ADDENDUM

I thank the examiners for drawing two obscurities in the thesis

to my attention.

In the preof of Theorem 1.4 (see page 11, line -4), for x > 0 ,

the Turing machine W(a,r,x) attempts to calculate

R L0 &) =y , W(a,r,x-1) <y , and

Vi < x g8y or 2 (x)> @r(x,y)}

in the obvious way. If this calculation should diverge, there is no
pEoblemiintthe proof, for then it is trivially true that W(a,r,x) = @a(x)

Anel Wi = @i(x) =hWi(@, r,x0)

In the proof of Theorem 5.7 (see page 65, line -7), the
algorithm for the Turing machine W(i,t,n,x) is stated too briefly.

The algorithm intended is :

Eersaese=int i calcullate and ocutput ¢i(x).

If x > n , then begin cycling between calculating @i(x) ;

@t(x) and @t(x) 5 As soon as the calculation for @t(x) converges,
test(a) @i(x) > @t(x) 3 As soon as the calculation for ®i(x)
(Ghz SHohs @t(x) converges, test (b) @i(x) > ®t(x) ; If a negative

EesulEisiobEalned for test (a) or for test (b), then at once calculate
and output @i(x) 4 If positive results are obtained for both tests

(@ ands () thentoutput 0 .

With this expanded version of the algorithm, the steps in the
proof of Theorem 5.7 should be quite clear. EnSpalstaicultale, "nete thait

ife @t(x) diverges, then “W(i,t,n,x) = @i(x) :

PROVABLE CONDITIONS IN
COMPUTATIONAL COMPLEXITY THEORY

by

Daryel Sachse-Bkerlind

A thesis submitted for the degree of
Doctor of Philosophy at the
Australian National University

Aprilsiliog83:

Except where explicitly stated otherwise, all the results

in this thesis are my own.

P >/ —

b
% /(\45(/(/745«/ TR et

N 0

ACKNOWLEDGEMENTS

I thank my supervisor, Professor Richard Brent,
for his support throughout my post-graduate studies, and

I thank Anna Zalucki for her superb job of typing my thesis.

ABSTRACT

Computational complexity measures and indexings of algorithms
are considered within a formal axiomatic system S . S 1is meant to
mimic the formal system within which the study of computational
cemplexity is implicitly) carried out - so, for example, S can be

a conventional axiomatization of set theory.

The main thrust of the thesis is that for many natural
questions about the complexity of algorithms, what can be formally

proved falls unpleasantly short of what is actually true.

We consider abstract Blum measures over indexings of the

partial recursive functions. Our results fall into three categories.

First we consider complexity questions involving some arbitrary
given partial recursive function £ . Associated with £ will be an
algorithm used to define £ . Before any other algorithm can be
admitted as a means of calculating £ , it must be proved equivalent
Eohour ' defiining algorithm for £ . The requirement of being provably
equivalent defines an equivalence relation on the set of all algorithms.
We call the equivalence classes provable equivalence classes. We show
that for natural complexity questions about £ , what can be proved
about f depends on the provable equivalence class to which the

defining algorithm for f belongs.

Having had our attention focussed on provable equivalence
classes, we next investigate the relationship between provable
equivalence and the complexity of algorithms. This relationship is

complex and not readily summarized, but it is closely involved with

provable containment between the domains over which algorithms are
defined. A general conclusion we can draw is that as the difference
between the complexities of algorithms increases, what can be proved

about the relationship between the algorithms decreases.

Finally, we consider provable analogues of complexity classes.
Two possible definitions for provable complexity classes are proposed,
based on different bounding conditions - (1) the usual almost-
everywhere bounding used to define complexity classes, and (2) almost-
everywhere bounding with the additional requirement that an explicit
starting-point for the bounding be given. Various results are
developed relating the two types of provable complexity classes to
each other and to ordinary complexity classes. In particular, we show
that for infinitely many recursive functions £ the provable
complexity class of f defined using bounding conditions (1) is equal
to the ordinary complexity class of £ and is strictly larger than
the provable complexity class of f defined using bounding conditions

(2).

TABLE OF CONTENTS

INTRODUCTION

i

PRELIMINARIES

151 THE FORMAL SYSTEM S
1.2 BLUM MEASURES
1.3 VARIOUS DEFINITIONS

1.4 SOME USEFUL RESULTS

SURVEY OF THE FIELD

ANOMALOUS ALGORITHMS AND PROVABLE COMPLEXITY
PROPERTIES

3 SETINTROPUCTION

3.2 RESULTS

PROVABLE EQUIVALENCE AND COMPLEXITY OF ALGORITHMS

4.1 INTRODUCTION

4.2 RESULTS

COMPLEXITY CLASSES AND PROVABLE COMPLEXITY CLASSES

5.1 INTRODUCTION

5§62 SRESULTS

CONCLUSION

BIBLIOGRAPHY

10

ILE

2018

2L

28

37

237/

88

52

52

56

78

81

INTRODUCTION

The study of computational complexity is carried out within a
formal axiomatic system. All work done should, in principle, be able
to be encoded into a formal system, such as a conventional axiomatization

of set theory.

The observation that a computer scientist studying the behaviour
of algorithms is dealing with formally provable properties opens the
door to a wealth of new insights into the nature of problems in
computational complexity theory. As Hartmanis says in [9], "the results
about complexity of computations change quite radically if we consider

only properties of computations which can be proven formally".

There are several motivations behind work on provable conditions
in computational complexity. First, there is the growing interest in
computer science in proving properties of programs. Then, our continued
failure to solve certain outstanding problems in complexity theory -
such as the famous P = NP ? problem - has raised the suspicion that
the answers to such problems may be independent of the axioms of set
Eheeory. (See [11]) Third, a precedent for the study of provable
conditions in complexity theory has been set by earlier studies of
provable conditions in the theory of recursive functions. Finally,
the intimate connection between formal logical systems and computation,
the ability to code a formal system into a machine to generate theorems,
makes the study of the behaviour of algorithms an obvious subject for

an enquiry into the limitations of what can be formally proved.

i

We investigate provable conditions in computational complexity
theory by introducing a formal system S of sufficient power to allow
encoding of all the standard concepts and reasoning used in the study of
computational complexity. S 1s to mimic the formal system within which
a computer scientist studying algorithms works. So, for example, S

could be a conventional axiomatization of set theory.

We can now study how results in computational complexity change
when we demand that certain conditions be formally provable in S ; we
can investigate discrepancies between what is true about algorithms and
what is formally provable about them in S . The conclusions we draw
will apply directly to the work done by the computer scientist studying

algorithms.

HhesrestuliEsiane thi'st thesis are not restricted to any particular
complexity measures. We deal with partial recursive functions on the

natural numbers N and with abstract Blum measures of complexity.

In Chapter 1 we set up the preliminaries. We describe the
formal system S , establish definitions and terminology, and present
a number of preliminary theorems which will be useful in proving our

later results.

Chapter 2 is a survey of the work that has already been done

on provable conditions in computational complexity theory.

In Chapters 3,4 and 5 we present our results. Each chapter has
an introduction which motivates the work of that chapter and previews

the results obtained.

Chapter 3 concerns the problem of establishing complexity

properties for some (arbitrary) given partial recursive function £

EET

We consider three natural questions involving the complexity properties
of £ , and we show in each case that what can be proved about f
depends on the algorithm initially used to define f . Instacty Faor
each complexity property considered, we can explicitly construct possible
definingraligorithmsi for: £ Using which it cannot be proved that £

has the property - even when £f does have the property.

The work in Chapter 3 makes great use of the notion of provable
equivalence of algorithms. Two algorithms are said to be provably
equivalent if they can be proved to be equivalent. Algorithms that
are provably equivalent are related in their complexity. In Chapter 4
we develop a number of results relating provable equivalence to the

computational complexity of algorithms.

In Chapter 5 we consider provable analogues of complexity classes.
Two possible definitions for provable complexity classes are proposed,
based on different bounding conditions - (1) the usual almost-everywhere
bounding used to define complexity classes, and (2) almost-everywhere
bounding with the additional requirement that an explicit starting-
point for the bounding be given. We develop various results relating
the two types of provable complexity classes to each other and to
ordinary complexity classes. In particular, we show that for infinitely
many recursive functions £ the provable complexity class of f defined
using bounding conditions (1) is equal to the ordinary complexity class
GRS E N andiisEsEriictly larger than the provable complexity class of

f defined using bounding conditions (2).

Except in Chapter 2, where we adopt a special convention to aid
reference, results are numbered consecutively in each chapter. Thus,

Theorem 3.4 denotes the fourth result in Chapter 3.

Iv

Our terminology for partial recursive functions follows that
e TS I Our notation and terminology for complexity measures follow

Ehat of [3]-.and [10].

1 PRELIMINARIES

In this chapter we establish the basic definitions and terminology,

and present some preliminary theorems.

PV, THE FORMAL SYSTEM S

Ehesnideatbehind the 'definition of S is to make S sufficiently
powerful that all of the standard concepts and reasoning used in the
study of computational complexity can be reproduced in S . Tt turns

out that there is no need to become involved in the details of the

formaldescription fof ST “and so ‘we shall not dwell on them.

Let S be a formal axiomatic system containing a conventional
axiomatization of Elementary Number Theory (ENT) and enough of the power
of axiomatic set theory to enable formalization of straightforward
mathematical argumentl. WelEuntheriiassumer lEhat" St s sound! for ENT ,
that is, there is no formula which is a theorem of S and which is false

under the standard interpretation of ENT . SiliisE el e ifitce dMbut

arbitrary within these constraints.

In the usual way, through number-theoretic predicates, we can
encode into S any of the standard enumerations of the Turing machines,
and can carry out all of the standard reasoning about them?. Then, since
S 1is sound for ENT , any theorem of S which is (under our intended

interpretation) a statement about Turing machines will also be true.

An example of such a system is first-order Peano Arithmetic. By RN

we mean the theory of number-theoretic predicates expressible in first-
order arithmetic.

This encoding process is explained in most texts on logic and
recursiveness. See, for example, [4] or [12].

S will have its own formal language. Rather than concern
ourselves with the details of such a language, we shall take advantage
of the intended interpretation of it, and enclose in quotation marks
those informal statements which are to be understood as having been
written out in the formal language of S . Statements about partial
recursive functions will appear in S as statements about Turing
machines. Thus, when ‘we write "Vx f(x) = x" , it must be understood
Ehat £ isibeimgtreferredito in S via a' specific Turing machine

representation.

We use the usual notation to denote theorems of S . Thast
— "Vx f(x) = x" indicates that the statement in quotation marks, when

transilatedinte’ the formal language of S, 1is a theorem of S

Conversely, R) e ndilca Ee st Ehat the statement is not a

theorem of S .

Hinaislvsnotelthat, since " S '1s a formal axiomatic system, the
theorems of S are recursively enumerable. It follows that the theorems

of S can be generated primitive recursively. ({See H[HL55i)

1.2 BLUM MEASURES

An abstract Blum measure consists of two parts : an acceptable
Godel-numbering ¢ (which indexes the partial recursive functions) and
a Blum measure & for ¢ . (See [3].) For the usual reasoning about
@ and @ to be reproducible in S , the defining properties of ¢ and
® must be theorems of S

, 1in which case we call ¢ a provably

acceptable GSdel-numbering and ¢ a provable Blum measure for ¢ . In

this section we present a proper definition of a provably acceptable

Godel-numbering and a provable Blum measure.

Throughout the following, let {Mi | i € N} be some standard
enumeration of the Turing machines with some appropriate input-output
conventions. For convenience, we use Mi Eosdenote Jbeth (the . i 'th

machine and the function of one variable that it defines.

PROVABLY ACCEPTABLE GODEL-NUMBERING

Let ¢ be a partial recursive function of two variables. For
eachNiFs Tl welwriite . the .funetion . AX . @ (i,x) as @i £ Then ¢ defines
an effective enumeration of a set {¢i { i € N} of partial recursive
functions of one variable. We extend this to functions of more than

enesvaniiabievbyfassecrating .with © a pairing funetion, that is, a

recuEsitve ibijectifon® <>V i) NN . By convention, we avoid
explicit reference to <,> and write @i(<x,y>) as @i(x,y) 4 We
write @i(<<x,y>,z>) as @i(x,y,z) 1 handifseifont.

We can now present the definition of an acceptable Gdel-numbering

as follows:

DEFINITION ¢ 1is an acceptable Gvdel-numbering if

P} A ey o il 2 o

(e for¥some® recursiive function ' s-,

Vi Vx Vy @i(x,y) = @ Yo

s(i,x)(
(Gt For semettindex v

Vi Vx @v(i,x) = Qi(x) 5

In the definition, (i) states that ¢ enumerates all the partial
recursive functions, (ii) states that Kleene's Iteration Theorem [12]
RIS SN DR N and (1N) ¥states that there is a universal-machine index

RO I (D BorsalEultltda seussiion of the definition, see [14].

To be able to reproduce in S all the usual reasoning about the
@i's B Ehe Pasie 'properties of ¢ must be theorems of S . For

PuEposes of encoding into S , ¢ will be represented by a particular

ffuring machine foricalculating it. SimadlaElivaitor (< >

We now define a provable analogue of an acceptable Godel-

numbering.

DEFINITION ¢ 1is a provably acceptable Godel-numbering if
= a s A total, one-one, onto funection",

) v- . }_" — '|| 2
(L) ity Mi ®j

SR tEer 'Somelirecursive functien s
= SishisRatitotal | funetiont and

Vi Vx Vy Qi(x,y) =0 (R

Si(Exe)
Gv)F feor someindex . v

— vYi Vx @V(i,x) = @i(x)" £

The conditions of the definition correspond to what we would

establish in determining that ¢ is an acceptable Gtdel-numbering.
S Wellcan ‘preve that <;> is a pairing function.

(ii) Given any Turing machine Mi pratiereiiiiciant dndex
for which we can prove that @j calculates the same
partial function as Mi 2 (Actually, we would find a
uniform procedure to produce Qj from Mi EoR R EhalE TS

not needed. See Theorem 1.1.)

SRR ROES Somestunctlon 'S, we can show that the Iteration

Theorem holds with s

5
(iv) There is an index v which we can show to be a universal-
machine index.
PROVABLE BLUM MEASURE
Let ¢ be a provably acceptable Gddel-numbering. Let ¢ be

a'collection {9, [SENNILof partial reecursive functions.
il

DEFINITION DIMGISITa Billnim: measure’ for © @ ¢ 1f

@8 for 'seme: index’ e ., @e is a recursive function and

e g (1 x,n) ='1 % P (x) =n ,
e at

GEE Ry doman @i = domain ®i

In the definition, (i) says that the relation éi(x) =Rl
Beeursiverdnie 4 xine sasand v (ad) says that Qi and éi are defined on
precisely the same set of inputs. Horasdiiscussiiont ofi thelldefind tien,

see [3].

To be able to reproduce in S all the usual reasoning about the

measure % , the basic properties of % must be theorems of S

We now define a provable analogue of a Blum measure.

DEFINITION ® is a provable Blum measure for ¢ if for some index e
(G 5 e et ho @e(i,x,n) = ks ®i(x) =m .
@) "@e isEaltotall function"

R, PR W oo 3y ailsdie g (3n Pfise) = 1)"

Let ¢ be a provable Blum measure for ¢ . From the index
e and the Turing machine representing ¢ in S , we can easily

construct a Turing machine U such that

i

¥gi Ve i, x) = nin {n | @e(i,x,n)

and the relationship between U and @e can be established in S .
#% part (1) of the definition, Vi VYx U(i,x) = @i(x) : RIS
effectively indexes the @i‘s ! We shall consider the @i's as being

encoded into, S via U

Given that the éi's are being represented in S by a Turing
machine U , we can rewrite the definition of a provable Blum measure

as '

(EHEEI IS foriisome index: e
b "@e GSsta total ifunction and

B @ xn) = 1 < ®.(x) =n",
(2 318

(iii) + "VYi domain oo domain @i" .

It can now be seen that the conditions of the definition of a
provable Blum measure correspond to what we would establish in determining

that ¢ is a Blum measure.

(i), (1ii) We have an algorithm Qe(i,x,n) for testing whether

®i(x) =n , and we can prove that the algorithm is total.

g Wer cantishew ithat for any index i , @i shoel @ e
it

defined on precisely the same inputs.

EXAMPLE

We may define a partial recursive function M of two variables
sesEhate e Vi Wx Mild o) o= M, (x) . Let <,> be some simple pairing
Ennetion: M with <,> will form an acceptable Goédel-numbering. Let

M and <,> be encoded into S via some straightforward Turing machine

representations. Then, since all of the usual reasoning about Turing
iEleliinesican befreproduced 1n S, , the basic properties of M and <,>
will beltheorems of 'S, and thus they will form a provably acceptable

Godel-numbering.

Consider the TIME and TAPE measures on the Turing machines. Both
will be Blum measures for M . All of the usual reasoning about TIME
and TAPE requirements can be reproduced in S . Thus, the basic
properties of TIME and TAPE will be theorems of S , dnd both TIME and

TAPE will be provable Blum measures for M .

Indeed, for any of the usual acceptable Gddel-numberings and
Blum measures, the reasoning used to establish their defining properties
will be reproducible in S , and so they will be provably acceptable

Godel-numberings and provable Blum measures.

Throughout the rest of this thesis, let ¢ be a fixed but
arbitrary provably acceptable Godel-numbering, and let ¢ be a fixed

but arbitrary provable Blum measure for ¢

1.3 VARIQUS DEFINITIONS

DEFINITIONS

(1) ¢, is provably equivalent to @j , Wwritten

QO N e R R R O
i 3| i 2

IEiE Qi is not provably equivalent to ¢j , we write @i % jj

(ii) The provable eguivalence class of Oi is the set of

algorithms {o. | ¢. = 0.}
j 3 i

(a1) Mi HsHprevably itotal df "Mi iSEaEetal

Similarly, @i fiispreovabiliy ttetal if = "@i e eoneel

@SR ER AR D Fune tilon 1 Ehere i's a provably total M

thalticaleullates: £

e) ilsidefined, we say that f£(x) converges and we write
felse)y & If f(x) is not defined, we say that f(x) diverges and we

wrdEe: i () 4 WE

We follow the usual convention for interpreting inequalities
between partial recursive functions - for example, we write £(x) = g(x)

SR o TEElie R R (R PR R an di . gl landes £1(x) = gi@x)d, orig(x)+

When defining algorithms, we adopt the convention that the

maximum of the empty set is zero.

AlmesElcvenywhenc it ((ahel. <) signifies . dy Vx = v . Infinitely
CHREE R (G o M i niidie ST iV S >y . We shall often write a.e.

GE itet e when 'the associated variable is clear from the context.

We define the complexity class of f (under the measure @) to

be the class
GREIE- NG INEE (5 i=tgn amd 19, ()= Elx) ale. x}

B=SfsRuself teo iredquiite in the idefinition of C[f] that £ and

g be recursive. However, it is convenient for the statement of our

Heanltalnn CliapEer’5 'to ‘allow £ and g to be partial recursive.
We will discuss the matter further in Chapter 5. Note that all of our
meeulfsrinvelving C[f] will continue to hold if the class is restricted

to recursive functions.

DEFINITIONS

(i) We say that @i Ausilse- opitimailsa se s (hso) ... -ox Ehat @i
iseopiimal e a.e. @i Jou)i t module .x , if

Y5 @j e §i(x) < r(x,@j(x)) EREL SR e)

(ii) We say that @i has an r speed-up a.e. if

ESRDIE—Rol o EeRE)) = P(x) ale. x
J 1 J i

We noted earlier that TAPE and TIME are provable Blum measures

for the Turing machine enumeration M . We shall denote by TAPEi
the TAPE measure function associated with the Turing machine Mi.3

Similarly for TIMEi

It will be a convenient shorthand, when the Turing machine
EepBesenting a ifunctilon. £ Vis clear from the context, to let TAPE f (x)
denote the number of tape squares used by that Turing machine in

gallcullating £ (x)

 The details of the TAPE measure can be formulated in various ways.

These details are generally not important to our discussions, and
we leave it to the reader to fill them in.

10

1.4 SOME USEFUL RESULTS

It is a consequence of our definitions that the proofs of the
standard results for acceptable Gddel-numberings and Blum measures can
be reproduced in S for provably acceptable Gddel-numberings and

provable Blum measures. The following theorems make use of this fact.

The Isomorphism Theorem for acceptable GSdel-numberings [14]
can be reproduced in S . We shall use this result in the following

form

THEOREM 1.1 For some recursive function vy

EalldaiisSaltotall, one-one , 'onto funetion and

Vi

Wy 7
Actually, Theorem 1.1 can serve as an alternative definition of
a provably acceptable Gddel-numbering. It is easy to show that if
iieeremS SIS HelldST forta partial’ recursive funetion ¢ , then 0]
(together with some simple pairing function) will form a provably
acceptable Gdel-numbering. The proof starts with the fact that the
Turing machine enumeration M is a provably acceptable G&del-numbering,
and then uses the relationship between M and ¢ to establish the

requisite properties for ¢ .

Any of the various forms of the Recursion Theorem [15] can be

Eeproduced in. .S . We shall use this result in the following form :

IFHEOREM 1 .2 Eerievery spartial recursive function £ , there is a

recursive function m such that

=@ is a total' function and

"

BN Cats vy = Pe(i,r,mii,)

Kleene's Iteration Theorem for Turing machines [12] can be

meproduced in. S . So we have

THEOREM 1.3 e & BWIEES), =) be ra Tuning machine. Then for some

recursive function w

S A EotEal $funetiieon and

W0 Y Wi j,x) = Mw(i,j)(x)"

The Gap Theorem [10] can be reproduced in S . Our version of
this result incorporates details that are not made explicit in the

usual proofs, and so we sketch out a proof of our own.

THEOREM 1.4 For some recursive function o
PR Icl S Eo ol functiontand WWa N

(ENS©

is monotonically increasing and
a(a,r)

\rsie ()

Lt by () = @a(X) ;

(EER A =i D (%) < P

B a(a,r)(x) e

@i(X) > @r(x,@ (E3)5 R

Cillete)
(Rt asf @a and @r Qnel BeoEall functilion's) then

O} IS totals function”
ci@e)

PROOF Define a Turing machine W(a,r,x) by
1L Wi, 2, 0) = Qa(O) ;

P For x > 0 W(a,r,x) = min {y | Qa(x) = e

MER 1) '=v', and Vi =x ii(x) =8ve o1 @i(x) =00 62 o))

See the Ao/a/enc/um \

It is now a straightforward exercise to establish that
(*) Va Vr

(G e Bl a s monotenically increasing in x and

N Wlaax)'z §0=)

Cilyes Wi Vx: =dd @i(x) = e e) eeae

s = e x WA e,.x)) |,
5) &

o S @a and @r are total functions, then

Witarbrpxdild Fort every' X .

The arguments used to establish (*) will trans]ate easily into

PEeofs: in . 'S .. Thus, the statement of (*) will be a theorem of S
By Theorem 1.3, for some recursive function w

—"w 1is a total function and

Val Ve x W(aiE X)) = Mw(a,r)(x)"

el = fouw L Awhere ¥ ids:as in Theorem 1.1. Then

g it totalll Function and

Va Vr Vx Wiy, =,)= (Pa(a r) (x)"

This, combined with the statement of (*) as a theorem of S , establishes

Theorem 1.4. &

The next theorem shows a relationship between the TAPE measure

and @

EHEOREM" 1 5 Hetay W ba ‘asiin Theoremsl .1 . Then for some recursive

Ewemetion . h

R e | Bekal funétion,

i) Wi smenctonically increasing in y , and
RV AP () = hi(x,® (%)) and
i 7 G,
R) = h (o IPARE . (xe)) "
() 3\
PROOF Define h by
(= =R mene GINARE), 2 ix Ol < s S Aandl
(x,y) {TAPE, (x) , 2 ;) (x) |
<= (65) =
TAPEi(x) Sk Hon Y(i)(X) =7

Then, for a straightforward Turing machine representation of h ,
SER B cNea sy o prove 1n S| that h has the properties claimed
EFor¥at ! The proofs in S will be simple translations of the standard

arguments that we would use. @

It is perhaps worth noting that {® al (& Nl is a provable

v (1) |

Blum measure for M , and that the proof above is adapted from the
proof that any two Blum measures are recursively related. (See [10].)

Our next theorem reproduces in S another standard result.

THEOREM 1.6 For some recursive function u
= e ista Eetal Funcetion and

vl q)u(l) = Cpin 4

PROOF Recall from Sectiion 1.2 the Turing machine ' U |,
i) = win {0 | ¢ (i,x,n) =1} = &, (x)

h g

By Theorem 1.3, for some recursive function w

FE s e Eotal funcEion. and

e AR E T (A s s ML L (x)
w(l)

e M=y oW T Wliere | vy is as in Theorem 1.1. Then

e iiici s tokal function and

Vi Vx i) = Or L (x)
u (1)

Since the @i's anewencodediintoat S twvia | Uhy, weihave

n 5 = (I) " o
i S 4

The following result was also observed in [5].

PROPOSITION 1.7 R i s o S pDleimittrive re cursHtve SFunetiieon', thent g

Eear ip-funetion.

PROOF From a primitive recursive schema for g , we can construct
a Turing machine Mi B Aghes A little consideration of the possible
steps in a primitive recursive schema and of their translation into a

Turing machine description makes it clear that Mi is provably total.

We shall often make implicit use of this result by noting that

a primitive recursive process must be provably total.

eFepServedl intsectiteon 1.1 that any theorem' of S which is
(under our intended interpretation) a statement about Turing machines
will be true. Since algorithms @i , measure functions @i and
all other partial recursive functions are being represented in S by
Turing machines, it follows that any theorem of S which is a statement

about these objects will also be true. We shall often use this fact

in our proofs.

O

RTSImYEY OF THE ‘FTELD

In this chapter we survey the papers that have already been
published on provable conditions in computational complexity theory.
Although the setting-up in these papers of the formal system, the
indexing of the algorithms and the complexity measure may differ to
some degree from ours, the basic approach remains the same, and we
shall translate the major results of these papers into our own notation.
As an aid to reference, we shall number the translated theorems as

they appear in the original papers.

The study of provable conditions in the theory of computation
began in the 1950's. Fischer in his own paper on provable recursive
functions [5] reviews the work done on provable conditions in recursive
function theory. In the 1970's, provable conditions were introduced

into the study of computational complexity.

However, despite the promising results achieved and the
contention of both Hartmanis [9] and Young [20] that the area deserves
a thorough investigation, relatively little work has been done on
provable conditions in computational complexity. We have found only
five papers in this area, and all were published between 1976 and 1979.

We survey these papers below.

Gordon [7] considered complexity classes of p-functions. He

showed

THEOREM 1 IS ISE e D—Eunc Eilontand! g isirecursive.with g €. C[f]

Ehen® g*- isfavip-function.

’

16

THEOREM 2 ifileceNils *al recnrsive function +t such that for any

oo Ve ffunckient gu, Wgh is ayp=function iff g € C[tl]

A simple observation from Theorem 2 is that if a function is too
complex, then we cannot prove that it is total. Our own Theorem 4.11

is a generalization of Theorem 2.

Young [20] produced some surprising results about optimization

and speed-up among provably equivalent algorithms.

THEOREM 2 Hor somel \p-functions, ¢ sand ¥ , Vi

(0) QO(l) SR QL

P

() @O(i)(x) = r(x,@i(x)) adern, X

sbatl for an N :
({atalsl) y @] @o(l)

o(i)(x) = r(x,?j(x)) AFfe A

Bagileaililiyy, (113 says that @G aiSEa eI = o b aimail Wit Eh it

(1)

its provable equivalence class. [Ehusi s foraisome M p=funectaon’ " r & S igiiven
any algorithm @i for a partial recursive function f , we can
effectively construct another algorithm $o(i) FormE R S whnclhiia s ial e

r-optimal within its provable equivalence class.

1l

7

THEOREM 3 Let @r be provably total. For any provably total @i

we can effectively construct a ®j such that

In Young's statement of the theorem, @r and Qi are allowed to

be recursive. However, we can see the proof working only when @r
and @i are provably total.

157

(i) ¢. =9, ,

D) S Eon anty QA @j , we can effectively construct a

@k such that

" s [[eh) i D n
— @k wh and Qr(x,wk(x)) h(x) A X

it E S e iistithe functieon caliculated by @i , then wj

also calculates £ and within the provable equivalence class of o,
every algorithm has an effectively constructible Qr speed-up a.e.

Furthermore, the speed-up relationship can be proved.

The next theorem shows that an algorithm may be optimal

(modulo some recursive function) without our being able to prove so.

THEOREM 6 There exist recursive r and @i stuchithat

(1) @i SR opELmal, aden 1,

(i) ifor) any. @j = @i

4-”@j s R—optimali i ace. "

Young gave another result, Theorem 5, about functions having
algorithms that cannot be proved to be optimal. However, the proof

is flawed. Our own Theorem 3.3 is a strengthening of Theorem 5.

The other three papers on provable conditions in computational

complexity deal with the TIME and TAPE measures on the Turing

machines.

This work is done in the context of Turing machines as recognizers

of formal languages. Inputs are finite strings from some alphabet. The

18

halting states of a Turing machine are either ACCEPT or REJECT

The language recognized by M,l is the set L(Mi) e Failllsinputsiion

WiehieM & finally enters i the state ACCEPT . Eor 'any @antegert. x
i

TIME, (x) is the maximum number of machine steps used by Mi on any
it

e ssEringyof. length :x . Samusliasiltyssforn o ' TAPE &.

Naturally, the famous P = NP ? problem2 has received

attention.

Baker [1] showed that the addition of various provable conditions
to the definitions of P and NP does not simplify the P = NP

question.

Hartmanis and Hopcroft [l1l] considered a relativized version of
the P = NP ? problem. Let PA denote the set of ali languages
recognized in polynomial-time by deterministic Turing machines operating
wath the''set "/A as an‘'oracle, and let NPA denote the set of all
languages recognized in polynomial-time by non-deterministic Turing

machines operating with the set A as an oracle.

THEOREM We can effectively construct a Turing machine Mi such
L(Mi) L(Mi)

that L(Mi) is the empty set and "P = NP " is independent

©fFFs Sir

2 p is the set of all languages recognized in polynomial-time by

deterministic Turing machines. NP is the set of all languages
recognized in polynomial-time by non-deterministic Turing machines.
BoEsdn@extensiveldi scussion'ieof’ P, NP and the P = NP ? problem,

see [6].

L(Mi) L(Mi)
Since L(Mi) FEsiemptyss B = NP ALEfER P =" NP

Hewever , 1t 1s not known in 'S that L(Mi) is empty, and so the
theorem above does not actually say that "P = NP" is independent of
(5 Hea Nevertheless, this theorem does raise the suspicion that the
P = NP question might not be resolvable within the axioms of set

theory.

Hartmanis and Hopcroft established in [l11l] two other independence

results for the TIME measure.

THEOREM WeRecantexhnlbitiasirecursive ‘funetien t | such that the

equality of the TIME complexity classes

{L(M,) | Vn TIME, (n) =)] el
2
{L(Mi) | Vn TIME, (n) =t (n)}

is independent of S

THEOREM We can exhibit a Turing machine Mi such that

Yn TIME, (n) = n® but H# "Vn TIME, (n) < Vs
We generalize this last result in our Theorem 3.1.

Hartmanis in [8] defined a provable analogue of a complexity
cllassefor the 'TIME" "and ' TAPE measures, and presented a number of
results relating the provable complexity classes to ordinary complexity
classes. We discuss this paper further in Chapter 5 where we generalize
many of its results to abstract provable Blum measures, and so we shall

give here only two of the major theorems from [8].

THEOREM There exist recursive functions t such that

BN s I (n) = t(n)“)} S {L{M.) | Yn TIME. (n) = t(n)}
i i * Al it

Thuis,) there are functions t for which the provable TIME

Eenpille xievBcliassie fAER dis S strictly smalller "than the' ordinary ' TIME

conplexity class'of t . We generalize this result in our Theorem 5.3.
THEOREM 16 Mj is recursive and Vn TAPEj(n) =S fhen)
L) s g p] TAPE, (n) = TAPEj(n)"} = (L) | Vn TAPE, (n) = TAPEj(n)}.

Thus, for a certain natural class of resource-bounding functions,
the provable TAPE complexity classes coincide with the corresponding
ordinary TAPE complexity classes. We generalize this result in our

Theorem 5.6.

Finally, let us note that many of the results from (8], [11]

and [20] are collected in [9].

3 ANOMALOUS ALGORITHMS AND
PROVABLE COMPLEXITY PROPERTIES

3.1 INTRODUCTION

In any practical situation, when considering some particular

partial recursive function f , we must have (at least implicitly) an
allgenistiim o define £ . Before we can admit any other algorithm as
a means of calculating £ , that algorithm must be proved equivalent

FoRounr definting 'algerithm for £ .

The requirement of being provably equivalent defines an

equivalence relation on the set of all algorithms. We call the
equivalence classes of this relation provable equivalence classes.
(Seel the definitions in, Section 1.3.) Theorem 4.5 shows that for any

B EEaE e clirsiveltfuncEilonie £, 8 Ehel set offall algorithms, that calculate

f divides into infinitely many provable equivalence classes.

et £ be lan arbiitrary. paktial recursive function. Depending
on which provable equivalence class our defining algorithm for £ lies
in, we will form quite different answers to typical questions involving

Bl In this chapter, we consider three basic questions about £
I e what complexity classes does £ belong?

2. Does f have an algorithm which is optimal modulo some

given recursive function?

3. When f itself is taken as the resource-bounding

function for a complexity class, by how much must we
increase f before admitting new functions into the

complexity class?

22

In each instance we demonstrate the existence of anomalous
SR e alliciord Ehms for £, Ethat 1s, defining algorithms for £

under which there is a significant discrepancy between what is true

about f and what can be proved about £ . Our results are presented
properly in Section 3.2. They can, however, be paraphrased as follows
THEOREM 3.1 For any recursive function r , there is a defining

algorithm for f under which £ cannot be proved to be calculable
by an algorithm of complexity bounded by r - even though, in many

cases, the defining algorithm itself will have complexity bounded by «r

.

THEOREM 3.3 Fordany®recursive function " r ," there is a defining
algorithm for £f wunder which f cannot be proved to have an algorithm
optimal modulo r - although £f may well have such an algorithm and,

in many such cases, the defining algorithm for f will itself be

eptimaly medulor i xrs .

THEOREM 3.5 HeoEsanysrecursive function ¢ r , . there is a defining
algorithm for £ under which it cannot be proved that the complexity

GISERN GBI ISE s trlctly larger than C[£] - although, in many

cases, this will be true.

Further, in each theorem, such anomalous defining algorithms can

be effectively constructed.

These theorems show that when investigating the computational
complexity properties of functions we must relate our results to the
algorithms used to define the functions rather than to the functions
themselves, and that our results may be severaly limited by the peculiar-

ities of these defining algorithms within the formal system we employ.

23

.2 RESUETS

THEOREM 3.1 Per seme p-functions @ ., g

oy e N B SR @i(x)+ and Qr(x)¢ e Chens O (Exa) e -

@i)
EUBlB e T e e B T is recursive, then
ETREN L)

and @k = 0 NeOL

’ 4

k o) 1G
ek TR St
(iv) o(i,r)(x) < g(x,®i(x)) Bl 5%
PDISCUSSION

We shall talk as if S were the formal system within which the

study of computational complexity is carried out.

I NS wa s shown that 'al Turing machine could be explicitly
produced which ran in n2 time but which could not be formally proved

to run faster than 2" time. Our result is a generalization of this.

Let @r be recursive, and let @i caliculliatteVatsfunc tilon™ £

1557 Al R Gh vt allisotcalieulates if . NeoEeRtha = igiaisiadp - functilont:
g ’

Thus, can be effectively constructed from ¢, and wr 5 Ehnyel

Poii,r)

by a process which is provably total.

EaNEEn B Eheldeffiniing tallgortthm for £ is taken to be

or any algorithm provably equivalent to ¢

) o awe wadllil
o (ol e,

Solin)
Hoteberabllestolprove that ff 1s calculable by an algerithm of complexity

bounded infinitely often by @r . However, if ?i = @r a.e., then

f can in fact be calculated by an algorithm of complexity bounded almost

everywhere by @r % BusEher, Sy () i f g(x,@i(x)) = Qr(x) SR = A 5

4

then ¢o(i ¥ = @r a.e. , so that the discrepancy between what we can

prove and what is true is even greater. Indeed, we can prove at most

24

that ®o(i,r) is bounded by Qr on finitely many inputs.

The question arises as to whether we are actually in danger
of encountering such anomalies in practical situations. et disEficuilty
here is that there is no way we can know whether our defining algorithm

for a function is anomalous.

It might be hoped that we could avoid such anomalies by restricting
ourselves to what is arguably the more practically meaningful class of
provably total algorithms. However, (i) shows that if @i and Qr are

provably total, then so is @O(i,r)

Since the: funection . g in (iv) may be large, may itself

5o}

@ (il 32),
always be large, and perhaps we can be safe from anomalies when dealing
with algorithms of small complexity. We shall discuss this further,

after the proof, for the more concrete case of the Turing machines with

the TIME and TAPE measures.

PROOF OF THEOREM 3.1

RFCORMEIHMETNGE (15 %)

I Mokt o isslo g ixé tapel. Generate the theorems of S and
wrsli=clithemdown untiil “the log x tape is. full. Check
Whie thesthetoemuliar Wl o =" ¢ ‘and & = o o@e VRS
k J k 5

been written down.

2. If the formula has not been written down, then calculate

and output wi(x)
3. If the formula has been written down, then calculate and

output

I S mone {00 (30) ! OEEEn = ondit P () = 0 (%)
n n r

DISCUSSION OF THE ALGORITHM

iis: Log will be to some appropriate base. We don't actually
EEllenaFeslioe < i but rather, say, the greatest integer g = log x

As we noted in Section 1.1, the theorems of S can be generated

primitive recursively. So, all of this step can be done primitive
recursively.
2 @i(x) s eaillcnliated®oyanputting (1,%x) " to the Turing machine

Eepresenting @ i'in - S .

8. The test ®n(x) = @r(x) is carried out by testing progressively
@e(n,x,O) =W il . @e(n,x,l) S LI o i o) @e(n,x,Qr(x)) = i awhere
e 1is the index associated with @ in the definition of a provable Blum

measure. (See Section 1.2.)

The algorithm translates into a Turing machine T(i,r,j,x) . By

Theorem 1.3, for some p-function t

YR e st Vi S (GRS e b= My) Sl el
J (J/x) t(l,r,j)()
e E v fillo e bl whe e v 1S as 1n Theorem. 1.1. Then
— Wi VYr Y5 : e — NI o
3 q)V(l,r,j) el sE3)

By Theorem 1.2, for some p-function m

ol nV' V 8o "
P R s i, E)
et o = m Then ¢ 1is a p-function and
(*) el WRE M e B (00 PR B) Y

oy (i Y,

26
We now establish each section of the theorem in turn.

(1) @ensider the'algorithm operating on some (i,r,Jj,x) . Suppose
that @i(x)¢ and Qr(x)¢ 5 Step 1 is primitive recursive and therefore
converges. Step 2 converges because @i(x)¢ . Since @r(x)¢ and @e

st total s sEep 3 must also’ converge. So the algorithm will converge.

RhlilsNcor ot Ireaseoningrcould be carried out in. S for T

Thus

R UVERRY R Y o) Y i @i(x)¢ and @r(x)¢ B then

Llhax3, %)+

Se ffrom (%) ;

L e b ialE @i(x)¢ and or(x)¢ 5 idaem

Tl o

Horlth et nemaining sectionstof the preof, let i be arbitrary

but assume that @r is recursive.

and ¢ < ¢ ol A0 A A

b A 2 .
feais) Suppose £ o @o(l,r) i 45

HeRshallil estEabillbiish @t contradiction.

By the theorem, for som = i AR = L@k
v e em e imia @n QO(l,r) an e @r 1.©

SoFor i some’ xe ='n' " we'must have that én(x) < @r(x) and the theorem

WS prear on . leg X tape in step 1 of the algorithm.

Nownconsitdentthetaligorithm on « (i ,xr,0(i,xr),x) . The theorem
gisEtoundiiin istep 1 so we go' +to step 3. Step 3 converges as Dr is
total. Simeelny. =%« and @n(x) < @r(x) T EleoutpuE BronisiEep; 3 wailll

be greater than Qn(x)

1 ¢ TN) R ¥ 7 : =00 5
Whits - . Frem: (%) G(l,r)(X) an VG(l,r)(X) n(x) But
@ = 4P A Contradiction.
n G (14 5)
EEEm Tt olllows From’ (11) that for every x the algorithm on
G S goest to" step. 2, and therefore T(i,r,c(i,r),x) = wi(x)
Hence" O : =R
g (25'r) 5.
(iv) @onisildena N N operating on semes (iLxr, o (i,r) ,x) . The calculation
for step IWErequires log x.. tape. Since the algorithm goes to step 2,

1t feolllows tthat
IPAREREEEe Gl #) %) =i logex «++TAPE @i(x) i

Define g by

Il

g(x,y) = max {$ G 9% g = , 0=b % x

i lE 1)

®a(x) =S en A RER(a) biol(alb))l = log x|+ TAPE @a(x)}

Note that if @a(x) = y and
MAPENR(EWHEGIasb), X)) =%log x + 'TAPE @a(x) I Elie nSsRaE boi (@, o), X

o5}
and so o(a,b)(x)¢ 3

@llaalyy theny s ig. ¢ sis' total .

SN ReoEREId e gl is®tEotal icould be carried 'out in S for some

straightforward Turing machine representation of g .
e refore, @ g s vial p-function.

Hinaislya el serve that ifor x'= max {i,r} ,

») = b
So(i,r)(x) 27 g(X’ii(x)) 3 ’

28

Let us consider the result for the Turing machine enumeration

Mawith the. TAPE and ' TIME "measures.

MEN el e sy EoRanrange the function t . in the proof so that

Mt(' o calculates step 1 using log x tape and step 2 with the
ll ’
Instructiiontiset” for Mi lostislt=sintor 1t Then, whenever the theorem
i i : = Sl i A 3
termots foundl in' step- 1., TAPEt(i,r,])(X) Hog#ix: APFl(x)

Byfifieorentl 28 for M, foriseme. p-function m

||V' v M g =M j ! "

20 gt m(i,r) e (B A (ot i) B)

e rclertnc oL =) kolben il rymi(d 1)), rather than m(i,xr) -
RS TBEE S PR (Fi) Sl amd i (kiit), wi 11 'sti11 hold. However, we can tighten
(@) dEe)
(Gt DAREL EIR=Nlogia T TAPE S () VX

OA(1Y,) al

Further, if we alter the algorithm in step 1 to lay off and work
in log log x tape, then to calculate step 1 will require no more than
x Turing machine steps! for sufficiently large inputs x . Following
the same development as above, we will again have (i), (ii) and (iii),

Pbut will be able tol tighten (iv) to

(g g gt TIMEO) Shxt+ TIMEi(x) ARE L XN

kd,r)
These results show that anomalous algorithms may be very close
in complexity to even the 'fastest' algorithms for calculating functions.

Two examples of the consequences of this are that anomalous algorithms

2 :
! The TIME cost Helve oss coursey i ibe igreater — x ', for example - if

we are using inappropriate input-output conventions.

will appear in the class of LOG-SPACE algorithms, and it is possible
that our failure to prove P = NP is the result of using an anomalous

defining algorithm for an NP-complete problem.

So, anomalies cannot be avoided by a restriction to provably total
dllgeritthns ‘or to''fast’ algorithms. IEsiislenilyfa heope that \intuitively

natural defining algorithms will not be anomalous.

Next, we have some preliminaries for Theorem 3.3.
The Speed-up Theorem states

POF amy recursive function r , there is a recursive function £ such

that

Vi g f = ?s has an r speed-up a.e.

It is a simple exercise to observe that in the theorem we can

also have

WES SO — F i ae = ¢, has an r speed-up a.e.

Examination of a standard proof of the Speed-up Theorem, such

@sEEhaomnEig B Ncheows ‘that £ can be effectively constructed from : r

' 4

EhEENt i NeNconstrucElon pracess 1s provably total, and that if r is

pProvabiliye total, then se 1s £ . In fact, we have

THEOREM 3.2 For seme’ p—function ' X

@ o any Frecuesive . ¢ is recursive and

T Qk(r)

Mhs/ iy h D : D
V1 Dl =i® aMalEitOn 8 haisfa: O speed-up a.e.
i Aér) b ¥ 15 P P

r

(GEas =" e o F L5 HieEoEall i then O S o el

A(r)

We use this result in the following theorem.

THEOREM 3.3 Por seme" p-functioens 0 , g

EOIE S YR Ved A f Qi(x)¢ and @r SISt orEall TR Ehien

wo(i,r)(x)¢ ke V7

Zunlel el AT msLiE e is recursive, then

briie ||3 = 2 phe : . "
sy W "k W and ¢ _ is ¢ -optimal i.c ;
(@1t @O(i,r) - LPi ’

. @ < T ¥ ; t

(iv) Sl (X)ii= g(x,?i(X)) BlaBe 3%

DISCUSSION

Let wr be recursive, and let @i callicuillatefaSfunctaion st

e {(atatal e aliselcalculates £ .

o(i,r)
Byas sl e¥ defining aligorithm feor £ is taken ‘to be

(O} or any algorithm provably equivalent to ¢

£ ¢ P v At
o Glyma)) @ ((aLyae)) bt 3

not be able to prove that f 1is calculable by an algorithm that is
wr-optimal O However, @i may in fact be @r—optimal a.le.
Buetiiern) by (b)) HiE @i is optimal a.e. modulo a sufficiently small

funcEionyithens ok, will itself be @r—optimal a.e.

o(i,r)
As we observed for Theorem 3.1, the anomalous algorithms are not

readily avoided. Brome (1)) 51 @i and @r are provably total, then

SO S O

Nei s Further, by the same sort of construction as was
’

presented in the discussion after the proof of Theorem 3.1, for the

Turing machine enumeration M we can tighten (iv) to

tatva). TAPEO(i,r)(X)

IA

log x + TAPE, (x) 5y EIG]

(Giiv) & ATBEIME (SRS IRTME 6 (55) 4 @k e. X .
(T) 1l

PROOF OF THEOREM 3.3

BRGORTPHMIIN .« (1 ,X,3,X)

e Marke off i log x tape. Generate the theorems of S and
weite themtdowny until ‘the ‘log %" tape is full. Check
whether the formula "dJk . e @j and ¢ _ is @r—optimal ol

has been written down.

2. If the formula has not been written down, then calculate

and output @i(X)

3. If the formula has been written down, then calculate and

OUEPUE & © R awhere - A ils astin Theorem: 3.2.

A ()
The algorithm translates into a Turing machine T(i,r,j,x) .
Following the same procedure as in the proof of Theorem 3.1, for some

p-function o

(*) EUAT A O CIE = S ol i) e
G)

We now establish each section of the theorem in turn.

(i) CGensildeniithe talllgordtthm operating on some (i,r,j,X) . Suppose
that @i(x)¢ and @r psiEtotals Step 1 is primitive recursive and

therefore converges. Step 2 converges as @i(x)¢ 5 BysTh'eexrem: 8i.2);
since @r HiSi GOl Qk(r) NS Eeita I8 mMiserftthiefcaliculation of the

aindexe N (r)d converges .since . A is total. Therefore, step 3 converges.

So the algorithm will converge.

Eisc e fineasoningiteonld be carried 'out in S for T . Thus

W e Wl Ve iF - 0. (x) ¥ »and Qr fiistttotalls then

@i ace sy 5)k
8o, fromua(?*)

oy Ve Vx o 'if @i(x)# and v HisEtoEall then
(D, it
Ps (1,1) (x)
For the remaining sections of the proof, let i be arbitrary but
assume that @r is recursive.

) it "3 L& i . i . . "
(o1 aley) Suppose k @k @o(i,r) and @k is wr epEImaill I N

el shalllie'sEalyliichia contradictien:

Almost everywhere x , the theorem will appear on 1log x tape

IR steplild offthesal gorithm.

PHerefeore, Ll ir,oi,) x) = @A(r)(x) e Lt
% =
S feom: (3., @O(i,r) @A(r) a.e.
By the theorem, for some n , ¢ = ¢ . AndT O is
n OREY 1Y) n
@r—optimal 236
Thus @n = wk(r) e SeebyEithcorem 8 52/ #feor 'seme b , @b = @n
b <A
and @r(x, b(x)) p At es X
Bt, . . x4 . .- - @ < @7 ...
u since @n is wr opiEamallt™ 846 n(x) @r(x, b(x)) BL{O R <
MR () <aPii(x)l Tite. x . SN HORINt o T leRk:
n n n
However, Qn = Qk(r) amel ' rand:’ since ol SISEREG el ¥ Qk(r) STt @ lzalls
Gentradiction:
ERERS S Folliows i from (1G9 that Vx| T@,c,o(i,r),x) = ¢, (x)
ot

Heuece . Py | =10
@ (ST it

831

(iv) fENagain follows from: (ii) that
SN ADEY (il @\(dx) %) = log x + TAPE P, (x)

Let g be defined in the same way as in the proof of (iv) in
Theorem 3.1.

filien g Misi Y p—function and)= g(x,@i(x)) Sije i xas

&
o7 (%ol raa),

As a simple corollary to Theorem 1.4, we have the following

version of the Gap Theorem

THEOREM 3.4 For some p-function B

EE e e =0 D () =) Tic) o op
3l B(r)

@i(x) A 0 (EOBEE;

B(xr)

=Y O S ftoiEail, e @ ig EoEal® .
i B(xr)
We use this result in the following theorem.

THEOREM 3.5 For some p-functions 0 , g

1) A A S S @i(x)¢ and P SisEe Al Sthen

)

Eletel s Al ke el Ty bl S ccuEs e thcn

()Mo il

R R) B e (x) =0 (x,0

(&7re) k I o ({4l 152y,
BN O G ey
(iv) éo(i,r)(x) = q(x,@i(X)) a.e. x

34

DISCUSSION
Plasit i d S calculate ‘a function £ . Consider £ as the resource-
0
bounding function for a complexity class. A typical question is whether

Bllcertaint inecredse of ‘the bound ‘' £ will admit new functions into the

complexity class. This question can be posed as follows
Let @r be recursive. Does C[@r(x,f(x))] PESRenlivlcon taknt S CE 1

Mhieorem 8% 5 'states that if the defining algorithm for £ is

taken to be ¢ or any algorithm provably equivalent to ¢

gild) o & e
then even if C[@r(x,f(x))] deesiproperiliyficentain E€If] , ‘we will not
be able to prove it. In fact, we will not even be able to prove that

there is an algorithm whose complexity lies between f(x) and Qr(x,f(x))

infinitely often.

As we observed for Theorem 3.1, the anomalous algorithms are

not readily avoided. S[f @i and @r are provably total, then so
is ®o(i,r) 5 For the Turing machine enumeration M we can tighten
(i) o

Gy TAPEO(i,r)(X) < log x + TAPEi(x) b . Euatel

(Etavp TIMEa(i,r)(X) S ix i+ TIMEi(x) E AT X

PROOF OF THEOREM 3.5
ALGORITHM IN (i,r,3,x)

IFSESMa sk fof illeoghix’ tape. Generate the theorems of S and
wrlitesthem 'dewn suntil' the log x tape is full. Check

whether the formula
nw % 24 = . 0 "
k @j(X) @k(X) = Qr(x,Qj(x)) eSO TR

has been written down.

35

2 If the formula has not been written down, then calculate

and output @i(x)

B If the formula has been written down, then calculate and

cukEput ' ¢)i where ® 8 iis as in Theorem: 3.4.

B(x)
The algorithm translates into a Turing machine T(i,r,]j,x)
Following the same procedure as in the proof of Theorem 3.1, for some

p-function o

(%) e S L S (=) = h(GL she per (Gl sz b)k
g (1, 1r)

We now establish each section of the theorem in turn.

(1) Using Theorem 3.4 in place of Theorem 3.2, the argument here

EclilowsN thelsamespattern as in the proof of Theorem 3.3 (1).

For the remaining sections of the proof, let i be arbitrary

but assume that ®r is recursive.

((akat), Suppose - Mk ¢ i

(x) < ©k(X) = ¢r(x,®0 G hlsEs Bk

OR(E)

(i)

We shall establish a contradiction.

Almost everywhere x , the theorem will appear on 1log x tape

in istepl of the ‘algorithm. IBhierefonrer TGS Se i oinne)8)

T
SolErem >), @o(i,r) = @B(r) a.e.
By the theorem, for some n ,
Beg oy 1) < P (x) = eEE oy 0) il X
SOl Eortsomes s X = n, (S(r)(x) %n(x) = (X’:"(r)(x))
But by Theorem 3.4, én(x) < @S(r)(x) or ?n(x) > @r(x,jg(r)(x))
B Tss st o eontradiction since ;r is recursive and, therefore, #B(r)

is recursive.

Y - PN

XS

Theorem 3.1.

Then g is a p-function and ¢ _ . ()= g(x,fi(x)) aged x O

4 PROVABLE EQUIVALENCE AND
COMPLEXITY OF ALGORITHMS

4.1

INTRODUCTION

Usually in complexity theory, all algorithms that calculate the
same function are classed together; but to the computer scientist working
within a formal system the algorithms fall into provable equivalence
classes : algorithms can be recognized as equivalent if and only if they
are provably equivalent. The results in Chapter 3 show that what we can
prove about the complexity properties of a function depends on the
provable equivalence class to which our defining algorithm for the
function belongs. It is natural then to enquire as to the relationship
between provable equivalence and the computational complexity of algorithms.
For example, we might pose such questions as : Do the algorithms in a
single provable equivalence class all have complexities which are,
in some sense, close together? Do the different provable equivalence
classes for a function form separate bunches of increasingly complex

algorithms, or do they interleave?

In this chapter we investigate these and related questions. Many
of our results are rather complicated to state. However, we paraphrase

some of them below.

THEOREM 4.1 Every provable equivalence class contains infinitely many

algorithms.

COROLLARY 4.4 HetsEhempartial T recursive function £ be defined on an
infinite domain. Then from any algorithm Qi Fom o of i welcan effectively

construct another algorithm @\(i) for f such that every algorithm

38

provably equivalent to has greater complexity a.e. than every

P .
A(1)

algorithm provably equivalent to Qi

THEOREM 4.5 Every partial recursive function has infinitely many

provable equivalence classes.

THEOREM 4.11 From any recursive @i we can effectively construct a
Fecursive function t sueh that for any recursive function g the

following three conditions are equivalent
7 8L] ks S

(ii) g 1is less complex than some algorithm provably equivalent

(iii) domain g provably contains domain @i

M RESULTS

THEOREM 4.1 Vi the provable equivalence class of @i 19 alvEabiaaliEE

PROOF Consider an arbitrary L Let Yy be as in Theorem 4.2.
There are infinitely many minor modifications we can make to the

instruction set for M S each of which obviously will not affect
e ()

the machine's output. Each one of these modifications produces a

s NeW,

different Turing machine Mj SuchEtEl alE A= UM 1 =MiTE
¥ LAY

is one-one and + "¢, =M v B O R Thus, the provable
i Y_l(i)] o)

equivalence class of @i BiSE i iiEer 0

The following result will be the key to many others.

39

THEOREM 4.2 For some p-function o

(EBEREE Sy iyl e R o ()il dand @ (x)¥ , then © . (x)+" ;
i i GH(ER)
LA RVE Vi FEGTEE L fdomain By C domain B then
o =D
e ey i
1id ¢, =~ DUl HeH
(Giiat) S for, .any, 8 QO(i,r) - K @r a.e

Basically, this theorem says that each function has provable

equivalence classes of arbitrarily large complexity.

Let f be a partial recursive function, let @i =S fa andiFliet
@r be defined wherever f 1is . Then ®O(i o = f and every member

of the provable equivalence class of ¢ has greater complexity a.e.

O ()
than ©

i

This illustrates again that there are 'bad' defining algorithms
fioptEunctions: For example, the function £ may be calculable in
i eal timerbutiotur [defining algerithm for £ can be so 'bad' that
every algorithm provably equivalent to it runs slower than super-

exponential time.

PROGE ' OF THEOREM 4.2

A EORTITHMESINGE (e, &, 3, %)

3% Generating the theorems of S primitive recursively, let

PgrPyre--rP, el Ehe first x + 1 indices such that

}__ ",\p - Lp .ll

J
Dy Heoldleachi mE—a@ Mo v test @ (%) =00 (%)
P 12
n
(a) If some n satisfies the test, then calculate and output
1l + max {¢ (%) ! OR=EnE=aandl P Gkl 0 (%)}
p 4

n n

(b) AT e L satisties the test, then calculate and output

iy S(oc)
L

Mie allgoritthm' transilates into a Turing machine T(i,r,j,x) . By

Theorem 1.3, for some p-function t

B s \j “f c . = "
Al Al e RS e (i) o) Mt(i,r,j)(x)
PSRl whiere t y | 1sias dn Theorem: 1.1, Then
= AL e D! NS =M S
v] Qv(l,r,j) G (Gl i)
Byatiiicoremtil 82 ifor some p—function m
— Y1 Y R "
FUER e o)) T v, i ir))
Fet wiog=fm " Mhenia W is ‘a i p-function and
(*) i VeV wc(i,r)(x) = QA 52 sl e) Pale

We now establish each section of the theorem in turn.

() @Genciidertthe allgori thm eperating on seme (i,r,j,x) . Suppose
that Qi(x)¢ and @r(x)¢ i Step 1 is primitive recursive and

therefore converges. Since @r(x)¢ , the tests in step 2 will converge
anathiereforeyse wiilll #the calculations for (a) . Since @i(x)¢ i

(b) will converge. Thus, the algorithm will converge on (i,r,j,x)

fifilclconmtiofdrcasonimagicoul d belicarried \out in 'S for T .

Thus
D VLY e 6 Vi e @i(x)¢ and @r(x)¢ e Rlnom s Gy e) e

Se i Eromyi(*)

SRS SRR e ()P and 0l (x) Yy, then @ . G b &
)t = @ (a5,

41

For the remaining sections of the proof, let i be arbitrary

but assume that domain ;i C domain @r

(= 10) @Gonsider an .arbitrary x .

Suppose that @r(x)f . Then by our assumption, Qi(x)1

RS oM G G it S)b sinee the calculation of @r(x) in step 2
diverges.
B0y (%) ©

(5:4)) i Thus, Qi(x) = ¢ Xk 2

&7 (S o) o(i,r)(
Now suppose that @r(x)¢ 2 Welelas mesth att SR Gy ol ()) i ials

defined through step(b) of the algorithm.

For if the test in step 2 is satisfied, say $p ()= @r(x) e

n
IR EE o) e a1 0l (4 1), X)) > @p =) e

n
Butepiny: a(#*) wc(i,r)(x) SRR Gl GIR S i an d e Erom ;tep il
¢ = ‘ Contradiction.

Py gi(Err)
Soi el e)R iisedefiined through (b).

Thus, [0) (x) = @i(x) g

i (ot e,

9 WRociwey T (%

1615, S ose that ~ :
(ot upp @k @o(l,r)

Seonsideningistep ot ithelal gori thm fore IT(i,r,0(i,r) ,x) ', we see that

Hen isemedimk pn = i

1 @r(x)f JAEhen' as we ‘saw ‘in (ii), . ¢ (BB A d WSO @p (i) &

n

(Gt)

ana Sm ()t
Py

AR =T Lorancl @r(x)¢ R et A Bwelisawsin. (508 S the test in,step 2

listnet satisfied, and so $. (x)

IRlaaicE SR Ol = Qi. e. a
k 17

42

The following result tells us, among other things, that the
algorithms in a single provable equivalence class all have complexities

which are, in a sense, bunched together.

COROLLARY 4.3 HoEtsamey p-functions: k and A , Vi
(i) domain QK(i) = domain @i p
()% For fany, ;j =~ Qi A @j =3 QK(i) ERe o &
(i) @X(i) =@, and Eor any @b ~ Qk(i) y QK(i) < ib aie

PROOF Define a Turing machine W(i,x) by the following algorithm

1. Generating the theorems of S , let po,pl,...,p

et @miiast-l =x i1k Siiindices such: that — "o = @,

P NGallcullaite "and output @ @i(x) + ¢ (X) + ... + P (%)
) Py Py

By Theorem 1.3, for some p-function w

Vi Vx M Bl = AL)

FEERE = oW S where 'y i's as, in Theorem 1.1.
fihendaiiicia " o Function and Vi Vx ¢ (i)(x) = WL 59
3

ISP how leasy to see that Vi

(B deomatind '@ .. = domaln Qi .

iei(e)

BS £ .~ ¢, 7 7\'<“ ;
(fak) or any Qj s 3 P (1)

B inca R) = g (i k(E)) , where o© is as in Theorem 4.2.

WThenis A is a! p-fumctiioniand Vi

(2.3 PLER o = ;i and: fertany @ a.e. O

N

L kaontn Dk) e

43

be defined on an infinite domain. Then ¢. and
ik
@A(i) represent distinct provable equivalence classes for f , with
every member of the provable equivalence class of QA(') having greater
it
complexity a.e. than every member of the provable equivalence class of
@i . Let us say that the provable equivalence class of @>(.) has
\ l
greslFemMcompliexistys alel. " than the provable equivalence class of ¢,
i
Stmasl analy QAOA(i) = £ and the provable equivalence class of $A°X(i)
has greater complexity a.e. than the provable equivalence class of
Qk(i) . By successive applications of A , we can form representatives
EoranienfinatEefchain’ of provabile. equivalence: classes for | £, with
each class having greater complexity a.e. than the preceding classes.
We can state this observation as
COROLLARY 4.4 Hemeseomey p~function. A , Vi
(1) (Pk(l) = @1 ’
(i) sl @i is defined on an infinite domain, then the
provable equivalence class of Qk(i) has greater complexity
a.e. than the provable equivalence class of @i g
A natural question is : How many provable equivalence classes

does a function have? Our next result gives the expected answer.

THEOREM 4.5 Every partial recursive function has infinitely many provable

equivalence classes.

PROOF HelE e bealipar tilal recursive . function.

If £ is defined on an infinite domain, then Corollary 4.4 shows

that f has infinitely many provable equivalence classes.

44

Now suppose that f is defined on only a finite domain. Further,

suppose that £ has only finitely many provable equivalence classes -

Therefore,

Vx

@i(X)

Wiass)

We first show that @i is not provably equivalent to any of
B es s O "
Py pn
SHppesSe SEEOR—R0O " 1 . 'where 1 =k =n
1 p
k
filen® Voe =i x ORI — O e) =i (G0) =
0 o) 0
k
Bl Vo = x GG = £ (50 Contradiction.
[k
k
Rt new tollows ‘that " Vx > Xy O, = T)
it
Hence Vx > x DRI RE (bd)

sy aEnedistinct iprovablesequivalence classes represented by
Dy AT S PR () We shall establish a contradiction by constructing
p P P
il 2 n
a representative Qi for a new provable equivalence class for £
fet %= max {x | £{x)+} Define a Turing machine W(j,x) by
the following algorithm
B Beor Sais= XO P callicuilialte Tand louEput @ Bt
iE
2 s e il dit Xq generate the theorems of S seeking
"(P . = LD n or "(p i = (1:) " or k ",‘1’) 7 — (Q 11
J By J P, J B
If one of these theorems is found, output 1.
For some recursive function w ,
IR ot M ()l =W X))
] w(])((3,%)
PeEREN=Nilolaw s iswhexe! oy« is as . an Theorem:1l.1.
THEE RV RV Op e S)= Wi (), %) .
] t(])() (3,
By the Recursion Theorem, for some i , ¢, = ¢ . i
it & (L)

45

Further, « Vx ='x el O M(x) = Filc) . [fiereforer Ol =
0 e P al
1
Thus, Qi represents a new provable equivalence class for f
Therefore, f has infinitely many provable equivalence classes. 0

Our next result is the first of several which show that the
relationship between provable equivalence and the complexity of algorithms

is somehow involved with provable relations between the domains of

algorithms.
THEOREM 4.6 e aee e R Y domalin ¢ C domain @r" S EheniiForiicome
W O SO TR Y

g L,

Results 4.3 and 4.6 give some idea of how widely spread (in terms
of computational complexity) the algorithms provably eéuivalent & @i
can be. Corollary 4.3 shows that there is a ®K(i) which is defined
whenever @i is, and which bounds the complexities of all the algorithms
provably equivalent to @i A Theorem 4.6 shows that if we can prove

that @r is defined whenever @i is, then @r does not bound the

complexities of all the algorithms provably equivalent to @i

PROOF OF THEOREM 4.6

Suppose | "domain @i C domain @r" k& Let h Dbe as in Theorem

4.3 50 Define a Turing machine Mk by the following algorithm
i Wasite) o Lo h(x,@r(x)) tape squares.

2 saCaliculiaEesandToutput @i(x)

EE RIS R R whelset iy haisiasin: Theorem: 1.1 .

NewEsstr shiow. that . Q. ~ ©,
it

46

iR S (Y4 .« then Mk(x)f andiEso s (D X)) 4
1 J
Now suppose that @i(x)+ . Then @r(x)¢ and@soel siince T h is tetaly,
Fliescaleculation in step L converges. Therefore, Mk(x) = ;i(x)

SR ONI() =10 . (X)) .
3 h

e, & ¥x ol (X = @, (%)
j il
filic¥ reaseoningrconldibe reproduced in S . Soy, Oy ESi

Now, Vx TAPE, (x) ~ h(x,@r(X))
By Theorem 1.5, VYx = k h(X,éj(X)) = TAPE, (x) .
Therefore, h(x,@j(x)) = h(X,@r(X)) a.e. x

So, since h is monotonically increasing in its second argument,

A modification of this result will also prove useful.

COROLLARY 4.7 UEERvO e | B Jomakiin ?s C domain @r" , then for some

~ b, .e.
@j @i : @r = ; a.e

PROOF Suppose + "domain @i C domain @r" %
Now + "domain @r = domain @r" I EreomisEhicfdefaniitilon’ of al preovable
Blum measure.

So + "domain ?s C domain @ .
— r

By illlecxem 4 16, foniseme " ©. = 0, , bl i) il S ue O
J 1 i€ J

e ENER R aiD Gl B lall recursive rfunctifendefined on an infinite
domain. N ours eIt olillowingiCorelllary 4. 3% iwel showed that starting
with any provable equivalence class for f there is an infinite chain
of provable equivalence classes for £ , with each class having greater

complexity a.e. than the preceding classes. The next corollary shows

47

that it is also the case that every provable equivalence class for £
interleaves with others.
COROLLARY 4.8 i pi is defined on an infinite domain, then for some
¢, =P, d seme: 0. = Q. (S s bl oee . but 4 p.
y] yl an m #a ne ¢ % 5 « s * 5
PROOF By Theorem 1.6, for some p-function u

SR a o=@

u(i) i

Suppose that @i is defined on an infinite domain.
Fletisar =Wt u@ae L where: jo s asi:an, Theorem 4.2.
Then =D dyfier yan P = e S se.

@a @l an o Yy Qk @a ’ % i a.e
SO O 20 and . (S @ e

a 3l i a

Now F "domain $ = domain ©i il
i erefore = "demain ¢+ € domain ¢ ,. . " .

i— (@)
By Theorem 4.2 + "Vx if o¢.(x)¥ and ¢ ,. (x)+ hen ¢ Gl
y ¢, (x) ®uyy (¥ 4 then ©_(x)

Soi = domain ¢, C domain ®a"
By Corollary 4.7, for some @j =0 éa - éj B Bl a]

We now observe that Corollary 4.7 has a partial converse.

THEOREM 4.9 Vi , for any recursive oy

OB Some (. aied,
3

then for some — "domain ¢, € domain Qt"
Ll

~
~

PROOF Suppose that Qr is recursive and that for some @,
J

[0
iy r

3¢

Define Qt

by the following algorithm

48

I SRlon® . X S G, woutput @r(x) from a table of values
DR CONRACE ()i oiatoinBe (M)
na e r
P o e > m T 1f @r(x) = @j(x) ;W Ehercailicullate and
output @r(x) i ielse rontput L0
Clearly @t = @r : We now show that ~ "domain @i C domain Qt"
BOE 3 = M ., @t(x)¢ since values are looked up in a table.
Eoti b i ot @i(x)¢ B thien @j(x)¢ and so @t(x)¢ x
Thus, domain @i C domain Qt
This reasoning could be reproduced in S . Therefore
I= | demaain @i & domain @t" 4 O

For our next result we call on the Union Theorem, a proof of

which may be found in [10].

UNION THEOREM Let {fn [n € N} be a recursively enumerable

(x)

sequence of recursive functions such that Vn Vx fn(x) < fn+l

Then for some recursive function t, Vr

IR N BNy § dn Pil = alfelr
G r n

Corollary 4.3 shows that we can bound the complexities of the
algorithms provably equivalent to Fip s When @i is recursive, that

result can be strengthened.

THEOREM 4.10 For any recursive @i , there is a recursive function
ti (efifeetively computabile from i) such that Vr
G et R for some - O~ @ o P =P a6,
¥ i j i r j

49

Let Di be recursive. Then not only can we bound the
complexities of the algorithms provably equivalent to Qi 7 Phut swed ean
bound them so tightly that there is no 'gap' between them and our

resource-bound.

PROOF Suppose that @i is recursive.

Generating the theorems of S , let po,pl,...,pn pelith et ffiinscity fnu + .
indilcestisuch "that — "0 = @i” : Define the sequence {fn I IRl
Pn
fO =D and Vn fn+1 = fn + & 4);
pO pn+l

This sequence satisfies the requirements of the Union Theorem, and so

for some recursive function ti e

G N G U e ioh @ = aes
%= il r n

nsthelpreooftof the 'Unien Theorem, . t 1s constructed from the

sequence {fn ! oy (S S Examining this construction, we see that
in our case ti is effectively computable from i . (CEnifacts)
= : =it i <y

5 ¢K(l) filol seme t i p-function)

New:: fun! &g <@t o

n
Py
ille Ge Roke it EAEorlSomaRoRi~ ¢ i dud=s b apai.
J) 1 r)
i e BloE. euel ee R s
= n iz il
RueEher Sfer iedeh ' nt = "o. = @ SEREAL SRR e
- PO P
n
Selil=stdematin o € denain £ "
i— n
Brlihecrem 4 16, for jsemey 0. ~. ¢, , £ =& a.e
J 1 n 5

e e el = i ade . themidn | @ = f e

¥ 1 1 n
andiseEeorysomer (it 1 1d a=P . alel

B B r J
FTHG T P DR e e te & 1t T Eor. some Q. &~ ¢, ,
r i it

By = g a.e 0

50

Let Qi be recursive. From results 4.7 and 4.10, we see
that Vr

if — "domain Qi <€ domain $r” 4 stEhen @r < ti al lek

Thus, if an algorithm's complexity is not bounded by ti s S Ehen
we cannot prove that the algorithm's domain contains domain Qi X This

illustrates that as the difference between the complexities of algorithms
increases, what we can prove about the relationships between the

algorithms decreases.

Results 4.7, 4.9 and 4.10 show a relationship between provable

containment of domains, provable equivalence and computational

complexity. We draw these results together in
THEOREM 4.11 For any recursive s there is a recursive function
ti (effectively computable from i) such that for any recursive

function g the following three conditions are equivalent :
(1) g € Clt. 1,
.. z 6 (:"
EESFor Some @j R C[f]] ;

(HHGRE S for some! el — "domain ?; C domain @r" L

PROOF Let @i be recursive, and let ti be as in Theorem 4.10.
The equivalence of (i) and (ii) is given by Theorem 4.10.
s s T pll e s fel 1ows: from Theorem 4.9.

mREER GRS Pl es R tfollows from Corollary 4.7. O

The equivalence of (i) and (iii) is especially interesting because

it equates a purely formal property (a provable relationship between

domains) with a complexity property (computability within a given

resource-bound) .

The equivalence of (i) and (iii) also generalizes the following

Hesultyfromiul7]

COROLLARY 4.12 Mherelis a recursive “function t . such that for any

recursive function g

eESEIEIEEER g fis 8 p—function.

PROOF Let @i belprovably tetal), and let t = ti be as in Theorem

A 10 Then for any recursive function g
e e it]

SRS Eortsome @ =g = "domain &i C domain pr"
r b

1T forrsome @r s, @r is provably total

IS G s ol Do function . O

Actually, in the above, t bounds the complexities of the
provably total algorithms as tightly as possible in the sense that

there is no 'gap' between them and the resource-bound t

iif @r iisEpreovebly total ,” then

— "domain ¢, € domain @r" AREmseo: I =T aiden
i— Y-

R R o e i then! for some (. ~ O, i A
T j i iz j

and

H
IA
91
o]
()

Qj is provably total.

S

5 COMPLEXITY CLASSES AND
PROVABLE COMPLEXITY CLASSES

5.1 INTRODUCTION

Many results in abstract computational complexity theory revolve
around the notion of a complexity class, and much of the work with
particular complexity measures - such as the TIME and TAPE measures
on the Turing machines - consists of determining to what complexity
classes a given function belongs. In this chapter we consider provable

analogues of complexity classes.

We define the complexity class of f (under the measure &) to

be the class

GRS fo] e 0.0~ g and $,= £ a.e.}

SE SIS UES tofrecuire " in’ the "definitiont of € [£] " "that ‘the
functions £ and g be recursive. BortEhelworkitin® thi s ichapter,
however, it is convenient to admit a greater generality by allowing f
and g to be only partially recursive. Nevertheless, if the requirement
ENCIEERE e d T g berecuestve 'is added to ‘the'definition of C[f] and
EomElcM(ife rEhcoming)fde finitions of . B{f] and A[f]l , then all of our

results will continue to hold.

Suppose that we have a defining algorithm Qd ffon el pataail

Eeceupsiive sfunction vg . Belishiow iEhat g dis din < C[£]

T We St pEeV.e

NENR D =) and éi SR o

53

fowewe S proving the ‘mere existence of, an algorithm for g that runs
EiEins Fhegresource-beund . f. 1s.not particularly satisfactory. In
practice, we strive to exhibit such an algorithm. That i1s, we aim to

prove for some i that

" eI 2 d oo T @ 24
@i pd and i = ane
fheoremes il ttel st s that for any recursive function £ , there
will be infinitely many possible defining algorithms o o ait e selh

d

that we cannot even prove

n:-]' - fos) < '. .u
at @i @d and ii S DR Ll (o

EoNcerEatinily il ouridefining algerithm for g is a 'bad' one, then
we willnot ‘betablle to exhibit an algorithm for g that runs within
the resource-bound f . But perhaps there is a 'good' defining algorithm

for g wusing which we can exhibit such an algorithm.
The question can be posed as follows : Does there exist an

algorithm @d = g such that for some i we can prove

L, = Ci) = - . b ?
@i @d and ; S £ a.e

Clearly, this is eguivalent to : - Does there exist an algorithm RsaFid

such that we can prove

B = Rl aille T D
i

The above question suggests a provable analogue of the complexity

clLasswor iy .. We define the class B[f] as follows

— 33 © 5 nd
Bl lg. | 34 o g jand. = T,

IA
o
o)
(]
o

54

Phemctass IRGIE I eonsi ststof all the' partial recursive functions
for which there is an algorithm that runs within the resource-bound f
iheRclassuuBIlf [Seonsists of 'all the partial recursive functions for
which there is an algorithm that can be proved to run within the

resource-bound f

A variation on the class B[f] is suggested by consideration of
the almost-everywhere bounding conditions. Writtaiingiout in' Fullthe
provable condition for B[f] , we have

R @i(x) ()M S

This condition guarantees the existence of a starting point n for the
boundiine, fhuitlgivesiine value for n . i@ clEnicallishituaiiiony Skt
would be natural to ask that some explicit value for n be given. The

required condition can be written as
=ity > @i(x) B (e
Let us denote by A[f] the class defined with this condition. Thad=iis

g = e 1735 ¢, =g and 3n +"Vx >n e St b

Even more stringent than the requirement that an explicit starting-
point for the bounding be given is the requirement that the complexity of
the algorithm be bounded by £ everywhere, that is, on every input.
hffSEsortNeo ft bounding ils' considered in the study of the TIME and TAPE
measures on Turing machines. Hartmanis in [8] considered provable
complexity classes defined with everywhere bounding for the TIME and
TAPE measures. His work, lLike most work on these measures, was in the

context of Turing machines as recognizers of formal languages.

THEOREM 5.11 Ber Snfspately many recursive functions £

AEC Bif] = C[£]

B2 U RESULTS

To begin the results, we note the obvious.

OBSERVATION 5.1 It follows immediately from the definitions that for

any partial recursive function £

age) e BlE) © oif]

We shall be concerned with conditions that force the above
inclusions to be either proper inclusions or equality. The next half-

dozen results deal with the relationship between the A-classes and the

E=ciligsses’ First, we have a means of producing from @t arfunctien
ateic Sabint A[@t] g
THEOREM 5.2 Hlordsemeip- fune tilons et and, igh, | Vit

8 pln =t <I>K(t) (x) = gix,o (x)) ,

(bl alg Qt TeNdefined on' an infinite demain, then

PLB, ¢A[@t] :

PROOF In the following algorithm for a Turing machine, let the p-
Runetiion't v bevas in'Theorem 1.1,
ALGORITHM in (&)

3 97 Maslsleofffliogiix tape. Within that length of tape, generate

and write down the theorems of S . Whenever a theorem of the

57
Formt Py = n fi(y) < Qt(y)" appears, check whether n =< log x
amd e sNllge s v and af they both are, then write down the
description of M i before going on to the next theorem.
4 gL

Stop iwhenthe log x tape 1s full.

Vo For each M 1 description written down, simulate M 1
Ve (1) YR &15)
@perating en’ the input ' x . Record the maximum of the values
M il i (52)
YA ()
24 Add 1 to this maximum and output that value. (10t e Wl ey
e ()

descriptions were written down, then output 1.)

Let us consider each of the steps for the algorithm operating on

seme @rbsirsra vy sl thx) 1

15 Log will be to some appropriate base. We don't actually deal
WiChESo bl ENraichers, « say., the greatest integer g = log x . The

marking-offof " log x tape requires no more than log x tape.

ASEweShoredeinSsectron UlEEEEhe “theorems of 'S can be generated
R Mt g A 3 i = !
primitive recursively. The calculations of the indices Y (1) B])

cenvergelsimces iy gislelp - Func Eilont All of the other operations in

this step can be done primitive recursively.

Thus, the calculations in step 1 will converge and will use

Tog % tape.

2% The description of M -1 will be in some standard form such
YA ()
as quintuples. Suppose the description fills D_l tape squares. Then
the simulation of M e (x) will require no more than Di S IAPE 2t (<))
i) YO (15)

tapes

58

From step 1, we have that + "Vy = n ?i(y) ;t(y)“ and also
= lloge t S i< 1 og % and Di el o6 e

Sance, oS 3k @i(x) = ¢t(x) 4 Fet: us note here! that if
OMER IR ey DY (xX) £ 1) ¢ and so M (x)¥ .

{2 il -1,.
s ()

Hem e fleiiais o n Theorem: 1. 5.

e snee . i< X o TAPE o G = h(x,@i(x))
YACEI)

Therefore, since h is monotonically increasing in its second argument,

TAPE £y (= h(x,¢t(x)) 5
v ()

S0, Di e TAPE 1 ()< logh =i h(x,@t(x))
L)
By running the successive simulations over the same tape, we
can arrange that the tape used in step 2 is just the tape used in the
lengthiest simulation.

Thus, step 2 requires less than Heogiex: h(x,@t(x)) tape.

Ailisemnit @t(x)+ , then the calculations in step 2 will converge.
3 For the addition of 1, we allow one extra tape square.

Finally (assuming without loss of generality that v 22 LY aleE
we overlay the calculations in step 1 and the subsequent calculations,
then the entire algorithm requires no more than log x - h(x,@t(x)) tape.

RSOy s $t(x)¢ , then the algorithm will converge on (t,X)

The algorithm translates into a Turing machine WiE =) By

Theorem 1.3, for some p-function w

nyY \\/ Az "
S Wssl W (it 20) Mw(t)(X)

Further, from our discussion above, we can ensure that

YVt Vx TAPE
W

)= og x h(X,ft(X))

(t)

By Theorem 1.5,

B)) T BOTRPE, L, (X))

So. . VR D 5a) ¥=1h (G liogl x 9hi (%, © (%

o v () 8 = Blx,log xeh(x,0 ()
EaEEe— ety =" "and 'define. g by g(x,y) =

flhen i@ and g are p-functions, and

Vel =t @

L (x) = g(x,@t(X))

Thus, we have established part (i) of the theorem.

We next prove part (ii).

Suppose that Qt is defined on an infinite domain and

€ A[@t] We shall establish a contradiction.

K (i)

Since ¢ € A[Qt] SNEerdseme s i andi'some 'n

(i)

—n = "V = e} = = n
@K(t) . and v n i(y) = @t(])

Therefore,

Forssome X 'y and the theorem

aPt(X)+

Y = @i(y) = $t(y)” and also the description of M ke
N

Wl tensdewnt i step L lof the algorithm in * (t,x)

Since @t(x)+ , the algorithm will converge on

By Ehelconstructiiont of the algorithm, W(t,x) = M 1

¥r o

(x)

=~ "Vt 0 =M "

By Theorem 1.1,
- Yow (t) w(t)

Therefore

@K(t)(x) = Mw(t)(x) =W) =M 33
(1Y)

(x) =

¢, (x)
Al

That is, QK

CGeonkEradiction.

hiGelioq =X ya)h)

(Gl

will be

60

is defined on an infinite domain, then

(@
Using Theorem 5.2, we can generalize a number of results from
paale First, we generalize Corollary 2 [8].
COROLLARY 5.3 HeorS-cnemi = fune Brone g, foriany, partial recursive
function f defined on an infinite domain,
A[f] ; Clg(x,f(x))]
PROOF Hetr el and g ibel as iniTheorem 5.2.
Assume without loss of generality that Vx Vy g(x,y) =2y
Then A[f] <€ Clg(x,£(x))] .
Let =-f 8 h € I (B3
e @t { Then QK(t) Qg G N
Bl ol de fined fon an' infinite demain, then QK(t) ¢ ALE] & o
Next, we generalize Theorem 3 [8].
THEOREM 5.4 For infinitely many recursive functions £
AlE] ; @[EE]
Mhilst A= GbliaiS'Sesimayabe steictly smaller than C=classes. 1652

we take A[f] to represent what we can prove to be computable within the
resource-bound £ , then for infinitely many resource-bounds £ , what
Welcantprove to be computabile within £ is strictly less than what is

computable within £

Actually, we can prove a stronger version of Theorem 5.4

61

THEOREM 5.4' For some p-function 1 , Va
(@) wr(a) is monotonically increasing and
Vx AP Begx}l 7
(St) R s 3 @a ISt pReovablytotaly; Sthen QT(&) AisEprovabily totals
el S ot ®a is recursive, then QT(a) is recursive and
Al 1SRRI i

The existence of the p=function 1t shows that there is

Sermailivienallgors thm ta produce functions £ = @T(a) such that

o el ; CiElies. Ram=n e llicBisiEhath i cani be made! arbi trarily
large. el (G S RN S el at i p= function’ iwhen Qa is provably
iconecly

PROOF OF THEOREM 5.4'

e e Saitloeles in Corollary 5.3. SiincciicEis Bt D= ifunc Eilont g,

can be calculated by a provably total @r

et i be adssintTheorem 1.4.
Defiine WinbyitiEi(a) = fa @R . ThenE e aSiisiial Sp—functieon

By Theorem 1.4, Va

(GL)E o) i is monotonically increasing and
T

UV ¢ (S = @a(x) :

t(a)

(i) s wacfs B eNrovablys total ;. \Ehen ¢ StSSprEevalDlyasEotzels.

T(a)

Now suppose that @a is recursive.

By Theorem 1.4, @T(a) is recursive and
Thodx k. FToAx) = ¢ {23 . or
i T(a)
() g (e, (x))

62

Therefore , " 'Clg(x,P (o) ile S

4o < *T(a)] By i@eonreil laimy+-5; 3

’

O

clo]

Al® 1 ¢ C[g(x,@T (%) T Mhus, “ AP] o

T(a) # (a) T(a)' #
We 'should note further that if k is the p-function from

Theorem 5.2, then whenever @a is recursive

¢ B e, il

]

LPKOT(a)

Thus, as, well as having an algerithm to produce functions £

suchsthatve AEE] ; C[f] , we also have an algorithm to produce functions
Ehakt Tile intthe " diifEerence CIE]l - A[f] .
Our next result is an extension of Theorem 5.4. It generalizes

Conaeliilzaay G

COROLLARY 5.5 For any recursive function G , for infinitely many

recursivet functionsi £,

AlG(x,f(x))] ; eith

This shows that even if we increase the resource-bound £ by
an arbitrary recursive function G , there will be infinitely many £
such that what we can prove to be computable within G(x,f(x)) 1is

strictly less than what is computable within £

PROOF The proof follows the same pattern as for Theorem 5.4°'.

Use Theorem 1.4 to produce recursive functions £f such that

@lgix,6(x,;fi(x)))]1 < CIf]

e Coraliliary 538 & A [GI(x, £ (x))]

; CilgpEe G RG] . O

63

We have not managed to establish, for general provable Blum
measures, the existence of recursive functions £ such that A[f] = CI[f]

However, if @ has certain special properties, we can show that

First, we need some definitions.

DEFINITIONS

(i) A Blum measure ¢ is said to be finitely invariant if

Vi VY5 iifs g @j Blo@d) Acloll

3 = = X
k @k @i and RS a.e

(ii) A Blum measure ¢ is said to have the Parallel Computation

Ercpertyat(PER)RELE MY Vg 5

o) if 2 (x) = ® (x)
@j(x) otherwise
and Cka(x) = ol {@l(x) ’C?j (x)} 3

The idea behind finite invariance is that we can modify an
algorithm's behaviour on finitely many inputs without increasing the

algorithm's almost-everywhere complexity.

The idea behind the PCP is that we can run two algorithms

in parallel without any extra cost in terms of complexity.

We now introduce provable analogues of definitions (i) and (ii).

DEFINITIONS

GEEDES R NeNsayvEthats @ is provably finitely invariant if

64

H @ 4 @k esyy s then
1 J

Vids Vs L A

Ll
e
Az

Il

B and oidnd Y2 > p P (%) =9, (x)"
at k 3
G e Se Lol 0 ha s the provable . PcP if Vi V3 3k

Vx ¢ (x) = [@,(x) if @i(X) 2 @j(X)

Qj(x) otherwise

3 §oi n\j = 6‘1 = (L g n
and n X n k(x) = J(X)

Note that, in general, if we can show that a Blum measure is
finitely invariant and has the PCP , then our arguments will be
reproducible in S and will show that the measure is provably finitely

invariant and has the provable PCP

THEOREM 5.6 IEERNGI ISR provably finitelly invariant 'and has the

provable PCP , then

YVt A[@t] = B[@t] = C[@t] 4

PROOF Suppose that £ € C[@t]

iiherEcr seme i ol = F and $. = & a.e.
h & at, e

SiincerMeRshaisMEhe®provable ” "PCP* , " for some k ,
= (1 b b
Vx ¢y (%) Sl ae 2) = P, (x)
@t(x) otherwise

RN SR ks sz > @k(x) =Pl b s

Neotiae ithale s s '=HoW age!
I il

Since ¢ is provably finitely invariant, for some j

65

=ty = m r;*'(x)
Thus, Qj S e iy P (x) = @ ()

fMheretore,. £ € A[?t] b o

The above result generalizes Theorem 7(1l) [8] and Corollary 8 [8].
It is a simple exercise to check that the TAPE measure is provably

finitely invariant and has the provable PCP

Theorem 5.6 indicates what strong conditions are required to

guarantee the existence of recursive functions £ such that A[f] = C[f]
Many natural measures are finitely invariant. However, most natural
measures do not have the PCP - for example, the TIME measure does not

have the PCP [2].

For general provable Blum measures, we have the following result,

which generalizes Corollaries 9 and 10 [8].

THEOREM 5.7 Eonticomer p—tunctien b , Vt

(@]
S
n

& A[b(x,@t(x))] and

c[@t] S_A[b(x,®t(x))]

*’ PROOF Deffiinetaliforingimachine W(i,t,n,x) by

R andE dR RG> (x) and. P.(x) > ®. (%)
Tk = it

it
EENSSouEput LO - ELSE S calculate and output @i(x)

By Theorem 1.3, for some p-function w

— nYi 703 £ o
gesVEmunRYSe WD, Eonx) Mw(i,t,n)(h)

[HE G = ilowl “swhere ' Yy dis as in Theorem 1.1.

S C S SR E e Elon: andl & WAl VE Yn Vx o wW(i,t,n;x) = ¢ . (&)
o (oL aE poal,

X .§éc fée /4a41én¢/@"4-

66

Define b by

) EF=ELE e and T ®l(x) = v}
Y

Bicey) = max {P t

ey X

It is a simple exercise to show that b 1is a total function

and

SRy fFere B > maxglii ot on} L, = b(X,@t(X)) .

gl)
of (5 o)

Our arguments will be reproducible in S for a straightforward
Turing machine representation of b .

s S B s at p—function ‘and

R EIY El s S Ror T x o amaxe (i, t,nt ., @o(i,t,n)(x) = b(x,ét(x))"
Suppose that £ ¢ C[@t] Ghe Wanills C[ét]
Then for some i and some n , Qi = s and
> b (b < D
V=i="n @i(x) < @t(x) or i(x) = t(x)
Therefore Qo(i,t,n) = @i =
1L i = B T T ey ot Then
"\VJ > o) < (o) 1
—Wx =2 m o BRI s He(Ber t(X))
Mayasiw e A[b(x,ét(x))] 3 o

By making the proof more complicated - for example, by
incorporating arguments from Lemma 5.12 - we could have forced the

inclusions between the classes in Theorem 5.7 to be proper inclusions.

We now present some result for the B-classes.

67

For the following theorem we adopt the convention that the TAPE
cost of a Turing machine computation does not include the number of tape

squares initially required to write down the input value.

THEOREM 5.8 For the TAPE measure on the Turing machine enumeration
for any partial recursive function £ ,

B S L log X a.e.” , then BIf] = C[f]

In Lemma 11 [8] Hartmanis establishes a similar result for the

TIME measure. He attributes the result to A. Meyer.1

Note that £ may be greater than 1log without our being able
to prove it. Indeed, we can produce arbitrarily large recursive
BuneE=lonsi i cneh s that A UE(x) =2vlog x a.e.' . Nevertheless, for
Bhlel DAPRE | recounce-beounds £ usually ceonsidered, if £f(x) = log x a.e

then we can prove it.

PROOF OF THEOREM 5.8

SuppoTc Rl Cal=Nllogixdiia Je ' W, #fand | suppose that g € @izl

Wesishailbl® shiew that . ghCeB([£] .

BoREcemes fiandiiseme »n ', M, = g fand
B = W TAPE, (x) = f(x)

Define a Turing machine Mj by the following algorithm

! In Lemma 11 [8] there is no provable condition corresponding to our

el ionPENa RN e (x) = Jlegix a.e." . it iseems tousi Ehattisuch
a provable condition is necessary for the proof to work.

M

HF

4

68

1L Lay-off ' log x | tape. Within that length of tape, seek a
e =R isuch that TAPEi(y) >) o (It is easy to arrange
Ehel scareh procedure so that "if there were a y > n such that

TAPEi(y) R Raa dE A then’ for sufficiently large x

Ehevsearch woulld £find such a 'y .) Stop whentthe log x tape

GEG Eu e LI
2. ERdcueht el by is found, then output O
2ifs I oRsuch 'y - lis T Feund, then, re-using the log x tape,

calculate Mi(x) using the instruction set for Mi

Shince Vx =in TAPEi(x) < f(x) , the algorithm always goes
through step 3.

Therefore, Mj = Mi =g

We now present an argument, which can be reproduced in S , to

show that TAPEj(x) =iy a.e.

Suppose that Vy > n TAPE, (y) <= e (7)) -
Then for every x , the algorithm goes through step 3.
Therefore, Vx TAPEj(x) ='max {log X,TAPEi(x)}
S@, & e TAPEj(x) = max {log x,f(x)}

Slnee v il(x) =" Tog = La.e. , TAPEj(x) SRR asen

Now suppose it is not the case that Vy = TAPEi(y) = 58 (57),
mhen: va=>n TAPEi(y) SR e) and ()
Because of the search procedure in step 1, for all sufficiently large
the algorithm goes through step 2.
Therefore, TAPEj(x) = llog X . a:e.

Slinee i) = illog X L ause s, TAPEj(x) R poRad el

69
Thus, TAPEj(x) = Fipc)is, asak

The above argument can be reproduced in S
Thas, k—"TAPEj(x) =) a.e.”

Soiuia ¢ BEE]
For general provable Blum measures we have the following result

THEOREM 5.9 For some p-function d , for any partial recursive

futctreon’ ‘£,

GlEEl ERBiid (%, E(x)8)

PROOF et b e aisy in iThecorem 1.5.

Define d by

A =—hi(eomasx. [log % ,h{x,yv) 1) .
Ehermttdi s iaf $p=-Ttunction:

Suppose that g € CI[f]
Theny, e some’” i 8oL = g and @i < ‘fpiaie:

i

et dolebe asisin. Theosem d . 1. ilieniSbysiilneorcmisl S5y
TAPE ¥ () =a(bs @i(x)) = o5 T (GO RS
Sy A0

ERFeolilowst from iTheoren’ 518! that, for' some 3Jj 4

Mj = 3 and kv”TAPEj(x) = iRk slilister s o (e, = (o I Gl a @
v

Applying Theorem 1.5 and the definition of d , we have

— "4 iRl S (G)l) . acel”

70

Now, ¢ 4 Bt =M — o e
= b il
YA 3 v ()

s g€ Billd (x4, Eilx))] - O

From Theorem 5.9 we can deduce

THEOREM 5.10 For infinitely many recursive functions £ ,

el = C[f] .

Thus, if we do not require that some explicit starting-point for
the bounding be given, then for infinitely many resource-bounds f ,
what we can prove to be computable within £ is equal to what is

cemputable wathin £ 1

Actually, we can prove a stronger version of Theorem 5.10

THEOREM 5.10' For some p-function 1 , Va
(&) QT(a) is monotonically increasing and
Vx @T(a)(x) zZ o (x) ;
(i) el etlalsg Qa EsEtotaly, W then Qr(a) SIS E@ Ea -

(s S = BILO i =Ciio]

T(a)

T(a)

The existence of the p-function T shows that there is

actually an algorithm to produce functions £ = wr(a) such that
BiESl = C [E]: PastmGmEitelilistust that' £ can be made arbitrarily
large. From part (ii), £ will be recursive when @a is recursive,

andEE Wi Tbefials p—function when $a 1S [oeeveElolhz coneels

7L

PROOF OF THEOREM 5.10°'

Fees #d fbe "ais in Theorem 5.9. Siinee il d i st aliin - functicn, d

can be calculated by a provably total @r

et o < be s iniTheorem 1.4.
Pefime s dg by T(a) = ala, r) - Mienti e iisial p—function.

Ry iheoremyl. 4, for any 'a

b e A = an® s () =) () ene
S T(a)
fe5) "
-i(x) > d(x,@T(a) GRYN o
Therefore, B[d(X,@T(a)(X))] E»B[QT(a)] .
By Theorem 5.9, C[@T(a)] E_B[d(x,®T(a)(X))] 4
So, B[(Pr(a)] =C[@T(a)] 2

ifsdaliser folilows #Bfrem s Theorem" 124! ‘that ‘foxr any a

() b is monotonically increasing and
T
Vx 53] = AT
@T(a)() ik es)
e e E © St ot-alll AstEhentie © s teiEaili L @]
a (2

The proofs of Theorems 5.4' and 5.10' can be combined to yield

IRHECREMAS 11 For infinitely many recursive functions £ ,

| S Bith s £lf]

Thus for infinitely many resource-bounds f , what we can prove
to be computable within f will differ depending on whether we require
that an explicit starting-point for the bounding be given or simply ask

that almost-everywhere bounding be demonstrated.

72

B evshNeurgresulitsisoMfar for the A-classes and the B-classes
have shown differences, Theorem 5.11 is the first result to actually

demonstrate that the two types of classes are different.

PROOF OF THEOREM 5.11

e andi el befalsiiin ‘results 5.3 and 5.9 respectively.
Ble B ilie ME N v (s)i = maxc digi(x,v) dilx,y) }

Then m is a p-function and can be calculated by a provably total Qr

Let o be as in Theorem 1.4.

Defime iy Ha(al). = (@ Ap) - Ehentiin Giisiaifipfunction'.

We can now follow the proofs of Theorems 5.4' and 5.10' to show

ithat e forsany sa

(GBSO (2 is monotonically increasing and
10
Y (= <
x @T(a) (x) @a(X)
e at e G SR O DSt totalEethent @ SSESEl=ailti .
al T(a)
Lo 2 o S :
(Ei%ieit) [@T(a)] [QT(a)]
() e @a is recursive, then @T(a) is recursive and
A C X
[@T(a)] 2 C[QT(a)] O

We showed in Theorem 5.6 that for some measures,

Bl s B0) = C(®.] .
i i 1

On the basis of Theorem 5.6 and of Theorem 7 [8], it may be wondered

whether the complexity classes of the form C[@il are the only ones
for which there can be equality with the corresponding provable complexity
classes. In the case of the B-classes, we can show that for many

measures this is not so.

73
First, some preliminaries.
DEETNIPION A Blum measure ¢ is said to be proper if Vi &, € c[®,] .

Many natural measures are proper - for example, the TIME and

IPAPES Inea sures are proper.

LEMMA 5.12 For some p-function Kk
EmEI(v i stmeneotonicallys increasing in Y ;

(St s A i @t is defined on an infinite domain, then
(@ d
C[Qt] 2 <Gy t(X))]

PROOF We can define a p-functien k such that

YVt Vx o

cpy) = 1+ max {0 (x) [ReaEe c ana Ty S0 (2))

Noiter Ehat it @t(x)¢ 5 AEloET) @K(t)(x)¢

Suppose that @t is defined on an infinite domain and that

3 RESD a.e.

Then for some x , @t(X)¢ nin s end @i(x) 4 Qt(x)
Therefore, @K(t)(x)¢ and QK(t)(x) 7

DO« (Rrukge

B sy e

Maw's, if @t is defined on an infinite domain, then

Pe () f clo,l
Define k by
k(x,y) = max {0 _(x),®) | 0sr=x and ? (x) =y

eSS p= Fulletilon and 'ki(x;y) 1s moenotonically increasing in y

74

Further© VEVx = .t ;t(x) < k(x,ft(x)) and

2 gy) S KOG2 ()

SeN, i1t @t is defined on an infinite domain, then

C[$t] ; Clk(x,* (x))] .

We can now show that for proper provable Blum measures there are

classes C[f] that are not equal to some C[éi] and for which

Bl L= iCl£]

THEOREM 5.13 Let ¢ be proper.
Then for infinitely many recursive functions f ,
AEEIMesmRI £l =HC[£] and

Vi C[@i] # C[f]

PROOF FeRtoIE I ditiand s ke be 'as iin: results 5.3, 5.9 and 5.12

respectively.
B we by mix,v) = max {g(x,y),d(x,y) kx,v)} .

Then m is a p-function and can be calculated by a provably total ¢

et o be 'astiin Theorem 1.4.

Befime &t ¥by s pifa)d = a@.ir) - Bhen@fiin s ot Sp—_function .
We can now show that for any a

is monotonically increasing and

(1) Relcay
Vx QT(a)(x) e Qa(x) 5
i il Rl Tl 1 ;a sk total , then ;T(a) mef Eetall'l s
pis® Y 1 =cClo i

T(a)

s

(1) W B Qa is recursive, then ¢ is recursive and

q0(iey)
A[QT(a)] ; C[@T(a)] ;
@Rt D 5 sliproper -and 9 is recursive, then
Vi C[?il # C[ﬁT(a)]

N EoNEiiv) Follllow 'ash 1int the proof of Theorem 5.11.

We now prove (v).

Suppose that ¢ is proper, that @a is recursive and that

C[®i] = C[@T(a)] g We shall establish a contradiction.
i i d, @l =
Simeel P " 15t proper, i SR el l] C[@T(a)]
here fonre RO ome Bt s, & Ol —SBigand s <@ a.e.
3 i 5 T(a)
Since @ is recursive, ¢ is recursive.
a T(a)

Therefore, @j(x)¢ atfiesine,

#

Since k is monotonically increasing in its second argument,

By Lemma 5.12, C[@j] « C[k(x,@j(x)] 5

b <
k(x, j(X)) = k(X,wT(a)(x)) Al

Uil f5 - @ , e etk P
erefore [@j] 2 [k(x @T(a)

Now, by Theorem 1.4, C[m(x,@T

. i o

(a)(x))] = C[@T(a)] 1
Thexe fore s A Gk (xi, O ENES @O
T(a) = T

So, C[@j] ; C[@T(a)]

Mt s C[®i] ; C[Qr(a)

Buiti thilsfcen tradictsiour supposition that C[@i] = C[@T(q)] 2 o

(a)] i

]

It is perhaps worth noting that the argument to show (v) above

can be adapted to give a proof that

THEOREM For any proper Blum measure ¢ , the functions @i do not

form a class-determining set.

76

s proof \ditEfers from the usual proofs of the theorem in
that it uses the Gap Theorem rather than the more difficult Union Theorem.

(See 131)

As for showing differences between B-classes and C-classes, the

best we have is

THEOREM 5.14 There exist provable Blum measures ¢ and recursive

funetitensi £ = such. that

B[] ; @IE] 1
To prove Theorem 5.14, we need a few preliminaries.

DEFINITION AR SeEEsEEN ot partialrecursive | functions 1s said teo be
recursively presentable if for some recursively enumerable Y C N,

o B8 (DR IS
L

LEMMA 5.15 Homlanyipartial Srecursives function « £ ,

B[f] is recursively presentable.

PROOF An appropriate set Y 1is enumerated by the following algorithm

Generate the theorems of S . Whenever a theorem of the form

"@i SRR cite Nilslgenerated’, ‘output i

The following result appears in [10].

THEOREM lihenarexais BB Ium measures © © and recursive functions £ such

EREEREIR] S st het irecursively presentable.

In the proof of this Theorem, a Blum measure P is constructed
Fort whi.eh '@ [01 is not recursively presentable.
Tt g leasy to check that ® is a provable Blum measure.

By @emma 515, : B[0] ; Cc[O]

So, Theorem 5.14 is established.

78

CONCLUSION

The study of provable conditions in computational complexity
provides new insights into the nature of problems in the complexity of
algorithms, for it considers the limitations on what we (working as we
do within a formal axiomatic system) can come to know about an algorithm's
properties. The main thrust of this thesis is that for many natural
questions in computational complexity what we can come to know, Ehaitiils
what we can formally prove, falls unpleasantly short of what is actually

GrEues

The results in Chapter 3 show that what we can establish about
the complexity properties of a partial recursive function £ depends on

Eheeailigerithnmwe iinatialilly use' to''define’ £

For every partial recursive function £ , there exist anomalous
defining algorithms - anomalous because of the discrepancy between what
is true about the algorithms and what can be proved about them. We can
never know what limitations our particular defining algorithm for £
imposes on us/, for the only algorithms that we can recognize as
calculating f are those provably equivalent to our defining algorithm
(00 2 A A Anomalous algorithms exist among the provably total algorithms
and also among the 'very fast' algorithms. iEsiisoniliysathopcithate

intuitively natural defining algorithms are not anomalous.

In Chapter 4 we investigated the relationship between provable
equivalence and the computational complexity of algorithms. This

relationship is complex and not readily summarized, but it is closely

79

involved with provable relationships between the domains over which
algorithms are defined. A general conclusion we can draw from the
results in this chapter is that as the difference between the
complexities of algorithms increases, what we can prove about the

relationships between the algorithms decreases.

Chapter 5 concerned provable analogues of complexity classes.
The differences between the B-classes and the A-classes show that what
can be proved to be computable within a given resource bound may differ
depending on whether we ask merely that almost-everywhere bounding be
demonstrated or require further that an explicit starting-point for

the bounding be given.

Tn o practicall situation, it seems natural to reguire that an
explicit starting-point for the bounding be given. In that case, the
differences between the C-classes and the A-classes show that for
infinitely many recursive functions there will be a discrepancy between
what is true and what can be proved about the complexity of the function,
no matter what algorithm is used to define the function. Furthermore,
such discrepancies will occur even among those functions that can be

preved ‘telbe total.

Our work here has left some obvious open questions - for example,
AEel BheresmunctEions, £ suchthat A[E] = C[f] ? Perhaps answering
such questions requires only the invention of more ingenious algorithms,
GEperhaps it awali s the iintreoduction of provable conditions into deeper
areas of complexity theory, such as the rich theorems relating recursive

enumerability of classes to complexity properties.

Beyond these things, however, lies the haunting question of what
it is about an algorithm that limits our ability (working within our
formal system) to analyse its complexity properties. Certainly, very
complex algorithms are difficult for us to analyse, but the answer is
not that simple since, as we showed in Chapter 3, anomalous algorithms
are to be found even among the LOG-SPACE and LINEAR-TIME algorithms.
Clearly, a much deeper understanding of the relationship between formal

provability and computational complexity is required.

81

BIBLIOGRAPHY

Baker ; T.P.
Ont tprovable®analogs of ' P and NP

NEEh ST SEemst iMheory 12 " (L979)", 213-218.

Biislkp;, Ji
The TIME measure of one-tape Turing machines does not
have the parallel computation property.

SR R 7, L (Feb. TTo78) il 5118,

Blum, M.
A machine-independent theory of the complexity of recursive
functions.

R @ MERIEAREO RS (Ao el B O 677 1 iR 2D S8 3 61

Boolos, G. and Jeffrey, R.
Computability and Logic.

Cambridge University Press, 1974.

Witschiex’ "R . C:
Theory of provable recursive functions.

e = MDMSREIEIE/ SR (11965) S 49452 O

Garey, M.R. and Johnson, D.S.
Computers and Intractability.

W.H. Freeman and Company, 1979.

@ordent, D
Complexity classes of provable recursive functions.

GO oVs Sioci. . eIl (T979)0, "294-303 .

Hartmanis, J.
Relations between diagonalization, proof systems and
complexity gaps.

iilleorsCampiiSca . 181 (1979, 239-253~

5.

1H0}F

JL1E

1|52}

fli37

14.

1652

115

HarEmanis , J.
Feasible computations and provable complexity properties.

SIAM 1978 monograph.

Hambmanis M. and i Hepecroft, J.E.
An overview of the theory of computational complexity.

VA CMNLES i3 i (July 1971) , 444-475.

HanEnandsy s J. and Hopcroft, J.E.
Independence results in computer science.

AEMESTEACENNews 8 (Oct.-Dec. 1976), 13-24.

Kleene, S.C.
Introduction to Metamathematics.

North-Holland Publishing Company, 1967.

McCreight, E.M. and Meyer, A.R.
Classes of computable functions defined by bounds on
computation.
Conference Record lst ACM Symp. on Theory of Computing,
ISEORNTO=E8 .

RO gerEsy b
Godel numberings of partial recursive functions.

WIS CUnbolllic®cgdic #2870 3 (SepLii1958), " 331341 .

REGEIsSH I H S i
Theory of Recursive Functions and Effective Computability.

McGraw-Hill Book Company, 1967.

Sachse-8kerlind, D.
Anomalous algorithms and provable complexity properties.
Tech. Report TR-CS-82-16, Dept. of Computer Science, A.N.U.,
(hee . 1982)F 28pp..

83

187 Sachse—ﬁkerlind, D)%
Computational complexity and provable equivalence of algorithms.
Tech. Report TR-CS-83-03, Dept. of Computer Science, A.N.U.,

(fRlabe il 983) i 22pp).

18. Sachse-fkerlind, D.
Relations between complexity classes and provable complexity
classes.
Tech. Report TR-CS-83-04, Dept. of Computer Science, A.N.U.,
(Helols [11988)" 43pp.

IOk Youne), P.
Easy constructions in complexity theory : Gap and Speed-up
theorems.

EReem AMS a7 SBs (Blebrgdlior 3)., 555-563 .

208 N ouncy; Pl
Optimization among provably equivalent programs.

NN CNERAEE A B (@cEN 1.9 7693 ~700.

