(x)−Du(x0)− ∂2u(x0)(x− x0)| ≤ δ|x− x0|

for some constant δ > 0, with δ → 0 as ε → 0. Suppose for simplicity that Du(x0) = 0.
Let w = 1

2x · (∂2u(x0)+ δI) ·x, where I is the unit matrix. Then for |x−x0| sufficiently
small, Nu(Bε(x0)) ⊂ Nw(Bε(x0)). It follows

µ(r)
u (x0) ≤ lim

ε→0

|Nu(Bε(x0))|
|Bε(x0)| ≤ lim

ε→0

|Nw(Bε(x0))|
|Bε(x0))|

= det(∂2u(x0) + δI) ≤ det(∂2u(x0)) + Cδ,

where C depends on ∂2u(x0) but is independent of ε. Sending ε to zero, we obtain
µ

(r)
u ≤ det∂2u at x0. Hence µ

(r)
u = det∂2u. ¤

2.3 Generalized solutions
Consider the equation

detD2u = ν in Ω, (2.8)

where ν is a nonnegative measure in Ω. We say a function u is a generalized solution
in the sense of Aleksandrov if u is a locally convex function and µu = ν. In (2.8) we
regard detD2u as a measure when u is a generalized solution. But when u is smooth,
we also regard detD2u as its density, as in the usual sense.

We say u is a subsolution if u is a locally convex function and µu ≥ ν. It is easy
to see that if u1, u2 are two subsolutions, then u = max(u1, u2) is also a subsolution.
In particular the sup of a family of subsolutions is a subsolution.
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Lemma 2.4. (The comparison principle) Let u, v ∈ C(Ω) be two locally convex func-
tions. Suppose that µu ≥ µv and u ≤ v on ∂Ω. Then u ≤ v in Ω.

Proof. If {v < u} 6= ∅, let uε,δ = u + ε(|x|2 − R2) − δ, where we choose R large and
ε, δ > 0 such that uε,δ < u on ∂Ω and the set ωε,δ = {v < uε,δ} 6= ∅ is compactly
contained in Ω. By choosing ε, δ properly, we can assume the diameter of ωε,δ is small,
so that both u and v are convex in it. Observe that Nuε,δ

(ωε,δ) ⊂ Nv(ωε,δ). We have
µuε,δ

(ωε,δ) ≤ µv(ωε,δ). But by (2.5) we also have µuε,δ
(ωε,δ) ≥ µu(ωε,δ) + εn|ωε,δ|,

which is a contradiction. ¤

Lemma 2.5. Let Ω be a Lipschitz domain and let ϕ be a continuous function on ∂Ω.
Let

u = sup{a(x) : a is a linear function and a ≤ ϕ on ∂Ω}.
Then µu = 0 in Ω.

Proof. Note that u is the sup of linear functions and so it is convex. Recall that by
our definition, the Monge-Ampère measure is a local quantity. Hence we may restrict
u to an arbitrary ball B b Ω. Choose a sequence of convex, piecewise linear function
uk such that uk ↗ u on ∂B. Let

uk = sup{a(x) : a linear and a ≤ uk on ∂B}.

Then uk is convex, piecewise linear. One easily verifies that µuk
= 0 and uk → u in B.

Hence µu = 0 by Lemma 2.2. ¤

Theorem 2.1. Let Ω be a bounded, convex domain, ν a finite, nonnegative measure,
and ϕ a convex function in Ω. Then there is a unique generalized solution u to (2.8)
satisfying the Dirichlet boundary condition u = ϕ on ∂Ω.

Proof. First we consider the case when ν =
∑N

i=1 ciδzi is a discrete measure, where zi

are interior points. For any b = (b1, b2, · · · , bN ), where bi(i = 1, · · · , N) are constants,
let

ub = sup{a(x) : a is linear, a(zi) ≤ bi and a ≤ ϕ on ∂Ω},
Then ub = ϕ on ∂Ω, µub

= 0 in Ω−⋃N
i=1{zi}. For any fixed i (1 ≤ i ≤ N), µub

(zi) is
decreasing in bi and increasing in bj for j 6= i. The monotonicity implies that if there
exists a subsolution, then there is a solution.

To show that there is a subsolution, note that for any z0 ∈ Ω, there is a unique
convex function u vanishing on ∂Ω, whose graph is a convex cone, such that µu = δz0 .
Let ui be a convex function vanishing on ∂Ω, such that µui = ciδzi . Then µΣui ≥ ν in
Ω and

∑
ui = 0 on ∂Ω. Hence u0 = ϕ +

∑
ui is a subsolution.

Next we consider the case when ν is a general finite measure. Let νk =
∑Nk

i=1 ci,kδxi,k

be a sequence of discrete measures converging to ν weakly. Let uk be the correspond-
ing generalized solution. By the Hölder estimate in Lemma 3.3 below, uk is uniformly
bounded and sub-converges to a convex function u0, which is a generalized solution by
Lemma 2.2. The uniqueness follows by the comparison principle. ¤
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Corollary 2.2. Assume ν is a finite, nonnegative measure in Ω and ϕ is a locally
convex function in Ω satisfying µϕ ≥ ν. Then there exists a locally convex function u

satisfying µu = ν in Ω and u = ϕ on ∂Ω.

Proof. Let u be the sup of all subsolutions. For any small ball B ⊂ Ω, restricting u to
the ball and applying Theorem 2.1, we conclude that µu = ν in B. ¤

The proof of Lemma 2.2 is from [TW1] and that of Lemma 2.3 from [TW6]. We
refer the reader to [CY2, Gut, P8, RT, U2] for more discussions on the Monge-Ampère
measure and generalized solution.

3 A priori estimates

3.1 Minimum ellipsoid
The following lemma, due to John [J], plays an important role in the study of the

Monge-Ampère equation.

Lemma 3.1. Let Ω be a bounded, convex domain in Rn. Then among all ellipsoids
containing Ω, there is a unique ellipsoid E of smallest volume such that

1
n

E ⊂ Ω ⊂ E. (3.1)

In this paper we denote by αΩ the α-dilation of Ω with respect to the center of
its minimum ellipsoid. Lemma 3.1 is now a well known result. There is also a unique
ellipsoid contained in Ω with maximal volume. We call E the minimum ellipsoid of Ω.
By a rotation of the coordinates, we may assume that E is given by

E =
{∑n

i=1

(
xi − x0,i

ri

)2

< 1
}

,

where x0 = (x0,1, · · · , x0,n). By the unimodular linear transform T : x → y,

yi =
r

ri
(xi − x0,i) + x0,i, i = 1, · · · , n, (3.2)

where r = (r1 · · · rn)1/n, E becomes the ball Br(x0) with

Br/n(x0) ⊂ T (Ω) ⊂ Br(x0).

We say Ω is normalized if its minimum ellipsoid is a ball (namely when T is the identity
mapping).

To prove Lemma 3.1, let V0 = inf{|E| : E ∈ Φ}, where Φ is the set of ellipsoids
containing Ω. Let Ek be a sequence of ellipsoids in Φ with |Ek| → V0. Since Ek contains
Ω, it must be uniformly bounded and converges in Hausdorff distance to an minimum
ellipsoid E.
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To show that E satisfies (3.1), we assume by a linear transform that E is the
unit sphere with center at the origin. If (3.1) is not true, let x0 ∈ ∂Ω such that
|x0| = infx∈∂Ω |x|. By a rotation of axes, we assume x0 = (0, · · · , 0,−t) with t ≤ 1

n − ε

for some ε > 0, such that the plane {xn = −t} is a tangent plane of ∂Ω at x0. Then
we have Ω ⊂ G =: B1(0) ∩ {xn > −t}. It suffices to prove that the unit ball is not the
minimum ellipsoid of G.

The proof is very elementary. Let yi = xi/(1 + δ) for i = 1, · · · , n − 1, and
yn = xn(1 + δ)n−1, where δ = ε2. In the new coordinates, G is strictly contained
in the unit sphere with center at (0, · · · , 0, h) provided ε is sufficiently small, where
h = (1 + δ)n−1 − 1 + δ2. We reach a contradiction as E is a minimum ellipsoid.

For the uniqueness we refer the reader to [J]. We remark that the uniqueness of
minimum ellipsoids is not needed in our treatment below.

3.2 Uniform and Hölder estimates
Consider the Dirichlet problem for the Monge-Ampère equation,

detD2u = ν in Ω, (3.3)

where Ω is a bounded, convex domain in Rn, ν is a finite measure.

Lemma 3.2. Let u be a bounded, convex solution to (3.3). Suppose u = 0 on ∂Ω and
ν(Ω) ≤ bν( 1

2Ω) for some positive constant b. Then

C−1
{|Ω|ν(Ω)

}1/n ≤ sup |u| ≤ C
{|Ω|ν(Ω)

}1/n
, (3.4)

where C is a constant depending only on n and b. In particular if ν = f dx and
c0 ≤ f ≤ c1 for positive constants c0, c1, then

C−1|Ω|2/n ≤ sup |u| ≤ C|Ω|2/n, (3.5)

where C depends only on n, c0, c1.

Proof. The Monge-Ampère equation is affine invariant and homogeneous, hence we may
assume that B1/n(0) ⊂ Ω ⊂ B1(0) and ν(Ω) = 1. To prove (3.4), by convexity it suffices
to prove that C−1 ≤ |u(0)| ≤ C.

To prove |u(0)| ≤ C, let w be a convex function which vanishes on ∂Ω, such
that its graph is a convex cone with vertex at (0, u(0)). Then one easily verifies that
Nw(Ω) ⊂ Nu(Ω) and Br(0) ⊂ Nw(Ω) for r = |u(0)| as Ω ⊂ B1(0). Hence |u(0)|n ≤
C|Nw(Ω)| ≤ C.

To prove |u(0)| ≥ C, let w be the solution of detD2w = ν̂ in Ω, w = 0 on ∂Ω,
where ν̂ = ν in 1

2Ω and ν̂ = 0 elsewhere. Then w ≥ u in Ω. Since µw = 0 outside
1
2Ω, we have for any x ∈ ∂Ω, |Dw(x)| ≤ sup |w|/dist{x, ∂( 1

2Ω)} ≤ 2n sup |u|. Hence
ν( 1

2Ω) = |Nw(Ω)| ≤ C sup |u|n. ¤
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Lemma 3.3. Let u be a generalized solution to (3.3). Suppose Ω ⊂ B1 for some unit
ball B1, u = ϕ on ∂Ω for some convex function ϕ ∈ Cα(Ω), and ν(Ω) ≤ c1 for a
constant c1. Then

|u(x)− u(y)| ≤ C|x− y|ᾱ ∀ x, y ∈ Ω, (3.6)

where C depends on n, c1, and ‖ϕ‖Cᾱ(Ω), and ᾱ = min( 1
n , α).

Proof. First consider the case u ≡ 0 on ∂Ω. Since u is convex, it suffices to estimate
sup |u(x0) − u(y0)| ≤ C|y0 − x0|1/n for x0 ∈ Ω, y0 ∈ ∂Ω. For any point x0 ∈ Ω,
by choosing proper coordinates, we assume that x0 = den and Ω ⊂ {xn > 0}, where
d = dist(x0, ∂Ω) and en = (0, · · · , 0, 1). Then Ω ⊂ Ω̂ = {x ∈ Rn : |x′| < 2, 0 < xn < 4}.
Let v and w be convex functions such that their graphs are convex cones, with vertex
at (x0, u(x0)) and bases ∂Ω and ∂Ω̂, respectively. Then Nu(Ω) ⊃ Nv(Ω) = Nv(x0) ⊃
Nw(x0). Since w is a convex cone, one easily verifies that |Nw(x0)| ≥ C

d |u(x0)|n, namely
|u(x0)| ≤ C[dν(Ω)]1/n.

When u = ϕ on ∂Ω for a convex function ϕ ∈ Cα(Ω), we let u0 be a solution of
detD2u = ν in Ω which vanishes on ∂Ω. Then u0 +ϕ is a sub-barrier and we also obtain
(3.6). ¤

Corollary 3.1. Let u be a generalized solution to (3.3) which vanishes on ∂Ω. Suppose
ν(Ω) ≤ bν( 1

2Ω) for some constant b > 0. Let ` be a line segment in Ω with two endpoints
z′, z′′ ∈ ∂Ω. Let z be a point on ` such that u(z) ≤ 1

2 infΩ u. Then |z′ − z| ≥ C|z′′ − z′|
for some C > 0 depending only on n and b.

Note that the ratio |z′−z|
|z′′−z′| is invariant under linear transforms. Hence by making

a linear transform we may assume that |Ω| = 1 and Ω is normalized. By Lemma 3.2
and the assumption ν(Ω) ≤ bν( 1

2Ω), we may assume furthermore that inf u = −1 and
ν(Ω) ≤ C. Hence when u(z) < − 1

2 , by Lemma 3.3 we have dist(z, ∂Ω) ≥ C0 > 0, and
so Corollary 3.1 follows.

3.3 Strict convexity and C1,α regularity
We say a measure ν satisfies the doubling condition if there exists a constant b > 0

such that for any convex set ω ⊂ Ω,

ν(ω) ≤ bν(
1
2
ω). (3.7)

This condition is invariant under linear transforms. First we consider the strict convex-
ity of solutions.

Lemma 3.4. Let u be a generalized solution to (3.3). Assume u = 0 on ∂Ω, B1/n ⊂
Ω ⊂ B1 is normalized, and ν satisfies the doubling condition (3.7). Then there exists
β > 0, depending on n and b, such that for any x0 ∈ Ωδ,

u(x) ≥ C|x− x0|1+β + `x0(x), (3.8)

where `x0 is a support function of u at x0, Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, and C is a
constant depending on n, b, δ, ν(Ω).
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Proof. Let x0 = 0 be a point in Ωδ. By subtracting a linear function, we assume
u(0) = 0, u ≥ 0 in Ω, and u = ϕ on ∂Ω, where ϕ is a linear function with |Dϕ| ≤ C1.

We claim that inf∂Ω ϕ ≥ C0 for a positive constant C0 depending only on n, b, δ,
ν(Ω). If the claim is not true, by the weak continuity of the Monge-Ampère measure
(Lemma 2.2) and the Hölder continuity (Lemma 3.3), there is a sequence of generalized
solutions uk which converges in C1/2n(Ω) to a generalized solution u of (3.3) which
satisfies u(0) = 0, u ≥ 0 in Ω, and u = ϕ on ∂Ω for a linear function ϕ with |Dϕ| ≤ C1,
such that inf∂Ω u = 0.

By a rotation of coordinates we assume that ϕ(x) = a0xn + a1 for some a0 > 0.
Then the set {x ∈ ∂Ω : u(x) = 0} ⊂ {xn = −a1/a0}. Since 0 ∈ Ωδ, we have a1/a0 ≥ δ.
Let z′′ = (z′′1 , · · · , z′′n) ∈ ∂Ω be a boundary point such that u(z′′) = 0. Choose a point
z = (z1, · · · , zn) ∈ {x ∈ Ω : u(x) = 0} such that {x ∈ Ω : u(x) = 0} ⊂ {xn ≤ zn}.
Then zn − z′′n ≥ −z′′n = a1/a0 ≥ δ.

Let Gε = {x ∈ Ω : u(x) < ε(xn − z′′n)}. Let z′ ∈ ∂Gε such that the three points
z, z′, and z′′ lie on a straight line. Observe that Gε shrinks to the set {u = 0} as ε → 0,
namely z′ → z as ε → 0. We reach a contradiction by Corollary 3.1. The claim is
proved.

Denote S0
h = {x ∈ Ω : u(x) < h}. Make a linear transform y = Tx and v(y) =

u(x)/h such that B1/n ⊂ T (S0
h) ⊂ B1. When h ≤ C0, v = 1 on T (∂S0

h). The doubling
condition (3.7) and the uniform estimate (Lemma 3.2) implies that ν[T (S0

h)] ≤ C2.
Hence by the Hölder continuity of v (Lemma 3.3), we have dist(T (S0

h/2), T (∂S0
h)) ≥ C3,

where C2, C3 depends only on n, b. Changing back we obtain

u(θx) ≥ 1
2
u(x) (3.9)

for any x ∈ ∂S0
h, where θ = 1− 1

2C3. As h is any small constant, it follows that for any
x near the origin,

u(x) ≥ 2−ku(θ−kx)

provided θ−kx ∈ Ω. Hence we obtain (3.8) with β given by θ1+β = 1/2. ¤
Remark 3.1. If ν = f dx and c0 ≤ f ≤ c1 for positive constants c0, c1, the condition
u = 0 on ∂Ω in Lemma 3.4 can be relaxed to u = ϕ for some ϕ ∈ C1,α, α > 1 − 2

n .
Indeed, if u is not strictly convex, there is a line segment connecting two boundary
points, such that (after subtracting a linear function), u ≥ 0 in Ω and u = 0 on the
segment. One easily verifies that

|{x ∈ Ω : u(x) < h}| ≥ Kh
n−1
1+α δ, (3.10)

where | · | denotes the Lebesgue measure, K is a constant with K →∞ as h → 0. When
α > 1 − 2

n , by the uniform estimate (Lemma 3.2), we must have inf u < 0, which is a
contradiction.

Lemma 3.5. Let u, Ω and ν be the same as in Lemma 3.4. Then there exists α ∈ (0, 1],
depending on n, b such that for any x0 ∈ Ωδ,

u(x) ≤ C|x− x0|1+α + `x0(x), (3.11)
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where `x0 is a support function of u at x0, C is a constant depending on n, b, δ, ν(Ω).

Proof. Let x0 = 0 be a point in Ωδ. By subtracting a linear function, we assume u(x0) =
0, u ≥ 0 in Ω. By the strict convexity of u (Lemma 3.4), the set S0

h = {u < h} b Ω if
h > 0 is small. Suppose there exists σ > 0 depending only on n and b such that for any
small h > 0 and any x ∈ ∂S0

h,

u(
1
2
x) <

1− σ

2
u(x). (3.12)

Define α by 1− σ = 2−α. Then for any x ∈ ∂Ω and any t ∈ ( 1
2k+1 , 1

2k ),

u(tx) ≤ 2−k(1− σ)ku(x) = [2−k]1+αu(x) ≤ 2t1+αu(x).

Hence u ∈ C1,α.
Inequality (3.12) follows from (3.9) with σ = 1−θ

5 . Indeed, consider the convex
function g(t) = u(tx), t ∈ [−1, 1]. Replacing g by g/g(1), we may assume that g(1) = 1.
Let ψ(t) = g(t + 1

2 ) − g′( 1
2 )t − g( 1

2 ). Then ψ(0) = 0, ψ ≥ 0. If g( 1
2 ) > 1−ε

2 , by
convexity we have 1 + ε ≥ g′( 1

2 ) ≥ 1 − ε and ψ(− 1
2 ) ≤ ε. Applying (3.9) to ψ, we

have ψ(− 1
2θ−1) ≤ 2ψ(− 1

2 ) ≤ 2ε. Hence g(− 1
2θ−1 + 1

2 ) < 0 when ε < 1−θ
5 , we reach a

contradiction as u ≥ 0. ¤
The strict convexity and C1,α estimate are due to Caffarelli [C1, C3]. Estimate

(3.8) can also be found in [CW1].
Remark 3.2. In dimension two, by Aleksandrov and Heinz, a generalized solution to

detD2u ≥ c0 in B1(0) (3.13)

must be strictly convex. We give an elementary proof here. By subtracting a linear
function we may suppose that u(1, 0) = u(−1, 0) = 0, and infx∈∂B1 [u(x) + u(−x)] is
attained at x = (1, 0). We need only to show that u(0) ≤ −C.

By convexity we have 0 ≥ u(x1, 0) ≥ −2|u(0)| for x1 ∈ (−1, 1) and for any
x ∈ B3/4,

u(x1, x2) ≥ u(x1, 0)− C|x2| ≥ −2|u(0)| − C|x2|,
u(x1, x2) ≤ u(x1, 0) + C|x2| ≤ C|x2|.

It follows that for any x ∈ (− 1
4 , 1

4 )× (− 1
4 , 1

4 ),

∂x1u(x) ≤ 8(u(
1
2
, x2)− u(x1, x2)) ≤ 16(|u(0)|+ C|x2|).

Similarly we have ∂x1u(x) ≥ −16(|u(0)|+ C|x2|). Hence by Lemma 2.3, or by approxi-
mation by smooth functions, we have u11u22 ≥ c0 almost everywhere. Hence

∫ 1/4

−1/4

1
u22(x)

dx1 ≤ c−1
0

∫ 1/4

−1/4

u11dx1 ≤ 16
c0

(|u(0)|+ C|x2|).
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We obtain

∫ 1/4

−1/4

u22(x)dx1 ≥ 1
4
( ∫ 1/4

−1/4

1
u22(x)

dx1

)−1 ≥ c0

64
(|u(0)|+ C|x2|)−1.

It follows that

C ≥
∫ 1/4

−1/4

[ ∫ 1/4

0

u22(x)dx2

]
dx1 =

∫ 1/4

0

[ ∫ 1/4

−1/4

u22(x)dx1

]
dx2

≥ c0

64

∫ 1/4

0

(|u(0)|+ C|x2|)−1dx2.

Hence u(0) ≤ −ε0 for some ε0 > 0 depending only on c0 and the gradient of u in B1.
Note that by the Legendre transform, the strict convexity of solutions implies the

C1 smoothness of solutions to the two dimensional Monge-Ampère inequality

detD2u ≤ c1. (3.14)

See also Lemma 6.3 below for the C1 regularity.

3.4 Second derivative estimate
From now on, we consider smooth solutions to the Monge-Ampère equation

detD2u = f(x) in Ω, (3.15)

where Ω is a bounded, uniformly convex domain in Rn with C3,1 boundary. Assume
that f ∈ C1,1(Ω) and f satisfies

c0 ≤ f ≤ c1 (3.16)

for some positive constants c0, c1. Write equation (3.15) in the form

log detD2u = log f

Differentiating the equation we get

uijuijξ = (log f)ξ,

uijuijξξ − uikujluijξuklξ = (log f)ξξ, (3.17)

where ξ is a unit vector, {uij} is the inverse of {uij}. In the above we have used the
formulae

∂uij log detD2u = uij ,

∂uij ∂ukl
log detD2u = −uikujl.
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Lemma 3.6. Let u ∈ C4(Ω) be a convex solution of (3.15). Suppose u = 0 on ∂Ω.
Then

[−u(x)]D2u(x) ≤ C(1 + M), (3.18)

where C depends on n, sup |u|, and ‖ log f‖C2 , but is independent of M = sup |Du|2.
Proof. The proof, due to Pogorelov, is now standard and can be found in [P8, GT].
Here we include the proof for completeness. Let w = ρ(x)η( 1

2 |Du|2)uξξ, where ρ = −u,
η(t) = (1− t

2M )−1/8. Assume that supx∈Ω,|ξ|=1 w is attained at x0 and ξ = e1. We may
assume that D2u is diagonal at x0. Hence

0 ≥
n∑

i=1

uii(log w)ii

≥
n∑

i=1

uii
[
(
ρii

ρ
− ρ2

i

ρ2
) + (

ηii

η
− η2

i

η2
) + (

u11ii

u11
− u2

11i

u2
11

)
]
.

From (log w)i = 0 at x0, we have ρi

ρ = −(ηi

η + u11i

u11
). Noting that uiiηi = η′ui, we have

uii ηiu11i

ηu11
= ui

η′u11i

ηu11
= −ui

η′

η
(
ρi

ρ
+

ηi

η
) ≤ η′

η

|Du|2
|u| ≤ C

|u| .

Recalling that η = −u, we get

n∑

i=1

uii(
ρii

ρ
− ρ2

i

ρ2
) = −n

ρ
− u2

1

u2u11
−

n∑

i=2

uii

[
ηi

η
+

u11i

u11

]2

≥ − C

|u| −
n∑

i=2

uii

[
η2

i

η2
+

u2
11i

u2
11

]
,

where we assume that (−u)u11 ≥ u2
1 at x0, otherwise we are through. Next by (log w)i =

0, we have u111
u11

= −(ρ1
ρ + η1

η ) at x0. Hence we obtain

0 ≥ uii(
ηii

η
− 3

η2
i

η2
)− C

|u| + uii u11ii

u11
− 2

n∑

i=2

uii u
2
11i

u2
11

.

Observe that

uii(
ηii

η
− 3

η2
i

η2
) ≥ C

M
u11 − C

M
,

where C > 0 is independent of M . From (3.17),

uii u11ii

u11
− 2

n∑

i=2

uii u
2
11i

u2
11

≥ − (log f)11
u11

≥ −C.

We obtain ρu11(x0) ≤ C(1 + M). Hence w(x) ≤ w(x0) ≤ C(1 + M) for any x ∈ Ω. ¤
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The second derivative estimate and the condition (3.16) implies that the Monge-
Ampère operator is uniformly elliptic. Therefore by Calabi’s interior third derivative
estimate and the Schauder estimate for linear elliptic equations [GT], one obtains higher
order derivative estimates for the Monge-Ampère equation, provided f is sufficiently
smooth. In the 1980’s Evans [Ev] and Krylov [K1, K3] independently established the
fundamental interior C2,α estimate for convex (or concave), uniformly elliptic equations,
provided f ∈ C1,1. The Evans-Krylov regularity is now well known [GT]. Therefore we
have the following regularity theorem.

Theorem 3.1. Let u be a strictly convex solution of (3.15). Suppose f > 0 and
f ∈ C1,1(Ω). Then u ∈ C3,α(Ω) for any α ∈ (0, 1). If furthermore f ∈ Ck,α(Ω) for
some k ≥ 2 and α ∈ (0, 1), then u ∈ Ck+2,α(Ω).

Obviously the zero boundary condition in Lemma 3.6 can be replaced by any affine
boundary condition. Pogorelov [P6] indicated that the zero boundary condition can be
relaxed to u ∈ C1,α(∂Ω) for some α > 1− 2

n . That is if u ∈ C1,α(∂Ω), then u is strictly
convex, as was shown in Remark 3.1. See also [U3], where Urbas also proved that if
u ∈ W 2,p(Ω) for p > n(n− 1)/2, then u is strictly convex and so smooth.

The exponent α > 1 − 2
n cannot be improved anymore. Indeed, Pogorelov [P8]

found that the function

u(x) = (1 + x2
1)

[∑
k>1

x2
k

]1− 1
n (3.19)

satisfies equation (3.15) with

f = (4− 4
n

)n−1(1 + x2
1)

n−2(1− 2
n
− (3− 2

n
)x2

1),

which is a positive, analytic function near the origin.

Much less is known in the degenerate case, namely when (3.16) is relaxed to
0 ≤ f ≤ c1. The second derivative estimates were obtained by many authors under
various different conditions, see [GTW] and the references therein. In the degenerate
case, a solution is not C∞ smooth in general, as is easily seen by considering radial
solutions to the equation detD2u = |x|2. Here we would like to ask whether the solution
of (3.15) is C2,α smooth if u is strictly convex, f1/(n−1) ∈ C1,1(Ω) and f satisfies the
doubling condition (3.7). Another interesting question is whether the eigenfunction to
the Monge-Ampère equation

detD2u = |λu|n in Ω, (3.20)

u = 0 on ∂Ω.

is smooth at the boundary; in particular whether u ∈ C∞(Ω) when Ω is uniformly
convex with ∂Ω ∈ C∞. It is readily shown by explicit calculation that this is true for
balls.

3.5 C2,α estimate
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In this section we consider the C2,α estimate for the Monge-Ampère equation
(3.15), assuming that f is Hölder continuous. The C2,α estimate is due to Caffarelli,
but the proof below is from [JW]. Let u be a convex function in Ω. The modulus of
convexity, m = m[u], is defined by

m(t) = inf{u(x)− `z(x) : |x− z| > t}, (3.21)

where t > 0, `z is the supporting function of u at z. Obviously m is a nonnegative
function of t. When u is strictly convex, it is a positive function. For any function f ,
we denote by

ωf (r) = sup{|f(x)− f(y)| : |x− y| < r}
the oscillation of f . The function f is Dini continuous if

∫ 1

0

ωf (r)
r

dr < ∞. (3.22)

We say a convex domain Ω has a good shape if

max ri/ min ri ≤ c∗ (3.23)

for a constant c∗ under control, where r1, · · · , rn are the radii of the minimum ellipsoid
E, as in (3.2). For any y ∈ Ω, h > 0, we denote

S0
h,u(y) = {x ∈ Ω : u(x) < `y(x) + h}

the corresponding section (sub-level set) of u and denote Sh,u(y) = ∂S0
h,u(y) its bound-

ary, where `y is the tangent plane of u at y. When no confusion arises we will drop the
subscript u, and when y is the minimum point of u, we will simply write the section as
S0

h.

Theorem 3.2. Let u ∈ C2 be a strictly convex solution of (3.15) in the unit ball B1(0).
Assume that f is Dini continuous and satisfies (3.16). Then ∀ x, y ∈ B1/2(0), we have
the estimate

|D2u(x)−D2u(y)| ≤ C
[
d +

∫ d

0

ωf (r)
r

+ d

∫ 1

d

ωf (r)
r2

]
, (3.24)

where d = |x − y|, C > 0 depends only on n, the modulus of convexity m[u], and the
constants c0, c1 in (3.16). It follows that
(i) If f is Dini continuous, then u ∈ C2(B1/2), and the modulus of convexity of D2u

can be estimated by (3.24).
(ii) If f ∈ Cα(B1) and α ∈ (0, 1), then

‖u‖C2,α(B1/2) ≤ C
[
1 +

‖f‖Cα(B1)

α(1− α)
]
. (3.25)
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(iii) If f ∈ C0,1(B1), then

|D2u(x)−D2u(y)| ≤ Cd
[
1 + ‖f‖C0,1 | log d| ]. (3.26)

In two dimensions, the C2,α estimate (3.25) was obtained by Heinz for the more
general equation (1.3), see [Scu] for details. When n ≥ 2, the C2,α estimate was found
by Caffarelli. Part (i) was first obtained by the second author in 1992; the theorem in
the above form was proved in [JW], see also [W7]. We also note that, by approximation,
the C2 smoothness assumption for u is not needed.
Proof. By subtracting a linear function we suppose u(0) = 0 and Du(0) = 0. Let Th

be the unimodular linear transform which normalizes S0
h (see (3.2)). By making the

change x → Thx/
√

h and u → u/h, we may suppose h = 1, S0
1 is normalized, and

∫ 1

0

ω(r)
r

≤ ε, (3.27)

where ω(r) = ωf (r), ε can be as small as we want, provided h is sufficiently small.
Let uk (k = 0, 1, · · · ) be the solution of

detD2uk = f(0) in S0
4−k,u,

uk = 4−k on ∂S0
4−k,u.

Denote
ν(t) = sup

z∈B1

{|f(x)− f(y)| : x, y ∈ S0
t2,u(z)}

and νk = ν(2−k). By the comparison principle, we have |u1 − u0| ≤ Cν0. Since S0
1,u is

normalized, S0
4−1,u has a good shape. It follows ‖u0‖C4(S0

3/4,u
) ≤ C, ‖u1‖C4(S0

3/16,u1
) ≤

C. Observe that

detD2u1 − detD2u0 =
∫ 1

0

d

dt
det[D2u0 + t(D2u1 −D2u0)]dt

= aij(x)∂i∂j(u1 − u0) = 0

and the operator L = aij(x)∂i∂j is linear, uniformly elliptic, with C2 coefficients. By
the Schauder estimates for linear elliptic equations, we obtain

|Dmu0(x)−Dmu1(x)| ≤ Cν0 ∀ x ∈ S0
4−2,u1

.

where 1 ≤ m ≤ 3. The estimate also implies that S0
4−2,u1

has a good shape.

By induction we assume that S0
4−k−1,u has good shape, with the constant c∗ (see

(3.23)) independent of k, so that νk ≤ ω(C2−k) for some C > 0 independent of k

(depending on c∗). By scaling, we then obtain

|Dmuk(x)−Dmuk+1(x)| ≤ C2(m−2)kνk ∀ x ∈ S0
4−k−2,uk+1

. (3.28)



24 N.S. Trudinger and X.-J. Wang

Hence

|D2u0(x)−D2uk+1(x)| ≤ C

k∑

i=0

νi ≤ C

∫ 1

2−k

ω(r)
r

dr,

where C > 0 is independent of k. The above estimate implies that S0
4−k−2,uk+1

has a
good shape.

For any given point z near the origin,

|D2u(z)−D2u(0)| ≤ I1 + I2 + I3 =:

|D2uk(z)−D2uk(0)|+ |D2uk(0)−D2u(0)|+ |D2u(z)−D2uk(z)|.

Let k ≥ 1 such that 4−k−4 ≤ u(z) ≤ 4−k−3. By (3.28) and recalling that ν(t) ≤ ω(Ct),
we have

I2 ≤ C

∞∑

j=k

νj ≤ C

∫ |z|

0

ω(r)
r

.

To estimate I1, denote hj = uj − uj−1. By (3.28) with m = 3,

|D2hj(z)−D2hj(0)| ≤ C2jνj |z|.

Hence

I1 ≤ |D2uk−1(z)−D2uk−1(0)|+ |D2hk(z)−D2hk(0)|
≤ |D2u0(z)−D2u0(0)|+

∑k

j=1
|D2hj(z)−D2hj(0)|

≤ C|z|(1 +
∑k

j=1
2jνj

)

≤ C|z|(1 +
∫ 1

|z|

ω(r)
r2

)
.

Similarly one can estimate I3. Hence we obtain (3.24). ¤
Note that estimate (3.28) (with m = 2) implies the Monge-Ampère equation (3.15)

is uniformly elliptic. Hence the estimate (3.24)-(3.26) also follows from [W7] immedi-
ately.

3.6 W 2,p estimate
In [C2], Caffarelli proved the following W 2,p estimate.

Theorem 3.3. Let u be a strictly convex solution of (3.15) in B1(0). Suppose that
f ∈ C0 and satisfies (3.16). Then for any p > 1,

‖u‖W 2,p(B1/2(0)) ≤ C, (3.29)

where C depends on n, p, m[u], c0, c1, and the modulus of continuity ωf .
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The proof is extremely involved. The basic observation is that when f is contin-
uous, the section S0

h is a small perturbation of a ball (after normalization), and the
solution is a small perturbation of a quadratic function. It implies that in a sufficiently
dense set, the second derivative is close to that of the quadratic function. But to prove
the W 2,p estimate, one also needs to prove a Calderon-Zygmund type decomposition,
using sections instead of standard cubes; and estimate the ratio of major radius and
minor radius of the minimum ellipsoid of the sections.

In contrast to the Laplace equation ∆u = f , the continuity of f is necessary for the
W 2,p estimate for the Monge-Ampère equation [W2]. Caffarelli’s proof also implies that
for any p > 1, there is an ε > 0 such that if supB1

|f − f0| < ε for positive, continuous
function f0, then u ∈ W 2,p(B1/2). In two dimensions, the W 2,p estimate was obtained
in [NS].

By a similar perturbation argument, one also has the following gradient estimate
[JW]

|Du(x)−Du(y)| ≤ Cd[1 + e−2θψ(d)] (3.30)

for any x, y ∈ B1/2(0), where d = |x − y|, C = C(n,m,C1, C2, ωf ), θ < 1
2 is a positive

constant, and

ψ(d) = −
∫ 1

d

ωlog f (r)
r

dr. (3.31)

It follows that if
ωlog f (r) ≤ 1

| log r| , (3.32)

one has the log-Lipschitz estimate

|Du(x)−Du(y)| ≤ Cd[1 + | log d|). (3.33)

As pointed out in [JW], the assumption (3.32) should be optimal.
But if (3.32) is strengthened to

ωlog f (r) = o(
1

| log r| ),

Huang [Hu] proved that the second derivatives are in VMO, namely

1
|Br(x0)|

∫

Br(x0)

D2u → D2u(x0)

as r → 0.

3.7 Hölder estimate for the linearized Monge-Ampère equation
We consider now the linear operator

Lu = Lϕu =
n∑

i,j=1

Φijuij , (3.34)
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where ϕ is a locally uniformly convex function and Φij is the cofactor of the Hessian
D2ϕ. The operator may also be written in divergence (and double divergence) form,
by virtue of (1.9), namely

Lu = ∂i(Φij∂ju) = ∂i∂j(Φiju). (3.35)

Hölder estimates and Harnack inequalities were proved by Caffarelli and Gutierrez [CG2]
for solutions of the homogeneous equation Lu = 0, in terms of the pinching of the
Hessian determinant

C0 ≤ detD2ϕ ≤ C1 (3.36)

for positive constants C0, C1. In fact their condition is weaker than (3.36) but still
stronger than the doubling condition (3.7) for the Monge-Ampère measure µ associated
with ϕ. However, condition (3.36) is appropriate for our applications to affine geometry.

Their approach is based on that of Krylov and Safonov for Hölder estimates for
linear elliptic equations in general form, with sections replacing balls and the Monge-
Ampère measure µ replacing Lebesgue measure. Accordingly they obtain the following
fundamental oscillation estimate, which we formulate here for the inhomogeneous equa-
tion

Lu = fdetD2ϕ. (3.37)

Theorem 3.4. Let ϕ be a locally strictly convex function satisfying (3.36) and u ∈
C2(Ω) be a locally convex solution of (3.37) in some domain Ω ⊂ Rn. Then for any
section S0

h(x0) ⊂ Ω, we have the estimate

oscS0
h(x0)u ≤ C

(
h

h0

)α
{

oscS0
h0

(x0)u + h1/2

( ∫

S0
h0

(x)

|f |ndµ

)1/n
}

, (3.38)

where C and α are positive constants depending only on n, C0, C1.

In the form (3.38), the estimate is not a regular Hölder estimate. However by
applying the strict convexity estimate of Section 3.3, which holds under the doubling
condition (see also [CG2]), we obtain the following Hölder estimate

Corollary 3.2. Let u ∈ C2(B1(0)) be a solution of (3.37). Then there exist positive
constants α and C, depending on n, C0, C1 such that

‖w‖Cα(B1/2(0) ≤ C
{
‖u‖L∞(B) + ‖f‖Ln

µ(B)

}
. (3.39)

We remark that it is enough to assume that u ∈ W 2,n or even a viscosity solution of
(3.37). The inhomogeneous forms of the estimates (3.38) or (3.39) are readily obtained
from the case f ≡ 0, proved in [CG2]. Fixing a section S = S0

h(x0), we solve the linear
Dirichlet problem

Lu0 = fdetD2ϕ in S, (3.40)

u0 = 0 on ∂S
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and apply the Aleksandrov-Bakelman maximum principle [GT] to obtain

|u0| ≤ C(n)|S|1/n

(∫

S

[fndetD2ϕ]
)1/n

. (3.41)

By virtue of Lemma 3.2 and (3.36), we have |S| ≤ Chn/2, and (3.38) then follows from
the homogeneous case, as L(u− u0) = 0 in S.

3.8 Monge-Ampère equations of general form
In this section we consider the equation

det[D2u−A(x, u, Du)] = f(x, u, Du) (3.42)

where A = {aij} is a symmetric matrix, f is a positive, smooth function. Equations
of this form arise in many applications such as isometric embedding [HH], optimal
transportation [MTW], reflector design [W5, KW], and conformal geometry [T6]. Note
also that the form (3.42) is invariant under coordinate transformations.

If A is linear in, or independent of, the gradient Du [HH], one has very similar a
priori estimates as the standard Monge-Ampère equation (1.1). When A is nonlinear
in Du, the situation is very different. Here we assume that A satisfies

aij,pkpl
ξiξjηkηl ≥ c0|ξ|2|η|2 (3.43)

for any vectors ξ, η ∈ Rn, ξ ⊥ η, where c0 is a positive constant, and aij,pkpl
= ∂2

∂pk∂pl
aij .

Equation (3.42) with A satisfying (3.43), in two dimensions, is called strongly
elliptic and the interior second derivative estimate established in [P3]. But in [P3] the
assumption (3.43) was assumed for all vectors ξ, η. The interior a priori estimate for
equations of the form (3.42), arising in reflector design, was established in [W5] for
dimension two and in [GW] for all dimensions. The following estimate was derived in
[MTW].

Lemma 3.7. Let u ∈ C4 be a solution to (3.42) in Br(0) such that the matrix W =
D2u − A(x, u, Du) is positive definite. Suppose f ∈ C1,1, f ≥ f0 for some constant
f0 > 0, and A satisfies (3.43). Then we have the estimate

|D2u|(x) ≤ C ∀ x ∈ Br/2(x0), (3.44)

for some C independent of u.

Proof. Writing the above equation in the form F [W] = f̄ and differentiating it twice,
we get, by the concavity of F ,

F ijWij,kk ≥ D2
kf̄ ,

where F [W] = log detW, W = {Wij}, f̄ = log f , Wij,k = ∂xk
Wij , and F ij = ∂

∂Wij
F [W].

Let z(x, ξ) = ρ2ξiξjWij , where ρ is a cut-off function. Suppose sup{z(x, ξ) : x ∈
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Br(0), |ξ| = 1} is attained at x̄ and ξ = (1, 0, · · · , 0). By a rotation of axes we assume
that {Wij} and {F ij} are diagonal at x̄, and W11 ≥ · · · ≥ Wnn. At x̄, we have, by
direct computation,

F iiW11,ii = F iiWii,11 + F iiAii,p1p1u
2
11 + O(

1
ρ
(1 + FT ))

≥ F iiAii,p1p1u
2
11 + O(

1
ρ
(1 + FT )),

where F =
∑

F ii and T is the trace of the matrix W. By (3.43), Aii,p1p1 ≥ c0 > 0.
Hence

F iiAii,p1p1 ≥ c0

∑

i>1

F ii =
1
2
c0F > 1

provided W11 is large enough. We obtain

0 ≥
∑

i

F ii(log z)ii ≥ −C

ρ2
F + F ii W11,ii

W11

≥ −C

ρ2
F + c0W11F + O(

1
ρ
(1 + F))

We obtain ρ2W11(x) ≤ ρ2W11(x̄) ≤ C for any x ∈ Br(x0). ¤
Condition (3.43) was introduced in [MTW], where we studied the regularity of

potential functions in optimal transportation, and formulated the condition, called A3,
in terms of the cost function. This condition is equivalent to (3.43) above, see Remark
4.1 there. We remark that for equations arising in optimal transportation, the condition
(3.43) may be satisfied only when ξ ⊥ η but not for general vectors ξ and η, see examples
in [MTW, TW8].

Once the second derivative estimate is established, the least eigenvalue of the
matrix W has a positive lower bound and so equation becomes uniformly elliptic. By
Evans-Krylov’s regularity for fully nonlinear uniformly elliptic equations, we obtain
higher order derivative estimates.

The following example by Lewy, see also [Scu], shows that there is no C2 a priori
estimate if A does not satisfies (3.43).
Example. The function

u(x, y) =
1
4
(3x)4/3 +

1
2
y2

is a solution to the equation
∣∣∣∣
uxx, uxy

uxy, uyy + u2
x − 1

∣∣∣∣ = 1

In a recent paper [Lo], Loeper showed that for equations arising in optimal trans-
portation, the degenerate form of condition (3.43) is also necessary. More precisely,
Loeper proved that if there exist vector ξ and η, ξ ⊥ η, such that the left hand side of
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(3.43) is negative, there exists smooth, positive f such that solution in B1(0) is not C1

near the center but is smooth near the boundary.
The corresponding C2,α estimates as in Theorem 3.2 is not available for the general

equation (3.42). But for the equation arising in optimal transportation, the estimate
has recently been established by Jiakun Liu and the authors [LTW], under appropriate
assumptions on the cost function.

4 Existence and uniqueness of solutions

4.1 The Dirichlet problem
The existence and uniqueness of generalized solutions to the Dirichlet problem

detD2u = f(x) in Ω, (4.1)

u = ϕ on ∂Ω. (4.2)

was proved by Aleksandrov [A4] and Bakelman [B1], see Theorem 2.1 above. Interior a
priori estimates were established by Nirenberg [N2] and Pogorelov [P1] in two dimen-
sions and by Calabi [Ca1] and Pogorelov [P5] for higher dimensions. The existence of
solutions with interior regularity was obtained by Cheng and Yau [CY2] and Pogorelov
[P8]. The regularity near the boundary of solutions was proved by Caffarelli-Nirenberg-
Spruck [CNS] and Krylov [K2]. The following theorem, with optimal conditions on f, ϕ

and ∂Ω, was proved in [TW7].

Theorem 4.1. Assume that Ω is a uniformly convex domain with C3 boundary, ϕ ∈
C3(Ω), f ∈ Cα(Ω) for some α ∈ (0, 1), and satisfies

c0 ≤ f ≤ c1 (4.3)

for some positive constants c0, c1. Then there is a unique convex solution u ∈ C2,α(Ω)
to (4.1).

By Lemma 3.4, the solution is strictly convex, so u ∈ C2,α(Ω) by Theorem 3.2.
Therefore to prove Theorem 4.1, it suffices to establish the C2,α estimate near the
boundary.

An upper bound for the tangential second derivative uξξ follows directly from the
boundary condition. Under the assumptions ∂Ω, ϕ ∈ C3, there is also a positive lower
bound for uξξ, and moreover the assumptions can not be relaxed to ∂Ω, ϕ ∈ C2,1 [W4].
The double normal derivative estimate follows from the equation immediately provided
we have the mixed tangential-normal derivative estimate at the boundary.

The proof for the mixed derivative at the boundary is the most involved part in
[TW7]. If f ∈ C0,1(Ω), the mixed derivative estimate can be obtained by constructing
proper barriers [CNS, W4]. When f ∈ Cα for some α ∈ (0, 1), the proof involves a
delicate iteration.
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Once the second derivative estimate is established, all sections (level sets) of u

have a good shape, namely the ratio of circum-radius and the in-radius of the minimum
ellipsoid is uniformly bounded. Hence the C2,α estimate near the boundary can be
proved in the same way as the interior one, see the proof of Theorem 3.2. With the a
priori estimate, the existence of solutions then follows from the continuity method.
Remarks.
(i) As mentioned above, the assumptions in Theorem 4.1 is optimal. If either ∂Ω or ϕ

is C2,1, the solution may not be C2 smooth near the boundary [W4].
(ii) When ∂Ω ∈ C3,1 and ϕ ∈ C3,1, the global second derivative estimate can be found
in [I2]. See also [CNS, GT].
(iii) Pogorelov [P6] indicated, and Urbas [U3] proved, that if ϕ ∈ C1,α for some α >

1− 2
n , then the solution is strictly convex and smooth in Ω. Pogorelov’s example (3.19)

implies that the exponent α > 1− 2
n cannot be improved.

(vi) For general (nonconvex) domains, if there is a subsolution to the Dirichlet problem,
then there is a globally smooth, locally convex solution [HRS, Gu]. The result was
extended to the radial graph in [GS1]. For general locally convex hypersurface, a
corresponding result was a conjecture by Spruck [Sp] and was obtained in [TW4, GS2].

4.2 Other boundary value problems
We will consider three different second boundary value problems, namely the Neu-

mann problem, the oblique derivative problem, and the problem of prescribing the
gradient mapping image.

4.2.1 Neumann problem. The Neumann boundary problem of the Monge-Ampère
equation (4.1) was studied by Lions, Trudinger and Urbas [LTU]. They established the
following existence and uniqueness result.

Theorem 4.2. Consider equation (4.1) subject to the Neumann boundary condition

∂γu = ϕ(x, u) on ∂Ω, (4.4)

where γ is the unit inner normal. Assume that Ω is a uniformly convex domain with
C3,1 boundary. Assume ϕ ∈ C1,1, ϕu ≥ c2 > 0, f ∈ C1,1(Ω), and f satisfies (4.3).
Then there is a unique convex solution u ∈ C3,α(Ω) to (4.4).

To prove Theorem 4.2, one first establishes the global gradient estimate. Then
by (3.17) and the maximum principle, one finds that the function uξξ + A|x|2 does not
attain its maximum at an interior point if A is chosen large enough. Hence we have

sup
Ω
|D2u| ≤ sup

∂Ω
|D2u|+ C. (4.5)

For the second derivative estimate at the boundary, by constructing proper barriers one
obtains the double normal and mixed second derivative estimates

|DγDu| ≤ C on ∂Ω. (4.6)
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To get the tangential second derivative estimate, one introduces the auxiliary function

v(x, ξ) = uξξ − 2η(ξ − ηγ) · (Dϕ−DuDγ) + K|x|2

where ξ is any unit vector and η = ξ·γ. Choose K large such that v attends its maximum
at a boundary point. By the boundary condition one concludes that uξξ ≤ C. See [LTU]
for details.

Once the second derivative is bounded, the equation is uniformly elliptic. Hence
by [LT], one obtains higher order derivative estimate. The existence of smooth solutions
then follows from the continuity method.
4.2.2 Oblique derivative problem. Consider equation (4.1) subject to the oblique
derivative condition

∂βu = ϕ(x, u) (4.7)

where β is a unit vector on ∂Ω, satisfying

β · γ ≥ β0 > 0.

A generalized solution to the oblique derivative problem can be obtained under very
mild conditions [W1]. For the regularity, assume that Ω, ϕ, and f satisfy the same
conditions as in Theorem 4.2. Assume ϕ also satisfies

ϕu ≥ ϕ0, (4.8)

where ϕ0 > 0 is a large constant depending on ∂Ω, β0 and β. Then we have the a priori
estimate

sup
Ω

|D2u| ≤ C (4.9)

Note that when (4.9) is proved, the equation becomes uniformly elliptic and higher
order regularity follows from [LT].

Estimate (4.9) was obtained in [W1]. In two dimensions it was also obtained by
Urbas [U4]. To prove (4.9), one first observes that the gradient estimate and the second
derivative estimates (4.5) and (4.6) (with DγDu in (4.6) replaced by DβDu) can be
obtained in the same way as for the Neumann problem. Hence it suffices to establish the
tangential second derivative estimate on the boundary. The estimate [W1] is obtained
by introducing the auxiliary function

w(x) = uξξ exp[α|Du|2 + τG(x)]

where G is uniformly convex function vanishing on ∂Ω, and ξ is a vector field in Ω,
tangential to ∂Ω on the boundary. If w attains its maximum at a boundary point x0,
then ∂βw ≤ 0 and one obtains the estimate (4.9) from the boundary condition. If w

attains its maximum at an interior point x̄, we must have

uξξ(x̄) ≥ c0|D2u|(x̄) (4.10)
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for a small, but fixed constant c0 > 0. For if not, the function supζ,x{uζζ + A|x|2}
attains its maximum at an interior point, where ζ is a unit vector and A is a large
constant. But this is ruled out in the proof of (4.5). By (4.10), one can make a linear
transformation such that uξξ(x̄) is an eigenvalue of the Hessian matrix D2u at x̄, and
conclude that uξξ(x̄) ≤ C, as in §3.4.

In dimension two, instead of the above auxiliary function w, one can use the
simpler function w(x) = uξξ +A|x|2 and get a more precise estimate for ϕ0 in (4.8), see
[U4, W1].
Remark. The condition (4.8) for the oblique derivative problem is necessary. To see
this, let u be Pogorelov’s function, given in (3.19). Let the domain be a small ball
Br(0). Then near the boundary point xb = (r, 0, · · · , 0), let β = (−1, σx2, · · · , σxn).
Then

∂βu =
[
σ(2− 2

n
)− 2x1

1 + x2
1

]
u.

When σ is large, ϕu ≥ σ − 1 also becomes large. Note that if one chooses β the unit
outer normal, one finds that the assumption C1,1 smoothness of ϕ in the Neumann
problem cannot be dropped.

4.2.3 Prescribing the image of the gradient mapping. That is the boundary
condition

Du(Ω) = Ω∗, (4.11)

where Ω∗ is a convex domain in Rn. For this boundary condition, one considers the
Monge-Ampère equation of the form

detD2u = f(x)/g(Du) in Ω, (4.12)

where f, g satisfy the necessary condition

∫

Ω

f(x) =
∫

Ω∗
g(y). (4.13)

The existence of a generalized solution in the sense of Aleksandrov was proved in [P3].
Brenier [Br] introduced a different weak solution as follows. For any point y ∈ Ω∗,
denote V (y) = {x ∈ Ω : y ∈ Nu(x)} and V (ω) =

⋃
y∈ω V (y) for any subset ω ⊂ Ω∗.

From the mapping V , one defines a measure νu on Ω∗, by letting

νu[ω] =
∫

V (ω)

f(x). (4.14)

If νu coincides with g, then we say u is a generalized solution of Brenier.
When both f and g are positive, Brenier’s weak solution is equivalent to that of

Aleksandrov. For the regularity of solutions, we have the following theorem.
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Theorem 4.3. Assume that both Ω and Ω∗ are uniformly convex with C2,α boundary,
α ∈ (0, 1). Assume that f ∈ Cα(Ω), g ∈ Cα(Ω∗), and both f and g are strictly positive.
Then a solution to (4.11) (4.12) is C2,α(Ω) smooth.

Theorem 4.3 was established by Caffarelli [C5]. Caffarelli also proved the interior
regularity provided Ω∗ is convex [C4]. If f, g are C1,1 smooth and ∂Ω, ∂Ω∗ are C3,1

smooth, uniformly convex, the global smoothness was also obtained in [D3] for n = 2
and in [U7] for n ≥ 2, by different proofs.

4.3 Entire solutions
In this section we prove the uniqueness of solutions to the Monge-Ampère equation

detD2u = 1 in Rn. (4.15)

Theorem 4.4. Let u be a locally uniformly convex solution to the equation (4.15).
Then u is a quadratic function.

Proof. By subtracting a linear function, we assume that u(0) = 0, u ≥ 0. For any
h > 0, by convexity, the set {u < h} is bounded, convex. Hence u is smooth and
locally uniformly convex. We prove that D2u(x) = D2u(0) for any x ∈ Rn. By a linear
transform, we may assume that D2

iju(0) = δij . Let Th : y = Ahx, where Ah is a
unimodular matrix, be a linear transform which normalizes the section {u < h}. Let
z = y/h1/2, uh = u/h, and Ωh = h−1/2Th({u < h}). Then B1/n(xh) ⊂ Ωh ⊂ B1(xh),
where xh is the center of Ωh, and uh satisfies the equation

detD2uh = 1.

The uniform estimate in §3.2 implies that

c1 ≤ | inf
Ωh

uh| ≤ c2.

Hence by the Hölder continuity in §3.2, we have Bc0(0) ⊂ Ωh ⊂ B2(0), where c0, c1 and
c2 depend only on n. By the interior C3 estimate,

|D2
ijuh(0)| ≤ C,

|D2
ijuh(x)−D2

ijuh(0)| ≤ C|x|,

where C is independent of h. Observe that D2uh(0) = A′hD2u(0)Ah = A′hAh. Hence
from the first estimate, Ah is uniformly bounded. It follows that for any fixed x,
z = h−1/2Ahx → 0 as h →∞. Hence from the second estimate, we obtain

D2u(x)−D2u(0) = A′h[D2uh(z)−D2uh(0)]Ah → 0

as h →∞. ¤
Remarks
(i) The above proof was due to Pogorelov [P7], a different proof was given by Cheng-Yau
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[CY3]. When n = 2, the result was first proved by Jörgens [Jo]. For 3 ≤ n ≤ 5, the
result was established by Calabi [Ca1].
(ii) The local uniform convexity in Theorem 4.4 is not necessary, it suffices to assume
that u is a generalized solution of (4.15), because one can show that if ϕ is a supporting
function of u at 0, the contact set C = {u = ϕ} can not contain a straight line, or a ray.
(iii) From the above proof, it is clear that the assumption that u is defined in the entire
space Rn can be replaced by the assumption that u is defined in a convex domain
Ω ⊂ Rn and u →∞ as x → ∂Ω.
(iv) The existence of entire solutions to the Monge-Ampère equation

detD2u = f(x) in Rn (4.16)

was proved in [CW1] provided f satisfies (4.3), and a solution must be of polynomial
growth. Condition (4.3) can be relaxed to polynomial growth. For periodic f , it was
proved that the solution must be a perturbation of a quadratic function [CL2].
(v) The asymptotic behavior of solutions to (4.15) on the exterior of a domain was
investigated in [CL1, FMM]. In the 2-dimension case it was proved in [FMM] that a
solution must be a quadratic polynomial plus a logarithmic term at infinity, and in
high dimensions a solution must be a quadratic function plus a perturbation of order
O(|x|2−n) at infinity [CL1]. In other words, at infinity the perturbation has the same
order as the fundamental solution of a linear, uniformly elliptic equation.

4.4 Hypersurfaces of prescribed Gauss curvature
4.4.1 The Minkowski problem. As mentioned in the introduction, the existence
and uniqueness of solutions to the Minkowski problem were proved by Minkowski [M1,
M2] more than a century ago. The regularity was proved by Lewy [L1, L2], Nirenberg
[N2], and Pogorelov [P1] in two dimensions, and by Cheng and Yau [CY1] and Pogorelov
[P8] in high dimensions. By Caffarelli’s strict convexity and C2,α regularity, the solution
is C2,α smooth if the Gauss curvature is Hölder continuous. We record the result as
follows.

Theorem 4.5. Given a bounded, positive function K on the unit sphere Sn, satisfying
the integral condition ∫

Sn

xiK
−1 = 0, (4.17)

there exists a unique (up to translation), closed convex hypersurface M ⊂ Rn+1 such
that its (generalized) Gauss curvature at p ∈ M is equal to K(γp), where xi is the
coordinate functions, and γp is the unit outer normal of M at p. If furthermore K is
Hölder continuous, then M∈ C2,α.

Let H be the support function of M. It is a function on the unit sphere Sn, given
by

H(x) = sup{x · p : p ∈M}
where x · p denotes the inner product. The sup is attained at a point p ∈M with outer
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normal x, and the Gauss curvature K(x) at p is given by

det(∇2H + HI) =
1

K(x)
on Sn, (4.18)

where I is the unit matrix, and ∇ is the covariant derivative in a local orthonormal
frame. Extend H to Rn+1 such that it is homogeneous of degree one. Then the hyper-
surface M can be recovered from H by

M = {DH(x) = (∂1H, · · · , ∂n+1H)(x) : x ∈ Sn},

Theorem 4.5 asserts that for any function K > 0 on Sn satisfying (4.17), there is a
solution H to (4.18), which is unique up to a linear function, and is C2,α smooth if
K ∈ Cα(Sn). From (4.18) one also sees that (4.17) is a necessary condition for the
solvability of the Minkowski problem.

A parabolic approach to the existence and regularity of solutions to the Minkowski
problem was used in [CW2], where the authors proved that for any closed, convex
hypersurface M0, there is a constant θ such that the parabolic equation

∂H

∂t
= log[K(x) det(∇2H + HI)] (4.19)

with initial condition θM0 has a global smooth solution which converges to a solution
of the Minkowski problem.

Lutwak [Lu2] introduced a related p-Minkowski problem, which concerns the ex-
istence and regularity of solutions to the equation

det(∇2H + HI) =
Hp−1

K(x)
, (4.20)

where p is a constant. When p = 1, it reduces to the Minkowski problem. The existence
and regularity of solutions have been obtained when p > −n− 1 [CW3], see also [Lu2,
LO, LYZ1, GL]. The p-Minkowski problem was used in [LYZ2] to establish the Sobolev
inequality.

The case p = −n − 1 is special, as it corresponds to the critical exponent in the
Blaschke-Santalo inequality [Sch], and equation (4.20) has various geometric interpre-
tations. It is the equation for the Minkowski problem in centro-affine geometry [CW3],
and is also the prescribed affine distance problem [HS]. When K ≡ 1, a solution to
(4.20) is an elliptic affine sphere, and it must be an ellipsoid by Theorem 5.2 below.
For a general positive function K, a Kazdan-Warner type obstruction for the existence
of solutions was found in [CW3].

Another related problem is the following: given a positive function f(x) ∈ Rn+1,
find a closed convex hypersurface M such that its Gauss curvature is equal to f , namely
for any x ∈M,

K(x) = f(x). (4.21)
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Problems of this nature were raised by S.T. Yau [Y2], and in particular (4.21) was
studied by Oliker [O], who proved the existence of solutions if there exist 0 < R1 < R2

such that

f(x) > R−n
1 for |x| = R1,

f(x) < R−n
2 for |x| = R2, (4.22)

and ∂
∂ρρnf(ρx) ≤ 0 for x ∈ Sn and ρ > 0. The latter assumption was removed

by Delanoë [D2]. This problem was also studied by K. Chou [Cu2] via a variational
approach. Let σk, k = 1, 2, · · · , denote the kth elementary symmetric polynomial of the
principal curvature of M. Let Ik = 1

n−k

∫
M σk. Then the first variation of Ik is given

by

〈δIk(M), ξ〉 =
∫

M
σk+1(ξ · γ), (4.23)

where ξ is any smooth vector on M and γ is the unit outer normal. Therefore a solution
to (4.21) is a critical point of the functional

J(M) = In−1 −
∫

Cl(M)

f(x), (4.24)

where Cl(M) denotes the convex body enclosed by M.
Chou proved that if there exists a hypersurface M0 such that J(M0) < 0, there

is a minimizer of the functional which is a solution of (4.21). In particular if f satisfies
(4.22), there is a minimizer of J .

The variational approach was adopted in [W3], where the second author proved
that if there is a minimizer, there must be another (unstable) critical point of J , and so
(4.21) has at least two solutions. A critical point is unstable if it is neither a minimizer
nor a maximizer. In particular he proved that if

f(x) → f0 as |x| → ∞, (4.25)

where f0 is any positive constant, then (4.21) has an unstable solution.

4.4.2 Boundary value problems. Let Ω be a uniformly convex domain, ϕ ∈ C1,1,
and K ∈ C1,1(Ω) ∩ C0,1(Ω) is positive in Ω. The Dirichlet problem

detD2u = K(x)(1 + |Du|2)(n+2)/2 in Ω, (4.26)

u = ϕ on ∂Ω

has been studied by many authors. The following necessary and sufficient condition for
the classical solvability of (4.26) is proved in [TU].

Theorem 4.6. There is a classical solution u ∈ C2(Ω) ∩ C0,1(Ω) to the Dirichlet
problem (4.26) if and only if the following two conditions hold,

∫

Ω

K <

∫

Rn

(1 + |p|2)−1/(n+2), (4.27)

K = 0 on ∂Ω.
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The existence and regularity of solutions can also be found in Bakelman [B2] and
Lions [Ls1]. Lions proved that (4.26) has a classical solution if there is a subsolution. For
the Dirichlet problem (4.26) under conditions (4.27), by constructing proper subbarriers
one obtains the global gradient estimate supΩ |Du| ≤ C, and the existence of solutions
follows. If the Gauss curvature does not vanish on the boundary, there exists a smooth
function ϕ such that (4.26) has no solution satisfying the boundary condition [TU].

The limit case ∫

Ω

K =
∫

Rn

(1 + |p|2)−1/(n+2) (4.28)

was studied by Urbas in [U1, U5, U6]. He proved the existence of smooth solutions to
(4.26) which satisfy the Dirichlet boundary condition u = ϕ in the sense that u ≤ ϕ on
∂Ω and if v ∈ C2(Ω) is another solution of (4.26) satisfying v ≤ ϕ on ∂Ω, then v ≤ u

on ∂Ω.
Under appropriate structural conditions he also proved the global Hölder conti-

nuity of the solution and smoothness of the graph of the solution. His results can be
stated as follows.

Theorem 4.7. Let Ω be a uniformly convex domain with C2,1 smooth boundary, and
K a positive, C2 smooth function, satisfying (4.28). Let u be a solution to the Dirichlet
problem (4.26). Then
(i) u ∈ C1/2(Ω);
(ii) the graph of u is C2,α smooth for some α ∈ (0, 1);
(iii) the restriction of u on ∂Ω is C1,α smooth;
(iv) If ∂Ω ∈ Ck+1,α and K ∈ Ck−1,α, k ≥ 2, then the graph of u is Ck+1,α smooth and
the restriction of u on ∂Ω is Ck,α smooth.

4.4.3 A Plateau type problem for the Gauss curvature. This is a natural
extension of the Dirichlet problem. In this problem we are concerned with the existence
of a locally convex hypersuraface of prescribed Gauss curvature with given boundary.
This type of problem, for more general curvatures, was suggested by S.T. Yau [Y2]. For
the Gauss curvature, we have the following result.

Theorem 4.8. Let Γ be a smooth disjoint finite collection of closed codimension 2
submanifolds in Rn+1. Suppose Γ bounds a locally strictly convex hypersurface M0 with
Gauss curvature K(M0) ≥ K0 > 0. Then Γ bounds a locally convex hypersurface of
Gauss curvature K0.

Theorem 4.8 was proved by the authors in [TW4], and also by Guan and Spruck
[GS2]. Theorem 4.8 also gave an affirmative answer to a specific conjecture of Spruck
[Sp]. Theorem 4.8 was extended to other curvatures, such as the harmonic curvature,
in [SUW], by establishing the interior second derivative estimates for corresponding
curvature equations.

Our proof of Theorem 4.8 was based on Lemma 2.1, which was also proved in
[TW4]. By Lemma 2.1, we infer that for any locally convex hypersurface M ⊂ BR(0)
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with C2 boundary ∂M, there exists r > 0 which depends only on n, R, ∂M, and the
upper and lower bounds of the principal curvatures of M on ∂M, such that for any
point x ∈ M, ωr,x is a convex graph with gradient bounded by r−1, where ωr,x is the
component of M∩ Br(x) containing x. Consequently one can prove Theorem 4.8 by
the Perron method, or by a deformation argument, as the above property implies the
compactness in the deformation.

4.5 Variational problems for the Monge-Ampère equation
The Monge-Ampère equation

detD2u = f(x, u) in Ω (4.29)

is the Euler equation of the functional

J(u) =
1

n + 1

∫

Ω

(−u)detD2udx−
∫

Ω

F (x, u) (4.30)

=
1

n(n + 1)

∫

Ω

U ijuiujdx−
∫

Ω

F (x, u)

where F (x, u) =
∫ u

0
f(x, u). The functional J has been studied by Gillis in the 1950’s,

Bakel’man in the 1960’s, and later also by Aubin [Au1]. Bakel’man [B3] proved that
when f is independent of u, there is a minimizer of the functional J in the set of convex
functions. Chou [Cu1] employed a gradient flow method to investigate the functional J .
By establishing the global existence and regularity of solutions to the initial boundary
value problem for the parabolic Monge-Ampère equation

ut − log detD2u = log f(x, u) (4.31)

he obtained smooth minimizers when f is sub-linear, namely

lim
t→∞

f(x, t)/|t|n = 0;

and mountain pass solutions when f is super-linear, namely

lim
t→∞

f(x, t)/|t|n = ∞.

The case when
f(x, u) = λ|u|n

was studied by Lions [Ls2]. He proved that there is a unique positive constant λ1 such
that (4.29) has a nonzero convex solution. The constant λ1 is called the eigenvalue of
the Monge-Ampère operator.

The variational method was also used in [Cu2, CW2,CW3, W3] for Minkowski
type problems.

4.6 Application to the isoperimetric inequality
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The Monge-Ampère equation has found various applications in analysis and geom-
etry. For example, the Aleksandrov-Bakelman maximum principle, obtained by virtue
of the Monge-Ampère equation, plays a fundamental role in the study of non-divergence
elliptic equations [GT]. In this section, we use the Monge-Ampère equation to give a
new proof of the sharp isoperimetric inequality for general domains in Rn,

|Ω|1−1/n ≤ 1

nω
1/n
n

|∂Ω|n−1, (4.32)

where ωn is the volume of the unit ball. The proof was found by the first author [T2],
which we include here.

Let Ω ⊂ Rn be any bounded domain and let χ be the characteristic function of
the domain. Let u be a generalized solution to the Monge-Ampère equation

detD2u = χ in BR(0).

The solution may not be smooth but we can choose a sequence of positive, smooth
functions χk to approximate χ. We choose R > r > 0 such that Ω ⊂ Br(0). Similar to
the proof of (3.4) we have

ωn sup
BR

|u|n ≤ (R + r)n

∫

BR

detD2u = (R + r)n

∫

BR

|Ω|.

By convexity, we then obtain

ωn sup |Du|n ≤
(

R + r

R− r

)n

|Ω|.

Hence

sup |Du| ≤ ω−1/n
n

(
R + r

R− r

)n

|Ω|1/n.

By the arithmetric-geometric mean inequality,

1
n

∆u ≥ [detD2u]1/n = 1 in Ω.

We obtain

|Ω| ≤ 1
n

∫

Ω

∆u =
1
n

∫

∂Ω

γ ·Du

≤ |∂Ω|n−1

n
ω−1/n

n

(
R + r

R− r

)n

|Ω|1/n,

where γ is the unit outer normal. Letting R →∞ we obtain the isoperimetric inequality.
The inequality (4.32) is sharp as all inequalities above optimal when Ω is a ball. We
remark that a similar proof may be made using the Gauss curvature equation.
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5 The affine metric

5.1 Affine completeness
Let M be a smooth, locally convex hypersurface in Rn+1. The affine metric, which

is also called the Berwald-Blaschke metric, is given by

g = K−1/(n+2)II, (5.1)

where K is the Gauss curvature and II is the second fundamental form on M. If locally
M is a graph given by xn+1 = u(x). Then

g = ρuxixj dxidxj , (5.2)

where ρ = (detD2u)−1/(n+2).
Recall that a locally convex hypersurface M is an immersion of a manifold N in

Rn+1, there is a natural metric ge induced from the standard metric in Rn+1, which we
call the Euclidean metric.

A Euclidean complete convex hypersurface may not be affine complete. For ex-
ample, by the formula (5.4) below, it is easy to compute that the graph of the convex
function

u(x) = (1 + |x|k)1/k (5.3)

is not affine complete for any k > 2. A fundamental problem is whether affine com-
pleteness implies Euclidean completeness for n > 1 (when n = 1, it is obviously false).
This problem appears not only in the classification of hyperbolic affine spheres but also
in the study of the affine Bernstein problem. The following theorem from [TW2] gives
an affirmative answer to the problem.

Theorem 5.1. Let M be an affine complete locally uniformly convex hypersurface in
Rn+1, n ≥ 2. Then M is Euclidean complete.

We sketch the proof here. If M is not Euclidean complete, then ∂M 6= ∅. For any
q ∈ M, we choose coordinates such that −en+1 = (0, · · · , 0,−1) is the normal of M
at q. Let Γ = Γq be the connected domain of M containing q such that p ∈ Γ if and
only if there is a curve γ = γp on M connecting q and p such that G(γ) is a geodesic
line on the south hemisphere, where G is the Gauss mapping. By Lemma 2.1, one can
show that there is a point q ∈ M such that Γq contains a boundary point of M, that
is, there is a curve γ∗ ⊂ Γq from q to a point p∗ ∈ ∂M such that G(γ∗) is a geodesic
line strictly contained in the south hemisphere.

Let Ω be the projection of Γ on {xn+1 = 0}. Then Γ is the graph of a locally
(possibly multi-valued) convex function u in Ω, and Du(`) is a line segment in Ω∗,
where ` is the projection of γ on {xn+1 = 0}, and Ω∗ = Du(Ω). It follows that Ω∗ is a
star-shaped domain, and Ω∗ is not the entire space Rn.

By (5.2), the affine arc-length of a curve γ ⊂ Γ is given by

L =
∫

`

(ρuξξ)1/2ds, (5.4)
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where s is the (Euclidean) arc-length parameter on `, ξ is the unit tangent vector on `.
Let u∗ be the Legendre transformation of u. Then

L =
∫

`∗
(ρ∗u∗ηη)1/2ds, (5.5)

where ρ∗ = [detD2u∗]1/(n+2), (observe the power in ρ∗ is positive).
Let Cθ = Cθ(z, r, ξ) denote the round cone with vertex at z, radius r, aperture θ,

and axial direction ξ. One can show that if ∂ξu
∗(z) is finite, then Du∗(y) is bounded on

the cone Cθ/2(y0,
1
2r, ξ). It follows that the integral (5.5) is finite for some line segment

` from the vertex z to some interior point in the cone. Therefore if there is a boundary
point y0 ∈ ∂Ω∗ such that Ω∗ satisfies the inner cone condition at y0 and ∂ξu

∗(y0) is
finite, where ξ is the axial direction of the cone, then M is not affine complete.

To proceed further we need a technical lemma, which was proved in [TW3], a
different proof was given in [Scn].

Lemma 5.1. Let D be a star shaped domain in Rn and w be a convex function defined
on D. Suppose ∂ξw(y) = ∞ at any boundary point y ∈ ∂D at which D satisfies the
inner cone condition, where ξ is the axial direction of the cone. Then D is a convex
domain.

From Lemma 5.1, we conclude that |Du(x)| → ∞ as x → ∂Ω. Indeed, since M
is affine complete, by Lemma 5.1, Ω∗ is convex and |Du∗(y)| = ∞ for any y ∈ ∂Ω∗.
Let {xk} ⊂ Ω be a sequence of points converging to a point x0 ∈ ∂Ω. If yk = Du(xk)
converges to a boundary point, we have xk = Du∗(yk) →∞, which is a contradiction by
Lemma 2.1. Hence |Du(xk)| → ∞ and we also reach a contradiction near the boundary
point p∗.

5.2 Affine spheres
Affine spheres were first studied by Tzitzeica [Tz] and by Blaschke and his school

[Bls], and were later studied by Calabi, Cheng and Yau, Nirenberg, Pogorelov, and
many others [Ca1, Ca2, P7, CY3]. Let x : M→ Rn+1 be a locally convex hypersurface.
The affine normal of M is defined by

Y =
1
n

∆x =
1
n

(∆x1, · · · , ∆xn+1), (5.6)

where ∆ is the Laplacian with respect to the affine metric.
We say a locally uniformly convex hypersurface M is an affine sphere, if the affine

normal lines through each point of M either all intersect at a point, called its center,
or else are mutually parallel (center at infinity). An affine sphere is called elliptic,
parabolic (center at infinity), or hyperbolic type, according to whether the center is,
respectively on the concave side, at infinity, or the convex side.

An affine sphere of elliptic or hyperbolic type is called proper, and a parabolic
affine sphere is called improper. If M is a proper affine sphere with center 0, then

Y = −H X (5.7)

where H is the affine mean curvature, which is a constant. The following proposition
relates the affine sphere problem to the Monge-Ampère equation [Ca2].
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Proposition 5.1. Let M be an affine sphere, given by xn+1 = f(x). Let u be the
Legendre transform of f . Then M is an affine sphere of elliptic or hyperbolic type with
center at 0 and mean curvature H if and only if u satisfies

detD2u = (Hu)−n−2; (5.8)

and M is a parabolic affine sphere with all affine normal vector (0, · · · , 0, 1) if and only
if u satisfies

detD2u = 1. (5.9)

A basic problem is to classify all complete affine spheres. An elliptic affine sphere
has positive affine mean curvature and must be a closed hypersurface. The following
result is now classical.

Theorem 5.2. Let M be a closed affine sphere of elliptic type. Then M is an ellipsoid.

Theorem 5.2 was proved by Blaschke [Bls] for n = 2, and by Deicke [De] for n ≥ 2
and also by Calabi [Ca2]. To prove Theorem 5.2, one computes the Fubini-Pick form
J , and find that ∆J ≥ 0. Hence when M is closed, J ≡constant, which implies M is
an ellipsoid [Ca2]. A geometric flow proof was given by Andrews [An].

For parabolic affine spheres, by Theorem 4.4 and the remark thereafter, we have
the following classifications.

Theorem 5.3. Let M be a complete affine sphere of parabolic type. Then M is an
elliptic paraboloid.

Theorem 5.3 was first proved by Jörgens [J] for n = 2, using complex variable
theory, and by Calabi [Ca1] for 3 ≤ n ≤ 5, by establishing the third derivative estimate,
and for all dimensions by Pogorelov, whose proof was presented in §4.3 above. A
different proof was given by Cheng and Yau [CY3].

For hyperbolic affine sphere, we have the following results.

Theorem 5.4. (i) Every complete, n-dimensional affine sphere with mean curvature
H < 0 is asymptotic to the boundary of a convex cone with vertex at the center. (ii)
Every uniformly convex cone K determines an affine sphere of hyperbolic type, which
is asymptotic to the cone K, and uniquely determined by the mean curvature.

Theorem 5.4 is a conjecture of Calabi [Ca2]. For the first part, one needs to prove
that an affine complete hyperbolic sphere is also Euclidean complete, which was achieved
by Cheng and Yau [CY3], and was also included in Theorem 5.1 above. The second part,
by Proposition 5.1, is equivalent to proving that for any uniformly convex domain Ω,
there exists a unique smooth solution to (5.8) subject to the boundary condition u = 0
on ∂Ω, and the results were obtained by Cheng and Yau [CY2], in which they proved the
existence of (interior) smooth solutions to the Dirichlet problem of the Monge-Ampère
equation. By constructing suitable barriers it is not hard to verify that the gradient of
the solution converges to infinity near the boundary, so the associated hypersurface is
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Euclidean complete. Cheng and Yau also proved that the hyperbolic affine sphere is
affine complete [CY3].

6 Affine maximal surfaces

6.1 The affine maximal surface equation
The affine maximal surface equation is a fourth order partial differential equation,

given by
U ijwij = 0, (6.1)

where U ij is the cofactor of the matrix D2u, and

detD2u = w−
n+2
n+1 . (6.2)

Equation (6.1) is the Euler equation of the affine area functional

A(u) =
∫

Ω

[detD2u]
1

n+2 . (6.3)

Recall that {U ij} is of divergence free,
∑

i ∂iU
ij = 0 ∀ j (see (1.9)). Consequently (6.1)

can also be written in the form
∆h = 0,

where ∆ is the Laplace-Beltrami operator with respect to the affine metric, and h =
[detD2u]−1/(n+2).

The functional A is obviously concave in the set of convex functions. So if u is
convex and is a critical point of the functional, it is a local maximizer under local per-
turbation. Therefore Calabi suggested to call a surface satisfying (6.1) affine maximal,
instead of affine minimal, as originally suggested by Chern [Ch]. Accordingly equation
(6.1) is called the affine maximal surface equation.

The affine maximal surface equation is invariant under unimodular linear trans-
formations in Rn+1. Indeed, the affine area functional can also be written as

A(M) =
∫

M
K

1
n+2 . (6.4)

Note that a unimodular matrix M can be decomposed as the product of an orthogonal
matrix and a diagonal one. From the functional (6.3), the equation (6.1) is invariant
under a linear transform determined by a diagonal matrix; and from (6.4), it is also
invariant under rotation of axes.

The fourth order equation (6.1) can also be viewed as a system of two second
order pdes, one is the linearized Monge-Ampère equation (6.1), regarded as a linear
elliptic equation for w, and the other one is the Monge-Ampère equation (6.2). In our a
priori estimates in §6.2 below, we will need the C2,α regularity for the Monge-Ampère
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equation in §3.5, and the Hölder continuity of solutions of the linearized Monge-Ampère
equation in §3.7.

6.2 A priori estimates
For the Monge-Ampère equation, we have the interior W 2,p estimate and C2,α

estimates for strictly convex solutions (Theorems 3.2 and 3.3). For the affine maximal
surface equation, we have corresponding W 4,p estimate and C4,α estimates. Let us
consider the inhomogeneous equation

U ijwij = f. (6.5)

Theorem 6.1. (W 4,p estimate) Let u ∈ C4(Ω) be a locally uniformly convex solution
of (6.5). Then for any Ω′ ⊂⊂ Ω, p ≥ 1, we have the estimate

‖u‖W 4,p(Ω′) ≤ C, (6.6)

where C depends on n, p, supΩ |f |, dist(Ω′, ∂Ω), and the modulus of convexity of u (de-
fined in (3.21)).

Theorem 6.2. (C4,α estimate) Let u ∈ C4(Ω) be a locally uniformly convex solution
of (6.5) with f ∈ Cα(Ω), 0 < α < 1. Then u ∈ C4,α(Ω) and for any Ω′ ⊂⊂ Ω,

‖u‖C4,α(Ω′) ≤ C, (6.7)

where C depends on n, α, ‖f‖Cα(Ω), dist(Ω′, ∂Ω), and the modulus of convexity of u.

To prove the above theorems, we first establish an upper bound for detD2u, namely
if u ∈ C4(Ω)∩C0,1(Ω) is a locally uniformly convex solution of (6.5) with u = 0 on ∂Ω,
we have, for any point y ∈ Ω,

det D2u(y) ≤ C, (6.8)

where C depends on n, dist(y, ∂Ω), supΩ |Du|, supΩ f , and supΩ |u|. To prove (6.8), we
introduce the auxiliary function

z = log[w/(−u)β ]−A|Du|2,

where β = n(n + 1)/(n + 2) and A is also a positive constant, and show that at the
minimum point z, |u|∆u ≤ C(1 + |Du|2).

Next we prove that detD2u is also bounded from below by a positive constant.
For this estimate we assume that there exists an open set ω ⊂ Ω such that x ·Du < u

in ω and x ·Du = u on ∂ω. This condition is satisfied if u is strictly convex. Then for
any y ∈ ω,

detD2u(y) ≥ C, (6.9)

where C > 0 depends on n, dist(y, ∂ω), supΩ |Du|, infΩ f and supω |u − x · Du|. The
proof of (6.9) is again by proper construction of auxiliary function. Indeed, let

z = log w + β log(u− x ·Du) + A|x|2,
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where β and A are proper positive constants. Then at the maximum point of z, |u −
xiui|uii ≤ C and hence (6.9) holds. Note that by the Legendre transform, the second
auxiliary function is the same as the first one.

Now regard equation (6.5) as a system of two second order equations, that is
regard (6.5) as a linear equation for w, and (6.2) as a Monge-Ampère equation for u. By
Caffarelli and Gutierrez’s Hölder estimate for the linearized Monge-Ampère equation
(Theorem 3.4), we conclude the Hölder continuity of the function w. By Caffarelli’s
interior Schauder estimate for the Monge-Ampère equation (Theorem 3.2), we then
obtain interior Hölder estimate for the second derivatives of u. Hence (6.5) becomes
a linear uniformly elliptic equation with Hölder continuous coefficients. It follows that
w ∈ W 2,p

loc (Ω) (for any p < ∞). The W 4,p
loc (Ω) and C4,α(Ω) estimates for u now follow

from standard elliptic regularity theory.

6.3 The affine Bernstein problem
The following Bernstein type result was proved in [TW2].

Theorem 6.3. A Euclidean complete, affine maximal, locally uniformly convex surface
M⊂ R3 must be an elliptic paraboloid.

The proof is as follows. By Corollary 2.1, we may assume that M is the graph
of a convex function u, defined in a domain Ω ⊂ R2, with u(x) → ∞ as x → ∂Ω. By
a translation of coordinates, we may assume u(0) = 0, Du(0) = 0. For any constant
h > 1, let Mh = {(x1, x2, x3) ∈ M : x3 < h} and let Qh be the convex body enclosed
by Mh and the plane {x3 = h}. Let Th be a linear transform in R3 which normalizes
Qh such that B1/3 ⊂ Th(Qh) ⊂ B1 (see Lemma 3.1). Let h → ∞, so that Th(Mh)
sub-converges to a convex surface M∗. If M∗ is strictly convex, then by the a priori
estimates in §6.2, Th(Mh) is uniformly convex and smooth. Therefore the proof of
Theorem 4.4 implies that u is a quadratic function.

Therefore it suffices to show that M∗ is strictly convex. If this is not the case,
there is a supporting plane P such that the contact set C = M∗ ∩ P contains more
than one point. Since ∂M∗ is on a plane, there is an interior point p of M∗ which is
an extreme point of C, namely there is a unit vector γ such that (q − p) · γ > 0 for all
q ∈ C, q 6= p. We may assume that p is the origin and γ = e1. Suppose P is given
by x3 = ϕ(x), where x = (x1, x2). Let p∗ = (x∗1, x

∗
2, x

∗
3) ( 6= p) be a point in C. Let

ϕε(x) = ϕ(x)− ε(x1 − x∗1). Then M∗ and ϕε enclose a convex body Gε ⊂ R3. Let Tε

be a linear transform such that B1/3 ⊂ Tε(Gε) ⊂ B1. Then Tε(Gε) sub-converges as
ε → 0 to a convex surface G∗, and G∗ is not C1 at the origin. Hence we may rotate
the axes (x1, x2, x3) such that G∗ is contained in x3 ≥ a|x1| for some a > 0 and the set
G∗ ∩ {x3 = 0} is either a single point, or a segment.

In the former case, by (6.8) and Lemma 6.3 below we get a contradiction. In
the latter case, if at both endpoints of the segment, all supporting planes of G∗ have
uniformly bounded gradient, by 6.8) and Lemma 6.3 we also get a contradiction. Oth-
erwise at an endpoint, G∗ is contained in a round cone with vertex at the point, namely
G∗ ⊂ {x3 ≥ ā|x|} for some ā > 0, after a proper rotation of the coordinates. Therefore
again we reach a contradiction by (6.8).
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Lemma 6.3. Let u be a convex function defined in a convex domain Ω ⊂ R2. Suppose
u(0) = 0, u > 0 on ∂Ω, and u(x) ≥ a|x1| for some constant a > 0. Then the density of
the Monge-Ampère measure µu cannot be a bounded function.

Under the assumptions of Lemma 6.3, there is a section Sh, which contains the
origin 0, such that |Nu(S0

h)|/|S0
h| → ∞, which implies the density of µu cannot be a

bounded function. We note that Lemma 6.3 goes back to Aleksandrov [A2], in which
he established the C1 smoothness of solutions to the Minkowski problem.

The affine Bernstein problem was proposed by Chern [Ch], who conjectured that
an entire convex solution to (6.1) in R2 must be a quadratic function. The Bernstein
problem was investigated by Calabi [Ca3], who proved Chern’s conjecture if in addition
the surface is affine complete. We proved the Chern conjecture in [TW2] by an argu-
ment outlined above. A related problem, called the Calabi conjecture [Si], is whether
the Bernstein property holds under affine completeness alone. We have an affirmative
answer by our Theorem 5.1. That is

Theorem 6.4. An affine complete, affine maximal, locally uniformly convex surface
M⊂ R3 is an elliptic paraboloid.

We remark here that in our proof of Theorem 6.3, by using Bernstein’s original
result that a bounded entire solution of a homogeneous elliptic equation in two dimen-
sions is a constant, we can use Jörgens’s theorem rather than Caffarelli-Gutierrez theory
in the proof, (see [T4, T5]). We also note that Theorem 6.4 was proved by Li and Jia
in [LJ] by a different method. The affine Bernstein problem in high dimensions is an
open problem. We would like to make the following conjecture.
Conjecture. When n ≤ 9, a Euclidean complete, locally uniformly convex affine maximal
hypersurface in Rn+1 must be an elliptic paraboloid. When n ≥ 10, there is a smooth,
locally convex affine maximal hypersurface in Rn+1 which is not an elliptic paraboloid.

An interesting question is whether an affine complete, locally uniformly convex
affine maximal hypersurface is an elliptic paraboloid in dimensions n ≥ 3. In [TW2] we
proved the function

u(x) =
√
|x′|9 + x2

10,

where x′ = (x1, · · · , x9), is affine maximal. This function has a singular point, and
is affine invariant and is analogous to a minimal cone in minimal surface theory. A
possible approach to prove the conjecture is to classify all affine maximal cones, and to
prove that the affine Bernstein theorem holds if and only if there is an affine maximal
cone.

6.4 The first boundary value problem
The affine maximal surface equation is a nonlinear, fourth order partial differential

equation. One needs to impose two boundary conditions. The first boundary value
problem is to prescribe the solution and its gradient, namely

u = ϕ on ∂Ω, (6.10)

Du = Dϕ on ∂Ω, (6.11)
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where Ω is a bounded, Lipschitz domain in Rn, and ϕ ∈ C2(Ω) is a locally uniformly
convex function in Ω.

The first boundary value problem has a corresponding variational problem. Denote
by S[ϕ,Ω] the set of convex functions v which satisfy v = ϕ on ∂Ω and Dv(Ω) ⊂ Dϕ(Ω).
Then a solution to the first boundary value problem is a maximizer of the affine area
functional A in the set S[ϕ,Ω]. Obviously the set S[ϕ,Ω] is compact.

For the existence of maximizers, we need to extend the functional A to nonsmooth
convex functions. There are several extended affine area functionals which are all equiv-
alent [Hug, Le]. But here we adopt the definition from [TW2, TW6]. Recall that the
Monge-Ampère measure µu can be decomposed as the sum of the singular part µ

(s)
u and

the regular part µ
(r)
u , and the regular part is given by (see Lemma 2.3)

µ(r)
u = det ∂2u dx, (6.12)

where ∂2u(x) = ∂iju(x) if u is twice differentiable at x and ∂2u(x) = 0 otherwise. We
extend the affine area functional A to nonsmooth functions by

A(u) =
∫

Ω

[det ∂2u]
1

n+2 . (6.13)

We say a convex function u is affine maximal if it is a maximizer of the extended
functional A under local convex perturbation. That is for any convex function v such
that u−v has compact support in Ω′ ⊂⊂ Ω, A(v) ≤ A(u). A locally convex hypersurface
M is called affine maximal if locally it is the graph of an affine maximal function.

Let u be a convex function and η be a continuous function such that u + tη is
convex for sufficiently small t ≥ 0. Then

d

dt
A(u + tη)

∣∣
t=0

=
1

n + 2

∫

Ω

wU ij∂ijη.

Therefore u is affine maximal if and only if for any such η with compact support in Ω,

∫

Ω

wU ij∂ijη ≤ 0. (6.14)

For the existence and regularity of maximizers we may consider the more general
functional

sup{Af (u, Ω) : u ∈ S[ϕ,Ω]}, (6.15)

where

Af (u, Ω) =
∫

Ω

{[det∂2u]
1

n+2 − fu} (6.16)

and f is a bounded, measurable function.
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Theorem 6.5. Let Ω be a bounded, Lipschitz domain in Rn. Suppose ϕ is a locally uni-
formly convex, Lipschitz continuous function, and f is a bounded measurable function.
Then there is a unique maximizer u.

The existence of maximizers follows from the upper semi-continuity of affine area
functional A and the compactness of the set S[ϕ,Ω]. The upper semi-continuity was
first proved in [Lu1] and a different proof was given in [TW2]. A simple proof was
presented in [TW6], which we repeat below.

Lemma 6.4. The affine area functional A is upper semi-continuous.

Indeed, by the Hölder inequality we have

A(u, Ω) ≤
( ∫

det∂2u

ρn+1

)1/(n+2)( ∫
ρ

)(n+1)/(n+2)

for any positive function ρ. It follows

A(u, Ω) = inf
{( ∫

det∂2u

ρn+1

)1/(n+2)

, ρ ∈ C0, ρ > 0,

∫
ρ = 1

}

= inf
{( ∫

dµ
(r)
u

ρn+1

)1/(n+2)

, ρ ∈ C0, ρ > 0,

∫
ρ = 1

}
.

Since the singular part is defined on a set of measure zero, we have

A(u, Ω) = inf
{( ∫

dµu

ρn+1

)1/(n+2)

, ρ ∈ C0, ρ > 0,

∫
ρ = 1

}
.

The upper semi-continuity then follows from the weak continuity of the Monge-Ampère
measure (Lemma 2.2).

The uniqueness follows from Lemma 6.5 below. Indeed, if u and v are two maxi-
mizers, by the concavity of A we have det∂2u = det∂2v. Hence by Lemma 6.5, µu = µv,
and so u = v by the uniqueness of generalized solutions to the Dirichlet problem of the
Monge-Ampère equation. See Theorem 2.1.

Lemma 6.5. Let u be a maximizer of (6.15). Then the Monge-Ampère measure µu

has no singular part.

Suppose to the contrary that µ
(s)
u 6≡ 0. Since µ

(s)
u is supported on a set of measure

zero and µ
(r)
u is an integrable function, it follows that for any positive constant K ≥ 1,

there is a ball Br ⊂ Ω such that

µ(s)
u (Br) ≥ Kµ(r)

u (Br) + 2K2|Br|.

Let v be the solution to the Dirichlet problem

µv = Kµ(r)
u + 2K2 in Br,

v = u on ∂Br.
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Since µu(Br) ≥ Kµ
(r)
u (Br) + 2K2|Br|, the set E = {v > u} is not empty. We have

Af (v, E)−Af (u,E) =
∫

E

(det∂2v)1/(n+2) −
∫

E

(det∂2u)1/(n+2) −
∫

E

f(v − u)

≥
∫

E

(Kdet∂2u + 2K2)1/(n+2) −
∫

E

(det∂2u)1/(n+2) − C|E|
> 0

if K is sufficiently large.
Let ũ = u in Ω− E and ũ = v in E. Then ũ ∈ S[ϕ,Ω] and

Af (ũ, Ω) = Af (u, Ω− E) + Af (v,E) > Af (u, Ω),

which is a contradiction as u is a maximizer.
For the regularity of maximizers, we have the following theorem.

Theorem 6.6.
(i) If u is a strictly convex maximizer, then u is smooth, in the sense that if f ∈ L∞(Ω),
then u ∈ W 4,p

loc (Ω) ∀ 1 < p < ∞; if f ∈ Cα(Ω) for some α ∈ (0, 1), then u ∈ C4,α(Ω); if
f ∈ C∞, then u ∈ C∞(Ω).
(ii) Assume that Ω is a smooth domain and ϕ is a uniformly convex function. Then a
maximizer u is strictly convex if n = 2.

To derive the regularity in Theorem 6.6 from the a priori estimates in §6.2, we
must prove that the maximizer can be approximated by smooth ones. Our proof is
very technical. We use a penalty argument and employ the existence and regularity of
solutions to the second boundary problem, treated in §6.5 below.

There are still many interesting problems unresolved. One is whether the maxi-
mizer is strictly convex when n ≥ 3. Another one is the regularity of the maximizer
near the boundary. Concerning the second question, one may also ask whether the
maximizer in Theorem 6.5 satisfies the boundary condition (6.11). Recall that for
the minimal surface equation, the Dirichlet boundary condition is satisfied for arbi-
trary smooth boundary value if and only if the boundary is mean convex (Theorem
16.8 [GT]), and for the prescribed Gauss curvature equation (4.26), Dirichlet boundary
condition is satisfied if and only if the Gauss curvature vanishes on ∂Ω (Theorem 4.6
above).

6.5 The second boundary value problem
The second boundary problem for the affine maximal surface equation is to pre-

scribe the solution and its Hessian determinant,

u = ϕ on ∂Ω, (6.17)

w = ψ on ∂Ω, (6.18)

where w is given in (6.2), and
C−1

0 ≤ ψ ≤ C0. (6.19)
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For the approximation used in the proof of Theorem 6.6, we need to consider the affine
maximal surface equation with the inhomogeneous term f depending on u, namely

U ijwij = f(x, u). (6.20)

Theorem 6.7. Let Ω be a uniformly convex domain in Rn, with ∂Ω ∈ C3,1, ϕ ∈
C3,1(Ω), ψ ∈ C3,1(Ω). Assume that f ∈ L∞, f is nondecreasing in u and f(x, t) ≤ 0
when t ≤ t0 for some t0 ≤ 0 and (6.19) holds. Then the boundary value problem (6.20),
(6.17), (6.18) admits a solution u ∈ W 4,p

loc (Ω)∩C0,1(Ω), ∀ p > 1, with detD2u ∈ C0(Ω).
If furthermore f ∈ Cα for some α ∈ (0, 1), then u ∈ C4,α(Ω); if f ∈ C∞, then
u ∈ C∞(Ω);

To prove Theorem 6.7, one regards (6.20) as a system of two second order equations
and considers the approximation problem

U ijwij = f in Ω,

detD2u = ηkw−(n+2)/(n+1) + (1− ηk) in Ω,

where ηk ∈ C∞0 (Ω) is a nonnegative cut-off function satisfying η = 1 in Ωk = {x ∈ Ω :
dist(x, ∂Ω) < 1/k}. For the approximation problem, one proves there exists a solution
uk ∈ C2,α(Ω), wk ∈ W 2,p(Ω) (p > n). Moreover, by (6.19), detD2uk has uniform
positive upper and lower bounds. Hence uk is strictly convex and so by Theorem 6.1,
uk ∈ W 4,p

loc (Ω), with uniform upper bound. Sending k → ∞, one obtains a smooth
solution to (6.20).

Theorem 6.7 is proved in [TW6], and is sufficient for the proof of Theorem 6.6. The
interior regularity in Theorem 6.7 was strengthened to the global regularity in [TW7].

Theorem 6.8. Under the assumptions in Theorem 6.7, there is a unique uniformly
convex solution u ∈ W 4,p(Ω) (∀ 1 < p < ∞) to the boundary value problem (6.20),
(6.17),(6.18). If furthermore f ∈ Cα(Ω×R), ϕ ∈ C4,α(Ω), ψ ∈ C4,α(Ω), and ∂Ω ∈ C4,α

for some α ∈ (0, 1), then the solution u ∈ C4,α(Ω)

The uniqueness was proved in Lemma 7.1 [TW7]. The condition f(x, t) ≤ 0 when
t ≤ t0 is needed for the lower bound of u. The proof of Theorem 6.8 involves very
complicated convexity analysis. The key estimate is the global C2,α regularity for the
Monge-Ampère equation with Hölder continuous inhomogeneous term f (Theorem 4.1).

6.6 The affine Plateau problem
The Plateau problem for affine maximal hypersurfaces is the affine invariant ana-

logue of the classical Plateau problem for minimal surfaces, and can be formulated as
follows. Let M0 be a bounded, connected, smooth, locally uniformly convex hypersur-
face in Rn+1, with smooth boundary Γ = ∂M0. Let S[M0] denote the set of locally
uniformly convex hypersurfaces M with boundary Γ, which can be smoothly deformed
from M0 in the family of locally uniformly convex hypersurfaces whose Gauss mapping
images lie in that of M0. The affine Plateau problem, proposed by Chern [Ch], Calabi
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[Ca4], is to determine a hypersurface M ∈ S[M0], maximizing the functional A over
S[M0], that is

A(M) = sup{A(M′) : M′ ∈ S[M0]}. (6.21)

A special case is the first boundary value problem studied in §6.4, that is when M0 is
the graph of a smooth, locally uniformly convex function ϕ.

As with the first boundary value problem, we need to deal with non-smooth, locally
convex hypersurfaces. A crucial ingredient of our treatment is Lemma 2.1, from which
we have the following two conclusions.
• Suppose the image of the Gauss mapping of M0 does not cover any hemi-sphere.

Then there exists R > 0 such that M⊂ BR(0) for any M∈ S[M0].
• The set S[M0] is precompact. To see this, extend M0 to a smooth, locally uni-

formly convex hypersurface M̃0 such that ∂M0 ⊂ M̃0 and M̃0 −M0 is a thin
strip. Also extend M ∈ S[M0] to M̃ = M∩ {M̃0 −M0}. Then for any point
p ∈ M̃ , there exists r > 0, depending only on n,R, and the extended part M̃0−M0

such that the r-neighborhood of p in M is a convex graph.
Therefore by the upper semi-continuity of the affine area functional, there is a

maximizer of the variational problem (6.21). That is

Theorem 6.9. Let M0 be a bounded, connected, smooth, locally uniformly convex
hypersurface in Rn+1, with smooth boundary Γ = ∂M0. Suppose the image of the
Gauss mapping of M0 does not cover any hemi-sphere in Sn. Then there is a locally
convex maximizer to (6.21).

The assumption that the image of the Gauss mapping of M0 does not cover any
hemi-sphere is necessary, otherwise the sup in (6.21) is unbounded.

For the regularity, by the a priori estimates in §6.2 and the approximation, it
suffices to establish the local strict convexity of maximizers. Unlike the proof for affine
Bernstein theorem, where we need only to consider sections of the solution, in the
present situation we must rule out the possibility that the affine maximal hypersurface
contains a line segment with both endpoints on the boundary. We were able to prove
it in dimension two [TW6]. Therefore we have the following existence and regularity in
dimension two.

Theorem 6.10. Let M0 be as above. There exists a smooth, locally uniformly convex
hypersurface M ∈ S[M0] solving the variational Plateau problem (6.21) in the two
dimensional case if and only if the image of the Gauss mapping of M0 does not cover
any hemisphere.

The affine maximal surface equation is the Euler equation of the affine volume
functional. There are many other related fourth order equations. For example, one
may study the Euler equation of the more general functional

A(u) =
∫

Ω

F (detD2u), (6.22)
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where F is a concave function satisfying F (t)/t → 0 as t → +∞. The affine area
functional corresponds to the case F (t) = t1/(n+2). An interesting case is when F (t) =
log t, and the corresponding Euler equation is called Abreu’s equation arising in complex
geometry [Do]. We remark that Lemmas 6.4 and 6.5 carry over to the general case for
F ∈ C1[0,∞), F ′ > 0 and F (t) →∞ as t →∞.
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