
ADDENDUM

I thank the examiners for drawing two obscuri ties in the thesi s

to my attention.

In the proo f of Theorem 1.4 (see page 11, line -4), for x > 0 ,

the Turing machine W(a,r,x) attempts to calculate

min {y cp (x) S y, W(a,r,x-1) S y, and a

\Ji S x <±> . (x) S y or <±> . (x) > <P (x,y)}
i i r

in the obvious way. If this calculation should diverge, there is no

problem in the proof, for then it is trivially true that

and \Ji S x <±> . (x) S W(a,r,x)

W(a,r,x) <P (x) a

i

In the proof of Theorem 5.7 (see page 65, line -7), the

algorithm for the Turing machine W(i,t,n,x) is stated too briefly.

The algorithm intended is :

For X S n 1

If X > n 1

calculate and output <P . (x) .
i

then begin cycling between calculating <±> . (x)
i

I

As soon as the calculation for cpt(x) converges,

test (a) <±> i (x) > <P t (x) . As soon as the calculation for <±> . (x)
i

or for <±> (x) t converges, test (b) <±> . (x) > <±> (x) .
i t If a negative

result is obtained for test (a) or for test (b), then at once calc ulate

and output <P . (x) •
i

If positive results are obtained for both tests

(a) and (b), then output O .

With this expanded version of the algorithm, the steps in the

proof of Theorem 5.7 should be quite clear. In particular, note tha t

if <Pt (x) diverges, then W(i,t,n,x) = q). (x)
i

PROVABLE CONDITIONS IN
COMPUTATIONAL COMPLEXITY THEORY

by

Daryel Sachse-ft.kerlind

A thesis submitted for the degree of

Doctor of Philosophy at the

Australian National University

April 1983.

Except where explicitly stated otherwise, all the results

in this thesis are my own.

-

. -~ .

ACKNOWLEDGEMENTS

I thank my supervisor, Professor Richard Brent,

for his support throughout my post-graduate studies, and

I thank Anna Zalucki for her superb job of typing my thesis.

ABSTRACT

Computational complexity measures and indexings of algorithms

are considered within a formal axiomatic system S. S is meant to

mimic the formal system within which the study of computational

complexity is (implicitly) carried out - so, for example, S can be

a conventional axiomatization of set theory.

The main thrust of the thesis is that for many natural

questions about the complexity of algorithms, what can be formally

proved falls unpleasantly short of what is actually true.

We consider abstract Blum measures over indexings of the

partial recursive functions. Our results fall into three categories.

First we consider complexity questions involving some arbitrary

given partial recursive function f . Associated with f will be an

algorithm used to define f . Before any other algorithm can be

admitted as a means of calculating f , it must be proved equivalent

to our defining algorithm for f. The requirement of being provably

equivalent defines an equivalence relation on the set of all algorithms.

We call the equivalence classes provable equivalence classes. We show

that for natural complexity questions about f, what can be proved

about f depends on the provable equivalence class to which the

defining alg9rithm for f belongs.

Having had our attention focussed on provable equivalence

classes, we next investigate the relationship between provable

equivalence and the complexity of algorithms. This relationship is

complex and not readily summarized, but it is closely involved with

provable containment between the domains over which algorithms are

defined. A general conclusion we can draw is that as the difference

between the complexities of algorithms increases, what can be proved

about the relationship between the algorithms decreases.

Finally, we consider provable analogues of complexity classes.

Two possible definitions for provable complexity classes are proposed,

based on different bounding conditions - (1) the usual almost-

everywhere bounding used to define complexity classes, and (2) almost-

everywhere bounding with the additional requirement that an explicit

starting-point for the bounding be given. Various results are

developed relating the two types of provable complexity classes to

each other and to ordinary complexity classes. In particular, we show

that for infinitely many recursive functions f the provable

complexity, class of f defined using bounding conditions (1) is equal

to the ordinary complexity class of f and is strictly larger than

the provable complexity class of f defined using bounding conditions

(2) •

TABLE OF CONTENTS

INTRODUCTION

1. PRELIMINARIES

1.1 THE FORMAL SYSTEM S

1.2 BLUM MEASURES

1.3 VARIOUS DEFINITIONS

1.4 SOME USEFUL RESULTS

2. SURVEY OF THE FIELD

3. ANOMALOUS ALGORITHMS AND PROVABLE COMPLEXITY
PROPERTIES

3.1 INTRODUCTION

3.2 RESULTS

4. PROVABLE EQUIVALENCE AND COMPLEXITY OF ALGORITHMS

4.1 INTRODUCTION

4.2 RESULTS

5. COMPLEXITY CLASSES AND PROVABLE COMPLEXITY CLASSES

5.1 INTRODUCTION

5.2 RESULTS

CONCLUSION

BIBLIOGRAPHY

I

1

1

2

7

10

15

21

21

23

37

37

38

52

52

56

78

81

I

INTRODUCTION

The study of computational complexity is carried out within a

formal axiomatic system. All work done should, in principle, be able

to be encoded into a formal system, such as a conventional axiomatization

of set theory.

The observation that a computer scientist studying the behaviour

of algorithms is dealing with formally provable properties opens the

door to a wealth of new insights into the nature of problems in

computational complexity theory. As Hartmanis says in [9], "the results

about complexity of computations change quite radically if we consider

only properties of computations which can be proven formally".

There are several motivations behind work on provable conditions

in computational complexity. First, there is the growing interest in

computer science in proving properties of programs. Then, our continued

failure to solve certain outstanding problems in complexity theory -

such as the famous P =NP? problem - has raised the suspicion that

the answers to such problems may be independent of the axioms of set

theory. (See [11]) Third, a precedent for the study of provable

conditions in complexity theory has been set by earlier studies of

provable conditions in the theory of recursive functions. Finally,

the intimate connection between formal logical systems and computation,

the ability to code a formal system into a machine to generate theorems,

makes the study of the behaviour of algorithms an obvious subject for

an enquiry into the limitations of what can be formally proved.

II

we investigate provable conditions in computational complexity

theory by introducing a formal system S of sufficient power to allow

encoding of all the standard concepts and reasoning used in the study of

computational complexity . S is to mimic the formal system within which

a computer scientist studying algorithms works . So, for example, S

could be a conventional axiomatization of set theory.

We can now study how results in computational complexity change

when we demand that certain conditions be formally provable in S; we

can investigate discrepancies between what is true about algorithms and

what is formally provable about them in S . The conclusions we draw

will apply directly to the work done by the computer scientist studying

algorithms .

The results in this thesis are not restricted to any particular

complexity measures . We deal with partial recursive functions on the

natural numbers :N and with abstract Blum measures of complexity .

In Chapter 1 we set up the preliminaries . We describe the

formal system S , establish definitions and terminology , and present

a number of preliminary theorems which will be useful in proving our

later results.

Chapter 2 is a survey of the work that has already been done

on provable conditions in computational complexity theory .

In Chapters 3,4 and 5 we present our results . Each chapter has

an introduction which motivates the work of that chapter and previews

the results obtained .

Chapter 3 concerns the problem of establishing complexity

properties for some (arbitrary) given partial recursive function f .

-

III

We consider three natural questions involving the complexity properties

of f, and we show in each case that what can be proved about f

depends on the algorithm initially used to define f . In fact, for

each complexity property considered, we can explicitly construct possible

defining algorithms for f using which it cannot be proved that f

has the property - even when f does have the property.

The work in Chapter 3 makes great use of the notion of provable

equivalence of algorithms. Two algorithms are said to be provably

equivalent if they can be proved to be equivalent. Algorithms that

are provably equivalent are related in their complexity. In Chapter 4

we develop a number of results relating provable equivalence to the

computational complexity of algorithms.

In Chapter 5 we consider provable analogues of complexity classes.

Two possible definitions for provable complexity classes are proposed,

based on different bounding conditions - (1) the usual almost-everywhere

bounding used to define complexity classes, and (2) almost-everywhere

bounding with the additional requirement that an explicit starting-

point for the bounding be given. We develop various results relating

the two types of provable complexity classes to each other and to

ordinary complexity classes. In particular, we show that for infinitely

many recursive functions f the provable complexity class of f defined

using bounding conditions (1) is equal to the ordinary complexity class

of f and is strictly larger than the provable complexity class of

f defined using bounding conditions (2).

Except in Chapter 2, where we adopt a special convention to aid

reference, results are numbered consecutively in each chapter.

Theorem 3.4 denotes the fourth result in Chapter 3.

Thus,

IV

Our terminology for partial recursive functions follows that

of [15] . Our notation and terminology for complexity measures follow

that of [3] and [10] .

1 PRELIMINARIES

In this chapter we establish the basic definitions and terminology,

and present some preliminary theorems.

l.l THE FORMAL SYSTEM S

The idea behind the definition of S is to make S sufficiently

powerful that all of the standard concepts and reasoning used in the

study of computational complexity can be reproduced in S. It turns

out that there is no need to become involved in the details of the

formal description of S , and so we shall not dwell on them.

Let S be a formal axiomatic system containing a conventional

axiomatization of Elementary Number Theory (ENT) and en,.ough of the power

of axiomatic set theory to enable formalization of straightforward

mathematical argument 1 • We further assume that S is sound for ENT,

that is, there is no formula which is a theorem of S and which is false

under the standard interpretation of ENT. S is to be fixed but

arbitrary within these constraints.

In the usual way, through number-theoretic predicates, we can

encode into S any of the standard enumerations of the Turing machines,

and can carry out all of the standard reasoning about them2 • Then, since

S is sound for ENT, any theorem of S which is (under our intended

interpretation) a statement about Turing machines will also be true.

1

2

An example of such a system is first-order Peano Arithmetic. By ENT
we mean the theory of number-theoretic predicates expressible in first-
order arithmetic.

This encoding process is explained in most texts on logic and
recursiveness. See, for example, [4] or [12].

2

S will have its own formal language. Rather than concern

ourselves with the details of such a language, we shall take advantage

of the intended interpretation of it, and enclose in quotation marks

those informal statements which are to be understood as having been

written out in the formal language of S. Statements about partial

recursive functions will appear in S as statements about Turing

machines. Thus, when we write "Vx f(x) = x" , it must be understood

that f is being referred to in S via a specific Turing machine

representation.

We use the usual notation to denote theorems of S. Thus,

f- 11 Vx f(x) = x" indicates that the statement in quotation marks, when

translated into the formal language of S, is a theorem of S.

Conversely, f-/- 11 Vx f (x) = x" indicates that the statem~ent is not a

theorem of S.

Finally, note that, since S is a formal axiomatic system, the

theorems of S are recursively enumerable. It follows that the theorems

of S can be generated primitive recursively. (See [15] .)

1.2 BLUM MEASURES

An abstract Blum measure consists of two parts : an acceptable

Godel-numbering (which indexes the partial recursive functions) and

a Blum measure ¢ for ~. (See [3].) For the usual reasoning about

and ¢ to be reproducible in S , the defining properties of and

¢ must be theorems of S, in which case we call a provably

acceptable Godel-numbering and ¢ a provable Blum measure for . In

this section we present a proper definition of a provably acceptable

Godel-numbering and a provable Blum measure.

3

Throughout the following, let { M. I i E ~ } be some standa rd
l

enumeration of the Turing machines with some appropriate input-output

conventions. For convenience, we use M.
l

to denote both the

machine and the function of one variable that it defines.

PROVABLY ACCEPTABLE GODEL-NUMBERING

i'th

Let be a partial recursive function of two variables. For

each i , we write the function AX ~{i,x) as ~ - .
l

Then defines

an effective enumeration of a set {~ . I i EN}
l

of partial recursive

functions of one variable. We extend this to functions of more than

one variable by associating with a pairing f~nction, that is, a

recursive bijection <,>

explicit reference to <,>

write ~- {<<x,y>,z>)
l

as

:NXN-+N. By convention, we avoid

and write ~ - {<x,y>)
l

~ - (x,y,z)
l

and so on.

as ~ - {x,y)
~l

We

We can now present the definition of an acceptable Godel-numbering

as follows:

DEFINITION is an acceptable G~del-numbering if

(i) Vi 3j M. = ~. ,
l J

{ii) for some recursive function s ,

Vi Vx Vy ~i (x,y) = ~s(i,x) {y) ,

(iii) for some index v,

Vi Vx (i,x) = ~- (x)
V l

In the definition, (i) states that enumerates all the partial

recursive functions, (ii) states that Kleene's Iteration Theorem [12]

holds for , and (iii) states that there is a universal-machine index

for ~ . For a full discussion of the definition, see [14].

11

4

To be able to reproduce in S all the usual reasoning about the

~- 's , the basic properties of must be theorems of S. For
i

purposes of encoding into S, will be represented by a particular

Turing machine for calculating it. Similarly for < , > .

We now define a provable analogue of an acceptable Godel-

numbering.

DEFINITION is a provably acceptable Godel-numbering if

(i) 1- "<,> is a total, one-one, onto function",

(ii) 'tf i J]0

I- "M. = . II
i J ,

(iii) for some recursive function s

1- "s is a total function and

\.Ii" \.IX 'tfy () () 11 v v ~i x,y = ~s(i,x) y '

(iv) for some index v

1- "\Ji 'tfx (i ,x) = ~. (x) 11

V i

The conditions of the definition correspond to what we would

establish in determining that is an acceptable Godel-numbering.

(i) We can prove that <,> is a pairing function.

(ii) Given any Turing machine M. ,
i

for which we can prove that ~-]

there is an index J

calculates the same

partial function as M.
i

(Actually, we would find a

uniform procedure to produce ~-]
not needed. See Theorem 1.1.)

from M. , but that is
l

(iii) For some function s , we can show that the Iteration

Theorem holds with s .

5

(iv) There is an index v which we can show to be a universal-

machine index.

PROVABLE BLUM MEASURE

Let be a provably acceptable Godel-numbering. Let P be

a collection {P.
l

i E :N} of partial recursive functions.

DEFINITION

(i)

(ii)

P is a Blum measure for if

for some index e , ~e is a recursive function and

t/i t/x Vn (i,x,n) = 1 P . (x) = n ,
e i

Vi domain ~-
l

domain cp _
l

In the definition, (i) says that the relation cp _(x) =n
l ..

lS

recursive in i,x,n , and (ii) says that ~-l and P
l

are defined on

precisely the same set of inputs. For a discussion of the definition,

see [3] .

To be able to reproduce in S all the usual reasoning about the

measure cp , the basic properties of cp must be theorems of S.

We now define a provable analogue of a Blum measure.

DEFINITION P is a provable Blum measure for if for some index e

(i) Vi V X t/n (i,x,n) = 1 cp. (x) = n e l '

(ii) I- II ~ is a total function" e '

(iii) I- II Vi tj X (3y ~ . (x) = y) (3n (i, x ,n) = 1) II .
l e

6

Let P be a provable Blum measure for ~ . Fr om the i ndex

e and the Turing mach ine representing in S , we can easily

construc t a Turing machine U such that

Vi Vx U(i,x) = min {n I (i,x,n) e
l }

and the relationship between U and ~e can be established in s .

By part (i) of the definition, Vi Vx U(i,x) = P . (x)
l

Thus, U

effectively indexes the p • IS •
l

We shall consider the P . 's
l

as being

encoded into S via U.

Given that the P . 's are being represented in S by a Turing
l

machine U, we can rewrite the definition of a provable Blum measure

as :

(i), (ii) for some index e

(iii)

1- 11
~ is a total function and

e

Vi Vx Vn (i,x,n) = 1 ¢ . (x) = e i

1- 11 V · d · m doma i· n P . 11
i omain 't' . =

l l

..

n II
I

It can now be seen that the conditions of the definition of a

provable Blum measure correspond to what we would establish in determining

that P is a Blum measure.

(i) '(ii) We have an algorithm (i,x,n) e for testing whether

(iii)

P. (x) = n, and we can prove that the algorithm is total.
l

We can show that for any index i , ~ - a nd P are
l l

defined on precise l y the s ame inputs .

.........

7

EXAMPLE

We may define a partial recursive function M of two variables

so that \Ji Vx M(i,x) = M. (x)
i

Let <,> be some simple pairing

function. M with <,> will form an acceptable Godel-numbering. Let

M and < , > be encoded into S via some straightforward Turing machine

representations. Then, since all of the usual reasoning about Turing

machines can be reproduced in S , the basic properties of M and <,>

will be theorems of S , and thus they will form a provably acceptable

Godel-numbering.

Consider the TIME and TAPE measures on the Turing machines. Both

will be Blum measures for M. All of the usual reasoning about TIME

and TAPE requirements can be reproduced in S. Thus, the basic

properties of TIME and TAPE will be theorems of S , and both TIME and

TAPE will be provable Blum measures for M.

Indeed, for any of the usual acceptable Godel-numberings and

Blum measures, the reasoning used to establish their defining properties

will be reproducible in S , and so they will be provably acceptable

Godel-numberings and provable Blum measures.

Throughout the rest of this thesis, let (j) be a fixed but

arbitrary provably acceptable Godel-numbering, and let be a fixed

but arbitrary provable Blum measure for (j) .

1.3 VARIOUS DEFINITIONS

DEFINITIONS

(i) (j) .
i

is provably equivalent to (j) . ,
J

written

If

(j) , (j) , t if f- 11 4) . = (j) , 11
•

i J l J

(j) .
i

is not provably equivalent to (j) . , we write
J

(j) , * (j) . •
i J

8

(ii) The provable equivalence class of (p. lS the set
l

algorithms { (p . I (p . (p.} .
J J l

(iii) M. is provably total if I- "M . lS total".
l l

Similarly, (p. is provably total if I- II (p • is total".
l l

(iv) f is a p-function jf there is a provably total

that calculates f .

of

M.
l

If f(x) is defined, we say that f(x) converges and we write

f(x)4- . If f(x) is not defined, we say that f(x) diverges and we

write f(x)t .

We follow the usual convention for interpreting inequalities

between partial recursive functions - for example, we write f(x) S g(x)

if either f(x)4- and g (x) 4- and f(x) S g(x) or g(x)t .

When defining algorithms, we adopt the convention that the

maximum of the empty set is zero.

Almost everywhere x (a.e. x) signifies 3y ~x > y. Infinitely

often x (i.o. x) signifies ~y 3x > y . We shall often write a.e.

or i.o. when the associated variable is clear from the context.

We define the complexity class of f (under the measure ~) to

be the class

C [f] = { g I 3 i 4) . = g and ~. (x) < f (x) a . e. x} .
l l

It is usual to require in the definition of C[f] that f and

g be recursive. However, it is convenient for the statement of our

9

results in Chapter 5 to allow f and g to be partial recursive.

We will discuss the matter further in Chapter 5. Note that all of our

results involving C[f] will continue to hold if the class is restricted

to recursive functions.

DEFINITIONS

(i) We say that (j) . lS r-optimal a.e. (i.o.) ' or that (j) .
l l

is optimal a.e. (i.o.) modulo r I if

'vj (j) . = (j) . =) cp. (x) < r(x,4), (x)) a.e. X (i. 0. x)
J l l J

(ii) We say that (j) .
l

has an r speed-up a.e. if

3j (j) . (j) . and r(x,<l)_(x)) < cp. (x) a.e . X
J l J l

We noted earlier that TAPE and TIME are provable Blum measures

for the Turing machine enumeration M. We shall denote by

the TAPE measure function associated with the Turing machine

Similarly for TIME.
l

TAPE.
l

3 M .•
l

It will be a convenient shorthand, when the Turing machine

representing a function f is clear from the context, to let TAPE f(x)

denote the number of tape squares used by that Turing machine in

calculating f(x) .

3 The details of the TAPE measure can be formulated in various ways.
These details are generally not important to our discussions, and
we leave it to the reader to fill them in.

10

1 .4 SOME USEFUL RESULTS

It is a consequence of our definitions that the proofs of the

standard results for acceptable Godel-numberings and Blum measures can

be reproduced in S for provably acceptable Godel-numberings and

provable Blum measures. The following theorems make use of this fact.

The Isomorphism Theorem for acceptable Godel-numberings [14]

can be reproduced in S. We shall use this result in the following

form:

THEOREM 1.1 For some recursive function y

1- "y is a total, one-one, onto function and

'vi M." • cpy(i) = i

Actually, Theorem 1.1 can serve as an alternative definition of

a provably acceptable G~del-numbering. It is easy to show that if

Theorem 1.1 holds for a partial recursive function cp , then cp

(together with some simple pairing function) will form a provably

acceptable G~del-numbering. The proof starts with the fact that the

Turing machine enumeration M is a provably acceptable Godel-numbering,

and then uses the relationship between M and cp to establish the

requisite properties for cp.

Any of the various forms of the Recursion Theorem [15] can be

reproduced in S. We shall use this result in the following form:

THEOREM 1.2 For every partial recursive function f , there is a

recursive function m such that

*

11

1-- "m is a total function and

Vi Vr tp . m{i ,r) = (p f { . { .)) " • i,r,m i,r

Kleene's Iteration Theorem for Turing machines [12] can be

reproduced in S . So we have :

THEOREM 1.3 Let W{i,j,x) be a Turing machine. Then for some

recursive function w

1--"w is a total function and

W{i,j,x) = M {' .) (x)" . w i,J

The Gap Theorem [10] can be reproduced in S. Our version of

this result incorporates details that are not made explicit in the

usual proofs, and so we sketch out a proof of our own.

THEOREM 1.4 For some recursive function a

1-- "a is a total function and Va Vr

(i) is monotonically . . and (p a(a,r)
increasing

Vx tp a (a ,r) (x) > tp (x)
a I

(ii) Vi Vx > i cp. (x) < tp a {a ,r) (x) or - i

cp. (x) > tp (x,tp ()(x)) i r a a,r

(iii) if tpa and tpr are total functions, then

a(a,r) is a total function" .

PROOF Define a Turing machine W{a,r,x) by

1. W(a,r,O) = 4) { 0) ; a

2. For X > 0 W{a,r,x) = min {y I 4) {x) < y a - '

W{a,r,x-1) < y and Vi < X cp . {x) < y or cp . {x) > tp r{x,y)} I -i i

'* See th e Adel end"' m.

12

It is now a straightforward exercise to establish that

(*) 'ifa 'if r

(i) W(a,r,x) is monotonically increasing in x and

(ii)

'if X W(a,r,x) ::: (j) (x)
a I

'ifi 'ifx ::: i ~ - (x) < W(a,r,x) or
i

~- (x) > (j) (x,W(a,r,x))
i r

(iii) if (j) and (j) are total functions, then a r

W(a,r,x)+ for every x.

The arguments used to establish (*) will trans la te easily into

proofs in S. Thus, the statement of (*) will be a theorem of S.

By Theorem 1.3, for some recursive function w

1-"w is a total function and

'ifa 'ifr 'tlx W(a,r,x) = M (x)" . w(a,r)

Let a= y O w, where y is as in Theorem 1.1. Then

1- "a is a total function and

W(a,r,x) = (j) ()(x)". a a,r

This, combined with the statement of (*) as a theorem of S , establishes

Theorem 1.4. D

The next theorem shows a relationship between the TAPE measure

and

THEOREM 1.5 Let y be as in Theorem 1.1. Then for some recursive

function h

PROOF

13

1- "h is a tota l function,

h(x,y) is monotonically increasing in y , and

Define h by

TAPEi (x) < h(x, <f>y(i) (x))

<f>y (i) (x) < h (x,TAPEi (x)) 11

and

h(x,y) = max {TAPE. (x) , 4 (') (x) IO< i < x, and
i y i

TAPE . { X) s y or <p (.) (X) < y} .
i y i

Then, for a straightforward Turing machine representation of h ,

it will be easy to prove in S that h has the properties claimed

for it. The proofs in S will be simple translations of the standard

arguments that we would use. D

It is perhaps worth noting that {4y{i) i E N} is a provable

Blum measure for M ,_ and that the proof above is adapted from the

proof that any two Blum measures are recursively related. (See [10] .)

Our next theorem reproduces in S another standard result.

THEOREM 1.6 For some recursive function u

PROOF

1- "u is a total function and

Vi <Pu(i) = <f> • II
i

Recall from Section 1.2 the Turing machine U,

U(i,x) min {n I <P {i,x,n) = l}
e

<p . (x) •
i

By Theorem 1.3, for some recursive function w

14

I- "w is a total function and

'r/i 'r/x U(i,x) = Mw(i) (x)" .

Let u y 0 w , where y is as in Theorem 1.1. Then

I- "u is a total function and

'r/ i 'r/x U(i,x) = <Pu(i)(x)" .

Since the cp _ 's are encoded into S via U, we have
i

I- "'r/i <Pu(i) = <p • II
i

The following result was also observed in [5].

PROPOSITION 1.7 If g is a primitive recursive function, then g

is a p-function.

PROOF From a primitive recursive schema for g, we can construct

D

a Turing machine M.
i

for g . A little consideration of the possible

steps in a primitive recursive schema and of their translation into a

Turing machine description makes it clear that M.
i

is provably total.

We shall often make implicit use of this result by noting that

a primitive recursive process must be provably total.

We observed in Section 1 . 1 that any theorem of S which is

(under our intended interpretation) a statement about Turing machines

will be true. Since algorithms <P . ' i
measure functions 4' .

i
and

all other partial recursive functions are being represented in S by

D

Turing machines, it follows that any theorem of S which is a statement

about these objects will also be true. We shall often use this fact

in our proofs.

.........

1 5

2 SURVEY OF THE FIELD

In this chapter we survey the papers that have already been

published on prova ble conditions in computational complexity theory.

Although the setting-up in these papers of the formal system, the

indexing of the algorithms and the complexity measure may differ to

some degree from ours, the basic approach remains the same, and we

shall translate the major results of these papers into our own notation.

As an aid to reference, we shall number the translated theorems as

they appear in the original papers.

The study of provable conditions in the theory of computation

began in the 1950's. Fischer in his own paper on provable recursive

functions [5] reviews the work done on provable conditiuns in recursive

function theory. In the 1970's, provable conditions were introduced

into the study of computational complexity.

However, despite the promising results achieved and the

contention of both Hartrnanis [9] and Young [20] that the area deserves

a thorough investigation, relatively little work has been done on

provable conditions in computational complexity. We have found only

five papers in this area, and all were published between 1976 and 1979.

We survey these papers below.

Gordon [7] considered complexity classes of p-functions. He

showed

THEOREM 1 If f is a p-function and g is recursive with g E C[f]

then g is a p-function.

16

THEOREM 2 There is a recursive function t such that for any

recursive function g , g is a p - function iff g E C[t]

A simple observation from Theorem 2 is that if a function is too

complex, then we cannot prove that it is total. Our own Theorem 4 .11

is a generalization of Theorem 2 .

Young (20] produced some surprising results about optimization

and speed-up among provably equivalent algorithms .

THEOREM 2

(i)

(ii)

(iii)

For some p-functions CT and r, Vi

<P (') =(p., CT i i

for any

< r(x,P. (x))
i

<P, <P (') J CT i

a.e. x ,

<pCT{i) (x) S r(x,Pj {x)) a.e. x .

Basically, (iii) says that <PCT (i) is a.e. r-optimal within

its provable equivalence class. Thus, for some p-function r, given

any algorithm <P.
i

for a partial recursive function f , we can

effectively construct another algorithm <P for f which is a.e.
CT(i)

r-optimal within its provable equivalence class.

THEOREM 3 Let <Pr be provably total. For any provably total

we can effec~ively construct a <P .
J

such that

1 <P . ,
i

1 In Young's statement of the theorem, <P and <P . are allowed to r i

be recursive. However, we can see the proof working only when
and <P . are provably total.

i

(i) <P .
J

<P .
l

17

(ii) for any <Ph~ <P j , we can effectively construct a

such that

Thus,

I- II <P
k

if

also calculates

f is

f and

and a.e . x" .

the function calculated by <P. , then
l

within the provable equivalence class

<P .
J

of <P .
J

every algorithm has an effectively constructible <P speed-up a.e. r

Furthermore, the speed-up relationship can be proved.

The next theorem shows that an algorithm may be optimal

(modulo some recursive function) without our being able to prove so.

THEOREM 6

(i)

(ii)

There exist recursive r and cp. such that
l

<P.
l

is

for any

r-optimal a.e.

cp. = q).
J l

f/- "cp. is r-optimal a.e." .
J

Young gave another result, Theorem 5, about functions having

algorithms that cannot be proved to be optimal. However, the proof

is flawed. Our own Theorem 3.3 is a strengthening of Theorem 5.

The other three papers on provable conditions in computational

complexity de'al with the TIME and TAPE measures on the Turing

machines.

This work is done in the context of Turing machines as recognizers

of formal languages. Inputs are finite strings from some alphabet. The

18

halting states of a Turing machine are either ACCEPT or REJECT.

The language recognized by M.
l

is the set L (M.)
l

of all inputs on

which M. finally enters the state ACCEPT.
l

For any integer x ,

TIME. (x)
l

is the maximum number of machine steps used by M.
l

on any

input string of length x . Similarly for TAPE .

Naturally, the famous P NP? problem 2 has received

attention.

Baker [l] showed that the addition of various provable conditions

to the definitions of P and NP does not simplify the P = NP

question.

Hartmanis and Hopcroft [11] considered a relativized version of

the P =NP? problem. Let PA denote the set of all languages

recognized in polynomial-time by deterministic Turing machines operating

with the set A as an oracle, and let NPA denote the set of all

languages recognized in polynomial-time by non-deterministic Turing

machines operating with the set A as an oracle.

THEOREM We can effectively construct a Turing machine M. such
l

that L (M.)
l

is the empty set and "P
L (M.)

l
L (M.)

NP l II is independent

of

2

s .

P is the set of all languages recognized in polynomial-time by
deterministic Turing machines. NP is the set of all languages
recognized in polynomial-time by non-deterministic Turing machines .
For an extensive discussion of P , NP and the p =NP? problem,
see [6].

19

Since L (M.)
i

is empty, p
L (M.)

i = NP

However, it is not known in S that L (M.)
i

L (M.)
i iff P = NP

is empty , and so the

theorem above does not actually say that 11 P = NP 11 is independent of

S. Nevertheless, this theorem does raise the suspicion that the

P = NP question might not be resolvable within the axioms of set

theory.

Hartmanis and Hopcroft established in [11] two other independence

results for the TIME measure.

THEOREM We can exhibit a recursive function t such that the

equality of the TIME complexity classes

{L (M.) I 'r.fn TIME. (n) < t (n)} and
i l

{L(M.) I 'r.fn TIME. (n) < t 2 (n)}
i i

is independent of S.

THEOREM We can exhibit a Turing machine M.
i

'r.Jn TIME. (n)
i

2 = n but TIME. (n) < 2n 11
•

i

such that

We generalize this last result in our Theorem 3.1.

Hartmanis in [8] defined a provable analogue of a complexity

class for the TIME and TAPE measures, and presented a number of

results relating the provable complexity classes to ordinary complexity

classes. We discuss this paper further in Chapter 5 where we generalize

many of its results to abstract provable Blum measures, and so we shall

give here only two of the major theorems from [8].

20

THEOREM There exist recursive functions t such that

{L(M.) If- " 'ti n TIME. (n) < t(n) " } c {L (M .) I 'tin TIME. (n) < t(n) } .
l l i l l

Thus, there are functions t for which the provable TIME

complexity class of t is strictly smaller than the ordinary TIME

complexity class of t . We generalize this result in our Theorem 5.3.

THEOREM If M. is recursive and 'tin TAPE. (n) > n, then
J J

{L(M.) If- "'tin TAPE. (n) < TAPE. (n) "} = {L(M.) I 'ti n TAPE. (n) <TAPE. (n) } .
l l J l l J

Thus, for a certain natural class of resource-bounding functions,

the provable TAPE complexity classes coincide with the corresponding

ordinary TAPE complexity classes. We generalize this result in our

Theorem 5 . 6 .

Finally, let us note that many of the results from [8] , [11]

and [20] are collected in [9].

3.1 INTRODUCTION

21

3 ANOMALOUS ALGORITHMS AND
PROVABLE COMPLEXITY PROPERTIES

In any practical situation, when considering some particular

partial recursive function f , we must have {at least implicitly) an

algorithm to define f . Before we can admit any other algorithm as

a means of calculating f, that algorithm must be proved equivalent

to our defining algorithm for f .

The requirement of being provably equivalent defines an

equivalence relation on the set of all algorithms. We call the

equivalence classes of this relation provable equivalence classes.
' -

{See the definitions in Section 1.3.) Theorem 4.5 shows that for any

partial recursive function f , the set of all algorithms that calculate

f divides into infinitely many provable equivalence classes.

Let f be an arbitrary partial recursive function. Depending

on which provable equivalence class our defining algorithm for f lies

in, we will form quite different answers to typical questions involving

f. In this chapter, we consider three basic questions about f

1. To what complexity classes does f belong?

2. Does f have an algorithm which is optimal modulo some

given recursive function?

3. When f itself is taken as the resource-bounding

function for a complexity class , by how much must we

increase f before admitting new functions into the

complexity class?

22

In each instance we demonstrate the existence of anomalous

defining algorithms for f , that is, defining algorithms for f

under which there is a significant discrepancy between what is true

about f and what can be proved about f . Our results are presented

properly in Section 3.2. They can, however, be paraphrased as follows

THEOREM 3.1 For any recursive function r, there is a defining

algorithm for f under which f cannot be proved to be calculable

by an algorithm of complexity bounded by r - even though, in many

cases, the defining algorithm itself will have complexity bounded by r.

THEOREM 3.3 For any recursive function r, there is a defining

algorithm for f under which f cannot be proved to have an algorithm

optimal modulo r - although f may well have such an algorithm and ,

in many such cases, the defining algorithm for f will itself be

optimal modulo r.

THEOREM 3.5 For any recursive function r, there is a defining

algorithm for f under which it cannot be proved that the complexity

class C[r(x,f(x))] is strictly larger than C[f] - although, in many

cases, this will be true.

Further, in each theorem, such anomalous defining algorithms can

be effectively constructed.

These theorems show that when investigating the computational

complexity properties of functions we must relate our results to the

algorithms used to define the functions rather than to the functions

themselves, and that our results may be severaly limited by the peculiar-

ities of these defining algorithms within the formal system we employ .

--

23

3.2 RESULTS

THEOREM 3.1 For some p-functions o , g

(i) I- " \Ji \Jr \Jx if (j). (x)+ and (j) (x) + , then (j) (') (x)+"
]. r o i,r

(ii)

(iii)

(iv)

DISCUSSION

and \Ji

I/- 11 3k

\Jr if (j) r

(j)k = (j) o(i,r)

= (j) , ,
].

is recursive,

and cp < (j) r k

<±> c·) (x) < g(x,<P. (x)) o i,r J.
a.e. x .

then

J..O. II ,

We shall talk as if S were the formal system within which the

study of computational complexity is carried out.

In (11], it was shown that a Turing machine could be explicitly

produced which ran in 2 n time but which could not be formally proved

to run faster than 2n time. Our result is a generalization of this.

Let m be recursive, and let (j). calculate a function f . ~r i

By (iii) , (j)
0

(i, r) also calculates f Note that o is a p-function.

Thus, (j)o (i ,r) can be effectively constructed from

by a process which is provably total.

(j) .
].

and

By (ii), if the defining algorithm for f is taken to be

and

(j) or any algorithm provably equivalent to (j) we will
o(i,r) o(i,r) '

not be able to prove that f is calculable by an algorithm of complexity

bounded infinitely often by (j) . r However, if <P . S (j) a.e., then
J. r

f can in fact be calculated by an algorithm of complexity bounded almost

everywhere by (j) . r

then cp s (j)
o(i,r) r

Further, by (iv), if g(x, <P .(x)) S (j) (x)
J. r a.e. x ,

a.e . , so that the discrepancy between what we can

prove and what is true is even greater. Indeed, we can prove at most

24

that <p .
a(i,r) is bounded by <P r on finitely many inputs.

The question arises as to whether we are actually in danger

of encountering such anomalies in practical situations. The difficulty

here is that there is no way we can know whether our defining algorithm

for a function is anomalous.

It might be hoped that we could avoid such anomalies by restricting

ourselves to what is arguably the more practically meaningful class of

provably total algorithms. However, {i) shows that if

provably total, then so is <P {') • a i,r

<P.
l

and <P r are

Since the function g in {iv) may be large, cp
a{i,r) may itself

always be large, and perhaps we can be safe from anomalies when dealing

with algorithms of small complexity. We shall discuss this further,

after the proof, for the more concrete case of the Turing machines with

the TIME and TAPE measures .

PROOF OF THEOREM 3 .1

ALGORITHM IN (i,r,j,x)

1. Mark off log x tape. Generate the theorems of S and

write them down until the log x tape is full. Check

whether the formula and cp < <P
k r i . 0. II has

been written down .

2. If the formula has not been written down, then calculate

and output (p. {x) .
l

3 . If the formula has been written down, then calculate and

output

1 + max { <P (x) I O < n < x and Cf> {x) < <P {x)} n n r

--

II

25

DISCUSSION OF THE ALGORITHM

1. Log will be to some appropriate base. We don't actually

calculate log x but rather, say, the greatest integer q Slog x.

As we noted in Section 1.1, the theorems of S can be generated

primitive recursively. So, all of this step can be done primitive

recursively.

2. ~ - (x) is calculated by inputting (i,x) to the Turing machine
i

representing in S.

3. The test <p (x) S (x) is carried out by testing progressively
n r

(n,x,0) = 1 (n,x,l) = 1 up to (n,x, ~ (x)) 1 where
e I e I e r I

e is the index associated with <p in the definition of a provable Blum

measure. (See Section 1.2.)

The algorithm translates into a Turing machine T(i,r,j,x) . By

Theorem 1.3, for some p-function t

I- "Vi Vr "dj "dx T(i,r,j,x) Mt (. .) (X) II • i,r,J

Let v =yo t, where y is as in Theorem 1.1. Then

I- II 'rj i 'rj r 'rj j (. .) V i,r,J M (' ')II • t i,r,J

By Theorem 1.2, for some p-function m

1-- ""di .'r/r ~m (i,r) = (' ('))II • v i,r,m i,r

Let o = m. Then o is a p-function and

(*) 1-- 11 Vi "dr "dx c·) (x) = T(i,r,o(i,r) ,x)" . o i,r

--

...........

26

We now establish each section of the theorem in turn.

(i) Consider the algorithm operating on some (i,r,j,x) Suppose

that <.p. (x) + and <.p (x) + .
i r Step 1 is primitive recursive and therefore

converges. Step 2 converges because <.p, (x)+ .
l

Since <.p (x)+ r
and

is total , step 3 must also converge. So the algorithm will converge.

This sort of reasoning could be carried out in S for T.

Thus

if <.p . {x) +
i

T(i,r,j,x)+ " .

and <.p { x) + , r

So, from {*) I

r 11 \J i \Jr \Jx if <.p . {x) + and <.p (x) + , then
i r

<.p (') {x) + II • o i,r

then

For the remaining sections of the proof, let i be arbitrary

but assume that <.p is recursive. r

(ii) Suppose r " 3k <.pk = c.po {i,r)

We shall establish a contradiction.

. " i. 0. •

By the theorem, for some n, <.p = <.p • and P S <.p i.o. n o(i ,r) n r

So, for some x n, we must have that (x) S <.p (x) n r and the theorem

will appear on log x tape in step 1 of the algorithm .

Now, consider the algorithm on (i ,r , o (i ,r) , x) The theorem

is found in step 1, so we go to step 3. Step 3 converges as <.p
r is

total. Since n S X and (x) S <.p (x) n r , the output from step 3 will

be greater than <.p (x) n

-

27

Thus, f rorn (*) , (j) (.)(x)+ o i,r and (j) (.) (x) > (j) (x) o i,r n But

Contradiction.

(iii) It follows from (ii) that for every x the algorithm on

(i,r,o(i,r) ,x)

Hence

goes to step 2, and therefore

= c.p.
l

T(i,r,o(i,r) ,x) = (J) . (x)
l

(iv) Consider T operating on some (i,r,o(i,r) ,x) The calculation

for step 1 requires log x tape. Since the algorithm goes to step 2,

it follows that

TAPE T(i,r,o(i,r) ,x)

Define g by

< log X + TAPE (j). (x) .
l

g(x,y) = max {~o(a,b) (x) I OS a S x, 0 Sb< x,

(x)
a = y and TAPE T(a ,b, o(a,b) ,x)

Note that if (x) = y and
a

TAPE T(a,b,o(a,b) ,x) slog X + TAPE (j) (x)
a

and so Po(a,b) (x)+ .

Clearly then, g is total.

< log X + TAPE (j) (x)} .
a

then T(a,b,o(a,b) ,x)+

The proof that g is total could be carried out in S for some

straightforward Turing machine representation of g.

Therefore, g is a p-function.

Finally, observe that for x > max { i , r } ,

c·) {x) s g{x, P. (x)) . a i,r i
D

28

Let us consider the result for the Turing machine enumeration

M with the TAPE and TIME measures.

It is easy to arrange the function t in the proof so that

M (. .) calculates step 1 using log x tape and step 2 with the
t i,r,J

instruction set for M. built into it.
i

Then, whenever the theorem

is not found in step 1, TAPEt(' ') (x) slog X + TAPE. (x) i ,r,J i

By Theorem 1.2 for M, for some p-function m

Mm(i,r) M (' ('))" • t i,r,m i,r

Now, define o(i,r) to be t(i,r,m(i,r)) rather than m(i,r)

Results (i), (ii) and (iii) will still hold.

(iv) to

(iv) I TAPE c·) (x) < log X + TAPE. (x) o i,r i Vx.

However, we can tighten

Further, if we alter the algorithm in step 1 to lay off and work

in log log x tape, then to calculate step 1 will require no more than

x Turing machine steps 1 for sufficiently large inputs x . Following

the same development as above , we will again have (i), (ii) and (iii),

but will be able to tighten (iv) to

(iv) II TIME (.) (x) < x + TIME. (x) o i,r i a.e. x.

These ·results show that anomalous algorithms may be very close

in complexity to even the 'fastest ' algorithms for calculating functions .

Two examples of the consequences of this are that anomalous algorithms

1 2 The TIME cost may, of course, be greater - x , for example - if
we are using inappropriate input-output conventions.

29

will appear in the class of LOG- SPACE algorithms, and it is possible

that our failure to prove P = NP is the result of using an anomalous

defining algorithm for an NP-complete problem .

so, anoma lies cannot be avoided by a restriction to provably total

algorithms or to ' fast 1 algorithms . It is only a hope that intuitively

natural defining algorithms will not be anomalous .

Next, we have some preliminaries for Theorem 3 .3.

The Speed-up Theorem states

For any recursive function r, there is a recursive function f such

that

Vi ~- = f ~ - has an r speed-up a.e.
i l

It is a simple exercise to observe that in the theorem we can

also have

Vi ~- = f a.e. ~ - has an r speed-up a.e.
i l

Examination of a standard proof of the Speed-up Theorem, such

as that in [19], shows that f can be effectively constructed from r ,

that this construction process is provably total, and that if r is

provably total, then so is f. In fact, we have

THEOREM 3.2 For some p-function \

(i) for any recursive ~r , ~\(r) is recursive and

Vi ~- = ~\(r) a . e. (p . has a speed-up a . e . ;
i i r

(ii) f- 11 Vr if ~r is total , then ~\ (r) lS total" .

30

We use this result in the following theorem.

THEOREM 3.3 For some p-functions o , g

(i)

(ii)

(iii)

(iv)

1- 11 'rli 'rlr 'rfx if <.p. (x) + and <.p is total, then
i r

<.p (') (X)i' II o i,r

and 'r/i 'rlr if <.pr is recursive, then

<.po (i,r)

<.p = <.p k o(i,r)

<.p. ' i

and

cf> (.) (x) < g(x,4>. (x)) o i,r i

is

a.e. x .

<.p -optimal i. o ." , r

DISCUSSION

Let <.p be recursive, and let <.p. calculate a function f. r i

By (iii), <.p also calculates f.
o(i,r)

By (ii), if the defining algorithm for f is taken to be

<.p or any algorithm provably equivalent to <.p we will
o(i,r) o(i,r) '

not be able to prove that f is calculable by an algorithm that is

<.p -optimal i.o. r

Further, by (iv) if

However, <.p, may in fact be <.p -optimal a.e.
i r

<.p.
i

is optimal a.e. modulo a sufficiently small

function, then <.p will itself be <.p -optimal a.e.
o(i,r) r

As we observed for Theorem 3.1, the anomalous algorithms are not

readily avoided. From (i), if <.p.
i

and are provably total, then

SO lS <.p (') . o i ,r. Further, by the same sort of construction as was

presented in the discussion after the proof of Theorem 3 .1, for the

Turing machine enumeration M we can tighten (iv) to

(iv) I TAPE (') (x) < log X + TAPE. (x) 'rfx' and o i,r i

(iv)" TIME(")(x) < X + TIME.(x) a.e. X. o i,r i

--

.-

31

PROOF OF THEOREM 3.3

ALGORITHM IN {i,r,j,x)

1 . Mark off log x tape . Generate the theorems of S and

write them down until the log x tape is full . Check

whether the formula and is <.p -optimal i.o"
r

has been written down.

2 . If the formula has not been written down, then calculate

and output (j). {x).
i

3. If the formula has been written down, then calculate and

output (j)A{r) {x) , where A is as in Theorem 3 . 2.

The algorithm translates into a Turing machine T{i,r,j,x) .

Following the same procedure as in the proof of Theorem 3 .1, for some

p-function cr

{ *) 1- 11 Vi Vr Vx <.p c·){x) = T{i , r ,cr(i,r,),x) ". a i ,r

We now establish each section of the theorem in turn .

{i) Consider the algorithm operating on some (i,r,j,x) . Suppose

that <.p. {x) +
i

and is total. Step 1 is primitive recursive and

therefore converges. Step 2 converges as (j) . (x)+ •
i

By Theorem 3 . 2,

since is total, is total . Also, the calculation of the

index A(r) converges since A is total. Therefore, step 3 converges .

So the algorithm will converge .

This sort of reasoning could be carried out in S for T. Thus

32

I- " 't;j i Vr Vj Vx if c.p .(x) + and c.p is t o t a l, t hen i r

T(i,r,j,x)+" .

So, from (*)

I- 11 Vi Vr Vx if c.p, (x)+ and c.p is tota l, then i r

c.p (')(x)+" . o i,r

For the remaining sections of the proof, let i be arbitrary but

assume that c.p is recursive. r

(ii) Suppose 1- 11 3k

We shall establish a contradiction.

and is <P -optimal r
. " i. 0. •

Almost everywhere x , the theorem will appear on log x tape

in step 1 of the algorithm.

Therefore, T(i,r,o(i,r) ,x) = c.p :\(r) (x)

So , from (*) , c.p . = c.p () a . e . o(i,r) :\ r

By the theorem, for some

c.p -optimal i.o. r

Thus c.p n = c.p :\ (r)

and <Pr(x, ¢b(x)) <

a.e. So, by

¢ a.e. X . n

n '

Theorem

a.e. x.

and

3. 2, for some b ,

But, since c.p n is c.p -optimal i. 0. , ¢ (x) S <Pr(x, ¢ b(x)) r n

Thus ¢ (x) < ¢ (x) i.o. x. n n So c.p (x) t i.o. X • n

is

c.pb = c.p
n

i.o. X .

However, a.e. and, since c.p
r is tota l, <P>-. (r) i s tota l.

Contra diction.

(i ii) It follows from (ii) that Vx T(i,r, o (i, r) , x) = (p . (x)
i

He nce = c.p .
i

-

3 3

(iv) It aga i n fo llows from (ii) tha t

Vx TAPE T(i,r,a(i,r) ,x) S log x + TAPE <.p , (x) .
i

Let g be defined in the same way as in the proof of (iv) in

Theorem 3.1.

Then g is a p-function and Cf> (') (x) < g(x, 4> . (x)) o i,r i a.e. x .

As a simple corollary to Theorem 1.4, we have the following

version of the Gap Theorem:

THEOREM 3.4 For some p-function s

(i) Vr Vi Vx::::. i cp . (x) < <.p S(r)(x) or
l

cp . (x)
l

> <.pr(x, <.p S(r) (x)) '

(ii) r- 11 Vr if <.pr is total, then <.p S(r) is total"

We use this result in the following theorem.

THEOREM 3.5 For some p-functions o , g

(i) r- "Vi Vr Vx if <.p. (x) +
i

and <.p r is total, then

<.p c·) (x)+" ; a i,r

and Vi Vr if <.p r is recursive, then

.

(ii) <.p (•) (x) <.p (x, <.p (.) (x)) 1.0. o i,r r o i,r

(iii) <.p (') = (j) . ' o i,r i

(iv) Cf> (.) (x) S g(x, 4> . (x)) o i,r i a.e. x .

XII
'

-

D

............

34

DISCUSS ION

Let ~ - c a lculate a function f .
l

bounding function for a complexity class .

Consider f as the resource-

A typical question is whether

a certain increase of the bound f will admit new functions into the

complexity class . This question can be posed as follows :

Let ~r be recursive. Does C[~ (x,f(x))] properly contain C[f]?
r

Theorem 3.5 states that if the defining algorithm for f is

taken to be ~o(i,r) or any algorithm provably equivalent to o(i,r) '

then even if C[~ (x,f(x))] does properly contain C[f] , we will not r

be able to prove it. In fact, we will not even be able to prove that

there is an algorithm whose complexity lies between

infinitely often.

f(x) and (x ,f(x)) r

As we observed for Theorem 3.1, the anomalous algorithms are

not readily avoided. If ~-l and ~r are provably total, then so

lS (.) . o i,r For the Turing machine enumeration M we can tighten

(iv) to

(iv)' TAPE (') (x) < log x + TAPE. (x) Vx , and o i,r i

(iv) 11 TIME (.) (x) < x + TIME. (x) a .e. x . o i,r i

PROOF OF THEOREM 3.5 :

ALGORITHM IN (i,r,j,x)

1. Mark off log x tape. Generate the theorems of S and

write them down until the log x t ape is full.

whether the formula

11 3k ~ .(x) <~k (x) s ~ (x, ~ .(x)) i.o . x"
J r J

has been written down .

Check

35

2. If the formula has not been written down, then calculate

and output (!) .(x)
i

3. If the formula has been written down, then calculate and

output (!) B(r) (x) , where B is as in Theorem 3.4.

The algorithm translates into a Turing machine T(i,r,j,x)

Following the same procedure as in the proof of Theorem 3.1, for some

p-function o

(*) (!) (.) (x) = T(i,r,o(i,r) ,x)" . o i,r

We now establish each section of the theorem in turn.

(i) Using Theorem 3.4 in place of Theorem 3.2, the argument here

follows the same pattern as in the proof of Theorem 3.3 (i).

For the remaining sections of the proof, let i be arbitrary

but assume that (!) is recursive. r

(ii) Suppose f- 113k (j) (.) (X) < <pk (X) < (j) (X , (j) (.) (X)) i.o. X 11
• o i,r r o i,r

We shall establish a contradiction.

Almost everywhere x , the theorem will appear on log x tape

in step 1 of the algorithm. Therefore T (i ,r ,o (i ,r) ,x) = (!)B (r) (x) a.e. x.

So, from (*), (!) . = (!) a.e. o (i,r) B (r)

By the theorem, for some n ,

(!) (')(x) < 'P (x) S (!) (x, (!) (')(x)) i.o. x. o i,r n r o i,r

So, for some x n , (!)B (r) (x) < Pn(x) S (!)r(x, (!)B (r) (x))

But by Theorem 3.4, Pn(x) S (!) B(r) (x) or Pn(x) > (!) r(x , (!)B (r) (x)) .

This is a contradiction since is recursive and, therefore,

is recursive.

-

(iii) It follows from (ii) that

Hence
i

3 6

T(i,r , o (i , r) , x) = 4) . (x)
i

(iv) Let g be defined in the same way as in the proof of (iv) in

Theorem 3 . 1 .

Then g is a p - function and cp (.) (x) < g(x , 4' . (x)) a i,r i a . e . x . D

4.1 INTRODUCTION

37

4 PROVABLE EQUIVALENCE AND
COMPLEXITY OF ALGORITHMS

Usually in complexity theory, all algorithms that calculate the

same function are classed together; but to the computer scientist working

within a formal system the algorithms fall into provable equivalence

classes : algorithms can be recognized as equivalent if and only if they

are provably equivalent. The results in Chapter 3 show that what we can

prove about the complexity properties of a function depends on the

provable equivalence class to which our defining algorithm for the

function belongs. It is natural then to enquire as to the relationship

between provable equivalence and the computational complexity of algorithms.

For example, we might pose such questions as : Do the algorithms in a

single provable equivalence class all have complexities which are ,

in some sense, close together? Do the different provable equivalence

classes for a function form separate bunches of increasingly complex

algorithms, or do they interleave?

In this chapter we investigate these and related questions. Many

of our results are rather complicated to state.

some of them below.

However, we paraphrase

THEOREM 4.1 Every provable equivalence class contains infinitely many

algorithms.

COROLLARY 4 . 4 Let the partial recursive function f be defined on an

infinite domain . Then from any algorithm
l

for f we can effectively

construct another algorithm ~A (i) for f such that every algorithm

38

provably equivalent to ~A (i) has greater complexity a . e . than every

algorithm provably equivalent to ~. .
i

THEOREM 4.5 Every partial recursive function has infinitely many

provable equivalence classes.

THEOREM 4.11 From any recursive ~ - we can effectively construct a
i

recursive function t such that for any recursive function g the

following three conditions are equivalent

(i) g E C[t]

(ii) g is less complex than some algorithm provably equivalent

(iii)

4.2 RESULTS

to ~ - ,
i

domain g provably contains domain~- .
i

THEOREM 4.1 Vi the provable equivalence class of ~-i is infinite.

PROOF Consider an arbitrary ~-l Let y be as in Theorem 4.2.

There are infinitely many minor modifications we can make to the

instruction set for each of which obviously will not affect

the machine's output. Each one of these modifications produces a

different Turing machine M.
J

such that Now, y

is one-one and I- II ~ ' = M = M. II

y-l(i) y(j) . i J
Thus, the provable

equivalence class of ~- lS infinite. i

The following result will be the key to many others .

D

39

THEOREM 4.2 For some p-function a

(i) f-- "'r/i 'r/ r 'r/x if <P . (x) +
l

and <P (x) + , r

and 'r/i 'r/r if domain <P i c domain <Pr, then

(ii)

(iii) for any

= <P. ' l

<P ;::::: <P k o(i,r) a.e .

then <P (') (x) + " a i,r

Basically, this theorem says that each function has provable

equivalence classes of arbitrarily large complexity.

Let f be a partial recursive function, let

<P be defined wherever r f lS . Then <P = f o(i,r)

<P . = f ' l
and let

and every member

of the provable equivalence class of <P has greater complexity a.e.
o(i,r)

than <P r

This illustrates again that there are 'bad ' defining algorithms

for functions. For example, the function f may be calculable in

linear time, but our defining algorithm for f can be so 'bad' that

every algorithm provably equivalent to it runs slower than super-

exponential time.

PROOF OF THEOREM 4.2

ALGORITHM IN (i,r,j,x)

1. Generating the theorems of S primitive recursively, let

2.

be the first

f-- " <P = <P • II

pn J

For each n=O, ... ,x test

X + 1 indices such that

<P (x) r

(a) If some n satisfies the test , t hen calculate and output

1 + max { <P (x)
pn

J O ::: n < x and < <P (x) }
r

40

(b) If no n satisfies the test, then calculate and output

<P . (x)
l

The algorithm translates into a Turing machine T(i,r,j,x) By

Theorem 1.3, for some p-function t

Let V

f- 11 \/i \Jr 'efj \/x T(i ,r,j,x) M (. .)(x)". t i,r,J

yo t, where y is as in Theorem 1.1 .

<P c· ·) = M c· ·)" • v i,r,J t i,r,J

Then

By Theorem 1.2, for some p-function m

f- 11Wi• \Jr /f) _ /f) 11
v 't' c·) - 't' c· c·)) · m i,r v 1,r,m i,r

Let o = m. Then a is a p-function and

{ *) <P c·)(x) a i,r
T(i,r,m(i,r) ,x)" .

We now establish each section of the theorem in turn.

(i) Consider the algorithm operating on some (i,r,j, x) Suppose

that (p. {x)+ and <P (x) + .
1 r Step 1 is primitive recursive and

therefore converges. Since <P (x) + , the tests in step 2 will converge
r

and therefore so will the calculations for (a) Since <P. (x) + ,
l

{b) will converge. Thus, the algorithm will converge on {i,r,j,x)

This sort of reasoning could be carried out in S for T.

Thus

f- 11 \/i 'rfr \/j 'iix if <P . (x)+
l

and <P (x) + , r then T(i,r,j,x)+" .

So, from (*),

if <P . {x) +
i

and <P (x) + r then <P c·)(x) + II• o i,r

41

For the remaining sec tions of the proof , let i be arbitrary

but assume that domain 4) . c domain (p r
i-

(ii) Consider an arbitrary x .

Suppose that 4) (x) t . r Then by our assumption, 4). (x)t .
l

Al so T (i, r , 0 (i, r) , X) t , since the calculation of 4) (x)
r

diverges .

So, by (*) , 4) (.) (x) t .
0 i,r

Thus, 4). (x) = 4) (') (x) . i 0 i,r

in step 2

Now suppose that 4) (x) + • r We claim that T(i,r,0 (i,r) ,x)

defined through step(b) of the algorithm .

For if the test in step 2 is satisfied, say

T(i,r,0(i,r) ,x) + and T(i,r,0(i,r) ,x) > 4)

But, by (*) , 4) (')(x) 0 i,r = T(i,r,0(i,r),x)

(pp = 4)0 (i,r) ·
n

Contradiction.

pn

4)
pn

(x)

and,

So, T(i,r,0(i,r) ,x) is defined through (b).

Thus, 4) (') (x) = 4). (x) 0 i,r i

So 4)0 (i,r) = (pi ·

(iii) Suppose that

(x) < 4) (x) then r '

from step 1,

is

(pk~ 4)0(i ,r)

Considering step 1 of the algorithm for T(i,r, 0(i ,r) ,x) we see that

for some n ,

If 4) (x) t , r

and <l' (x) t .
pn

p = k . n

then as we saw in (ii), 4) (')(x)t, 0 i ,r and so 4) (x) t
pn

If x n and 4) (x) + , then as we saw in (ii), the test in step 2 r

is not satisfied , and so 4) (X)
r

0

42

The following result tells us, among other things, that the

algorithms in a single provable equivalence class all have complexities

which are , in a sense, bunched together.

COROLLARY 4 .3 For some p-functions K and A , Vi

(i) doma i n ~K (i) = domain ~ i ,

(ii)

(iii)

for any ~. ~- ' J i
<p . <

J

~ A(i) = <.p .
i

and for any

~K (i) a . e. ,

~b~ ~A (i) a .e.

PROOF Define a Turing machine W(i,x) by the following algorithm

1. Generating the theorems of s ' let

be the first x + 1 indices such that 1- 11
~

_Pn
~ ' II

i

2. Calculate and output <I> (x) + <f> (x)
Po pl

+ ... + cp (x) .
PX

By Theorem 1.3, for some p-function w

Mw(i) (x) W(i ,x)

Let K =yow, where y is as in Theorem 1.1.

Then K is a p-function and Vi Vx () · ~K (i) X = W(i,x) .

It is now easy to see that Vi

(i) domain ~K (i) = domain <.p . ,
i

(ii) for any ~- ~-
] i

I a . e .

Define by A(i) = o(i,K(i)) where 0 is as in Theorem 4 . 2 .

Then A is a p-function and Vi

(iii) ~A (i) = ~-i and for any ~b ~ A(i) a .e. D

--

43

Let f = ~ - be defined on an infinite domain.
l

Then ~ - and
l

~A(i) represent distinct provable equivalence classes for f , with

every member of the provable equivalence class of ~A(i) having greater

complexity a . e . than every member of the provable equivalence class of

~i Let us say that the provable equivalence class of ~A(i) has

greater complexity a.e. than the provable equivalence class of ~-l
Similarly, ~AoA(i) = f and the provable equivalence class of ~AoA(i)

has greater complexity a . e. than the provable equivalence class of

By successive applications of A , we can form representatives

for an infinite chain of provable equivalence classes for f , with

each class having greater complexity a . e . than the preceding classes .

We can state this observation as

COROLLARY 4 . 4 For some p - function A , Vi

(ii) if ~- is defined on an infinite domain, then the
l

provable equivalence class of ~A(i) has greater complexity

a . e . than the provable equivalence class of ~-l

A natural question is : ijow many provable equivalence classes

does a function have? Our next result gives the expected answer.

THEOREM 4 . 5 Every partial recursive function has infinitely many provable

equivalence classes .

PROOF Let f be a partial recursive function .

If f is defined on an infinite domain, then Corollary 4.4 shows

that f has infinitely many provable equivalence classe s .

--

44

Now suppose that f is defined on only a finite doma in. Further,

suppose that f has only finitely many provable equivalence classes -

say n distinct provable equivalence classes represented by

We shall establish a contradiction by constructing

a representative <P .
l

for a new provable equivalence class for

Let x = max {x
0

f(x)+} . Define a Turing ma chine

the following algorithm

1. For X < XO calculate and output <P ,
pl

2. For X > XO , generate the theorems of

II <P • = <P II or II <P • <P II or II {p
J pl J P2 J

If one of these theorems lS found, output

For some recursive function w,

MW (j) (x) = W (j , X) .

Let t =yow, where y is as in Theorem 1.1.

Then V j Vx <Pt (j) (x) = W (j , x)

By the Recursion Theorem, for some

Therefore, Vx <P . (x)
l

= W(i,x)

l , <.p. =
l

=

1.

(x)

s seeking

<P II

pn

f .

W(j , x)

We first show that <P . is
l

not provably equivalent to any of

<P , ... , <P
P1 p n

Suppose I- II <P • = <Pp
II where 1 < k < n , - .

l k

Then Vx > XO <P (x) = <P. (x) = W(i,x) = 1 .
pk l

But Vx > XO <P (x) = f(x)t . Contradiction.
pk

It now follows that Vx > X (p .(x) = W(i , x) t . 0 l

Henc e Vx > X <P .(x) = f(x)
0 l

by

--

45

Further, 'tfx < XO (J) . (x) = (j) (x) = f(x) Therefore, (j) . = f . .
l pl l

Thus, (j) . represents a new
l

provable equivalence class for f .

Therefore, f has infinitely many provable equivalence classes. D

Our next result is the first of several which show that the

relationship between provable equivalence and the complexity of algorithms

is somehow involved with provable relations between the domains of

algorithms .

THEOREM 4.6 'tJi 'tlr if 1- "domain (j). c domain (j) " , then for some
i r

Results 4.3 and 4.6 give some idea of how widely spread (in terms

of computational complexity) the algorithms provably equivalent to (j) .
l

can be. Corollary 4.3 shows that there is a (j)K {i) which is defined

whenever (j). is, and which bounds the complexities of all the algorithms
l

provably equivalent to (j) .
l

Theorem 4.6 shows that if we can prove

that is defined whenever (j) .
l

is, then (j) does not bound the r

complexities of all the algorithms provably equivalent to (j) . .
l

PROOF OF THEOREM 4.6

Suppose 1- 11 domain (j) . c domain (j) " .
i - r Let h be as in Theorem

1.5. Define a Turing machine by the following algorithm

1. Waste 1 + h(x,(j) (x)) tape squares . r

2 . Calculate and output (j) . (x)
l

Let J = y(k) where y is as in Theorem 1 . 1.

We first show that (j) . (j) .
J l

--

46

If <P .(x)t , then ~(x) t and so <P. (x) t .
i J

Now suppose that <P . (x)+ . Then <P (x)+ and so , since h is total ,
i r

the calculation in step 1 converges . Therefore , ~(x) = <P .(x) i

So, <P. (x) = <P . (x)
J i

Thus, 'tfx ({) . (x) = <P . (x)
J i

This reasoning could be reproduced in S. So,

By Theorem 1.5, 'tfx k

Therefore, h(x, 4>. (x)) > h(x,<P (x))
J r

a.e. x .

So, since h is monotonically increasing in its second argument,

4>. > <P a.e. D
J r

A modification of this result will also prove useful.

I' COROLLARY 4.7 'tf i 'tf r if I- "domain <P. c domain <P "
l r ' then for some

({). ({). , <P < <P. a.e.
J i r J

PROOF Suppose 1-- "domain <P. c domain <P " •
i - r

Now I- "domain <Pr = domain <P II from the definition of a provable
r

,

Blum measure.

So I- "domain <P. C domain <P II .
l - r

By Theorem 4.6, for some <P . <P . , <P < <P a . e .
J l r J

D

Let f be a partial recursive function defined on an infinite

domain. In our remarks following Corollary 4.3, we showed that starting

with any provable equivalence class for f there is an infinite chain

of provable equivalence classes for f , with each class having greater

complexity a.e . than the preceding classes. The next corollary shows

--

47

that it is also the case that every provable equivalence class for f

interleaves with others .

COROLLARY 4.8 If ~ - is defined on an infinite doma in , then for some
l

PROOF

and some ~-l
cp

l
< cp < 'P . a . e .

a J

By Theorem 1 . 6 , for some p-function u

f- II 'tj i = ..+, II 'r . .
l

but >fa ~ -a 1

Suppose that

a= cr(i , u(i))

~-l is defined on an infinite domain .

Let where er is as in Theorem 4 . 2 .

So , ':f, ~ - and cp < cp a . e . a 1 1 a

Now f- "domain ~ .
l

Therefore f- "domain ~- C
l -

By Theorem 4.2 f- "\Jx if

So f- "domain ~- C domain
l

By Corollary 4.7 , for some

domain <F. "
l

domain u (i)

~. (x) +
l

and

~a
II .

~- "' ~-"' ,
J l

cp > cp
k l

a . e .

II .

~u(i)(x)+ '

cp < cp a . e . a J

then (x) +" .
a

We now observe that Corollary 4 . 7 has a partial converse.

THEOREM 4.9 \Ji ' for any recursive ~r '

if for some ~- ~-
J l

then for some ~t = r

PROOF Suppose that

cp (x) < cp. (x)
r J

\Jx > m

cp s <p a . e . , r J
f- "domain ~- C domain ~ t

II .

r

l

is recursive and tha t for some ~ . ~- ' J l

Define ~ t by the following algorithm :

D

--

1 .

2.

48

For x Sm, outp ut (j) (x) r f r om a tab le o f v a lues

(j) (0) , <P (1) , ... , <P (rn)
r r r

For X > rn ,

output (j) (x) r

if P (x) S P . (x)
r J

else output 0 .

We now show tha t

then c a lcula te a nd

I-- "domain (j) . c domain (j) "
i t

For X S m I (j) t(x) + since values are looked up in a table .

For X > m if <P . (x)+ then p .(x) + and so (j) t(x) + . I i ' J

Thus , domain (j) .
i c domain <P t .

This reasoning could be reproduced in S . Therefore

1-- " domain (j) i c domain <P t " .

For ou r next result we call on the Union Theorem , a proof of

which may be found in [10].

UNION THEOREM Let { f j n E N} n be a recu rsively enumerable

sequence of r ecursive f u nctions such that Vn Vx

Then for some recu rsive function t , Vr

¢ < t a . e . iff r 3n ¢ < f a . e . r n

f (x) < f
1

(x) n n+

Corollary 4 . 3 shows that we can bound the complexities of the

algorithms provably equivalent to

result can be strengthened .

THEOREM 4 . 10 For any recursive

t. (effectively computable from
i

p < t. a . e . iff for s ome r i

(j) . .
i

(j) .
i I

When

there is

i) suc h that

(j) . ,.._, (j) . p ,.._,
I

J i

(j) .
i

a

Vr

<
r

is recursive, that

recursive function

¢ . a .e .
J

0

Let ~ - be recursive.
i

49

Then not only can we bound the

complexities of the algorithms provably equivalent to ~. ,
i

but we can

bound them so tightly that there is no 'gap' between them and our

resource-bound.

PROOF Suppose that ~-i
Generating the theorems of

indices such that

and 'vn

is recursive.

s , let be the first n + 1

= ~ •II
i

Define the sequence { f I n E :N} n

f n+l f n + 1 .

This sequence satisfies the requirements of the Union Theorem, and so

for some recursive function t. , 'vr
i

<±> < t. a.e. iff 3n <±> < f a.e. r i r n

In the proof of the Union Theorem, t is constructed from the

sequence {f
n n E :N} Examining this construction, we see that

in our case t. is effectively computable from i .
i

t. = for some p-function K .)
i K(i)

Now, 'vn <p < f
pn n

Therefore, if for some ~- ~- <p s <p a~ e. ,
J i , r J

then 3n <p < f a.e. and so <p < t. a.e. r n r i

Further, for each n I- II ~ • = (pp i
0

So I- "domain ~- C domain f II .
l - n

By Theorem 4. 6, for some ~ - ~- , f s <p . a.e.
J l n J

Therefore, if <p < t. a . e. , then 3n <p < f a.e . r i r n

and so for some ~ - ,...__, ~- <p < <p . ,...__, a.e.
J i r J

(In fact,

Thus, 'v r ' <p < t.
r 1

a .e. iff for some ~- ~-
J l

<±> < <±> . a.e.
r J

by

D

50

Let ~- be recursive.
i

From results 4.7 and 4 . 10 , we see

that Vr

if f-- "domain ~ . c domain "
i r ' then cp < t.

r i
a.e.

Thus, if an algorithm's complexity is not bounded by t.
i

then

we cannot prove that the algorithm's doma in contains domain ~-
i

This

illustrates that as the difference between the complexities of algorithms

increases, what we can prove about the relationships between the

alg~rithms decreases .

Results 4 .7, 4.9 and 4.10 show a relationship between provable

containment of domains, provable equivalence and computational

complexity.

THEOREM 4.11

We draw these results together in

For any recursive ~. ,
i

there is a recursive function

t.
i

(effectively computable from i) such that for any recursive

function g the following three conditions are equivalent :

(i) g E C [t.] i ,

(ii) for some ~-J
::::::: ~-i , g E C [¢ .]

J
I

(iii) for some ~r g f-- "domain ~- C domain II

i r

PROOF Let ~ - be recursive, and let t. be as in Theorem 4 . 10.
i i

The equivalence of (i) and (ii) is given by Theorem 4.10.

That (ii) implies (iii) follows from Theorem 4.9.

That (iii) implies (ii) follows from Corollary 4 . 7. D

The equivalence of (i) and (iii) is especia lly interesting because

it equates a purely formal property (a provable relat ionship between

51

domains) with a complexity property (computability within a given

resource-bound) .

The equivalence of (i) and (iii) also generalizes the following

result from [7]

COROLLARY 4 . 12 There is a recursive function t such that for any

recursive function g

g E C[t] iff g is a p - function .

PROOF Let ~ - be provably total , and let t = t. be as in Theorem
l l

4 . 10 . Then for any recursive function g

g E C[t]

iff for s ome ~r = g 1- "domain ~ - c domain ~ "
i - r

iff for some ~r = g , ~r is provably total

iff g is a p - function .

Actually , in the above , t bounds the complexities of the

provably total algorithms as tightly as possible in the sense that

there is no ' gap ' between them and the resource- bound t :

If ~r is provably total , then

I- "domain ~ - c domain ~ " and so cf> < t a . e .
i r r

If cf> < t a . e ., then for some
r

~- is provably total .
J

~ . ~- ' J l
cf> < <p .

r J
a . e . and

D

52

5 COMPLEXITY CLASSES AND
PROVABLE COMPLEXITY CLASSES

5. l INTRODUCTION

Many results in abstract computational complexity theory revolve

around the notion of a complexity class, and much of the work with

particular complexity measures - such as the TIME and TAPE measures

on the Turing machines - consists of determining to what complexity

classes a given function belongs. In this chapter we consider provable

analogues of complexity classes.

We define the complexity class of f (under the measure 'P) to

be the class

C[f] = {g I 3i ~- = g and 'P. < f
i i

a.e.} .

It is usual to require in the definition of C[f] that the

functions f and g be recursive. For the work in this chapter,

however, it is convenient to admit a greater generality by allowing f

and g to be only partially recursive. Nevertheless, if the requirement

that f and g be recursive i s added to the definition of C[f] and

to the (forthcoming) definitions of

results will continue to hold.

B [f] and A [f] then all of our

Suppose that we have a defining algorithm ~d for a partial

recursive function g .

~i = ~d and

To show that

cp
l

< f a .e."

g lS ln C [f] we must prove

53

However, proving the mere existence of an algorithm for g that runs

within the resource-bound f is not particularly satisfactory. In

practice, we strive to exhibit such an algorithm.

prove for some i that

and <p
l

< f a.e . "

That is, we aim to

Theorem 3.1 tells us that for any recursive function f , there

will be infinitely many possible defining algorithms ~d for g such

that we cannot even prove

and 'P. < f
l

i.0. II

So certainly, if our defining algorithm for g is a 'bad' one, then

we will not be able to exhibit an algorithm for g that runs within

the resource-bound f. But perhaps there is a ' good' defining algorithm

for g using which we can exhibit such an algorithm .

The question can be posed as follows Does there exist an

algorithm ~d = g such that for some 1 we can prove

"~.
l

and <p
l

< f

Clearly , this is equivalent to

such that we can prove

11 ¢ . < f a . e . 11 ?
l

a.e . 11 ?

Does there exist an algorithm ~-l g

The above question suggests a provable analogue of the complexity

class of f .

B [f]

We define the class B[f] as follows :

{g 1 3i ~- = g and
l

I- " <p . < f
l

" } a.e . .

II

54

The class C[f] consists of all the partial recursive functions

for which there is an algorithm that runs within the resource-bound f.

The class B[f] consists of all the partial recursive functions for

which there is an algorithm that can be proved to run within the

resource-bound f .

A variation on the class B[f] is suggested by consideration of

the almost-everywhere bounding conditions. Writing out in full the

provable condition for B[f] , we have :

f- 11 3n Vx > n <p. (x) < f (x) 11
•

i

This condition guarantees the existence of a starting point n for the

bounding, but gives no value for n. In a practical situation, it

would be natural to ask that some explicit value for n be given. The

required condition can be written as :

3n f- 11 Vx > n <p. (x) < f (x)" .
i

Let us denote by A[f] the class defined with this condition. That is

A [f] {g 1 3i <P . = g and 3n
i

f-"\:Jx > n <p _(x) < f(x)"}.
i

Even more stringent than the requirement that an explicit starting-

point for the bounding be given is the requirement that the complexity of

the algorithm be bounded by f everywhere, that is, on every input.

This sort of bounding is considered in the study of the TIME and TAPE

measures on Turing machines. Hartmanis in [8] considered provable

complexity classes defined with everywhere bounding for the TIME and

TAPE measures . His work, like most work on these measures, was in the

context of Turing machines as recognizers of formal languages.

I:

56

THEOREM 5.11 For infinitely many recursive functions f

A[f] f B[f] = C[f]

5.2 RESULTS

To begin the results, we note the obvious.

OBSERVATION 5.1 It follows immediately from the definitions that for

any partial recursive function f

A[f] C B[f] C C[f]

We shall be concerned with conditions that force the above

inclusions to be either proper inclusions or equality. The next half-

dozen results deal with the relationship between the A-classes and the

C-classes. First, we have a means of producing from ~t a function

THEOREM 5.2 For some p-functions K and g, Vt

PROOF

(i) Vx > t cpK (t) (x)::: g(x,~t(x)) ,

{ii) if ~t is defined on an infinite domain, then

~K (t) A[~t]

In the following algorithm for a Turing machine, let the p-

function y be as in Theorem 1.1.

ALGORITHM in (t,x)

1. Mark off log x tape. Within that length of tape, generate

and write down the theorems of S . Whenever a theorem of the

Ii

2 .

3 .

57

form "\;fy ::: n cp i (y) S tp t (y) 11 appears, check whether n S log x

and i Slog x, and if they both are, then write down the

description of before going on to the next theorem .

Stop when the log x tape is full.

For each description written down , simulate

operating on the input x. Record the maximum of the values

M {x) •
y-l(i)

Add 1 to this maximum and output that value. {If no

descriptions were written down, then output 1.)

Let us consider each of the steps for the algorithm operating on

some arbitrary {t,x) .

1 . Log will be to some appropriate base . We don ' t actually deal

with log x but rather, say, the greatest integer q slog x . The

marking- off of log x tape requires no more than log x tape .

As we noted in Section 1 . 1 the theorems of S can be generated

primitive recursively . The calcu lations of the indices y-1 (i) will

converge since -1
y is a p - function . All of the other operations in

this step can be done primitive recursively .

Thus, the calculations in step 1 will converge and will use

log x tape .

2 . The description of M
y-l{i)

will be in some standard form such

as quintuples . Suppose the description fills D.
i

tape squares . Then

the simulation of M _1 {x)
y (i)

tape.

will require no more than Di · TAPE _1 (x)
y (i)

58

From step 1, we have that I- "\Jy > n

n < log x , . < 1 i _ og X and D. < log X
i

'±> , (y) < 4) (y) II

i t
and also

Let us note here that if

then ¢ . (x) + ,
i

and so M _1 (x) + .
y (i)

Let h be as in Theorem 1.5.

Then, since i < x , TAPE _1 (x) h(x, 'Pi(x))
y (i)

Therefore, since h is monotonically increasing in its second argument ,

TAPE -l (x) < h(x, 4)t(x))
y (i)

So, Di• TAPE -1 (x) < log x • h(x, 4)t(x))
y (i)

By running the successive simulations over the same tape, we

can arrange that the tape used in step 2 is just the tape used in the

lengthiest simulation.

Thus, step 2 requires less than log x • h(x, 4)t(x)) tape.

Also, if 4)t(x)+ , then the calculations in step 2 will converge .

3. For the addition of 1, we allow one extra tape square.

Finally (assuming without loss of generality that h 1) if

we overlay the calculations in step 1 and the subsequent calculations,

then the entire algorithm requires no more than log x • h(x, 4)t (x)) tape.

Also, if 4)t (x) + , then the algorithm will converge on (t,x)

The algorithm translates into a Turing machine W(t , x) By

Theorem 1. 3, .for some p-function w

W(t,x) = M (x)" w(t) ·

Further, from our discussion above, we can ensure tha t

Vt Vx TAPEw(t) (x) < log x · h(x, 4) t(x))

59

By Theorem 1 . 5,

Vt Vx > t 4> (x) < h(x,TAPEw(t) (x)) . y(w (t))

So, Vt Vx > t cp (x) :S h(x,log x•h(x, <P t(x))) y(w (t))

Let K =yow, and define g by g(x,y) = h(x,log x•h(x,y)) .

Then K and g are p-functions, and

Vt Vx > t <±>K (t) (x) < g(x,<Pt(x)) .

Thus, we have established part (i) of the theorem.

We next prove part (ii).

Suppose that <P t is defined on an infinite domain and

We shall establish a contradiction.

Since <PK (t) E A[<P t] , for some i and some n,

= c.p.
l

and I- " Vy > n

Therefore, for some x , <P t(x)~ and the theorem

and also the description of

written down in step 1 of the algorithm in (t,x) .

Since <Pt (x) ~ , the algorithm will converge on (t,x).

By the construction of the algorithm, W(t,x) > M _1 (x) .
y (i)

By Theorem 1.1, <P = M yow(t) w
II Therefore

<PK (t) (x) = Mw(t) (x)

That l S , c.p K (t) (X) > <Pi (X) •

= W(t,x) > M _ 1 (x) =
y (i)

But and c.pK (t) (x) . Contradiction.

<P . (x)
l

will be

60

Thus, if ~t is defined on an infinite domain, then

~K(t) f A[~ t]

using Theorem 5.2, we can generalize a number of results from

[8]. First , we generalize Corollary 2 [8].

COROLLARY 5.3 For some p-function g , for any partial recursive

function f defined on an infinite domain,

A[f] C[g(x,f(x))]

PROOF Let K and g be as in Theorem 5.2.

Assume without loss of generality that Vx Vy g(x,y) > y.

Then A[f] c C[g(x,f(x))]

Let ~t =f . Then ~K(t) E C[g(x,f(x))]

but if f is defined on an infinite domain, then ~K(t) f A[f]

Next , we generalize Theorem 3 [8].

THEOREM 5 . 4 For infinitely many recursive functions f

A[f] C[f]

0

0

Thus, A-classes may be strictly smaller than C-classes. If

we take A[f] to represent what we can prove to be computable within the

resource-bound f , then for infinitely many resource-bounds f , what

we can prove to be computable within f is strictly less than what is

computable within f.

Actually, we can prove a stronger version of Theor em 5.4 :

THEOREM 5.4'

(i)

(ii)

(iii)

61

For some p-function T , Va

'+> T(a)
is monotonically increasing and

Vx

if

if

> '+> (x) ;
a

is provably total , then

is recursive, then '+> T (a)

'+> T(a) is provably total;

is recursive and

The existence of the p-function T shows that there is

actually an algorithm to produce functions f = 't> T(a) such that

A[f] ~C[f]. Part (i) tells us that f can be made arbitrarily

large. From part (ii),

total.

PROOF OF THEOREM 5.4'

f will be a p-function when '+> a
is provably

Let g be as in Corollary 5.3.

can be calculated by a provably total

Since g is a p-function, g

'+> • r

Let. a. be as in Theorem 1.4.

Define T by T(a) = a. (a , t) ·

By Theorem 1.4, Va

Then T is a p-function.

is monotonically increasing and

Vx

(ii) if '+la is provably total, then 't>T (a)

Now suppose that '+la is recursive.

By Theorem 1.4, '+> T (a)
is recursive and

Vi Vx > i ¢ i (x) < 't)T(a) (x) or

cf> i(x) > g(x, 't)T(a)(x)) .

is provably total .

62

Therefore, C[g(x, (j) ()(x))] C C[(j) ()] .
T a - T a By Corollary 5 . 3 ,

A[(j)T(a)] C[g(x, (j)T(a) (x))] . D

We should note further that if K is the p-function from

Theorem 5.2, then whenever (j)a is recursive

Thus, as well as having an algorithm to produce functions f

such that A[f] C[f] , we also have an algorithm to produce functions

that lie in the difference C[f] - A[f] .

Our next result is an extension of Theorem 5.4. It generalizes

Corollary 4 [8].

COROLLARY 5.5 For any recursive function G, for infinitely many

recursive functions f ,

A[G(x,f(x))] C[f] .

This shows that even if we increase the resource-bound f by

an arbitrary recursive function G, there will be infinitely many f

such that what we can prove to be computable within G(x,f(x)) is

strictly less than what is computable within f .

PROOF The proof follows the same pattern as for Theorem 5.4'.

Use Theorem 1.4 to produce recursive functions f such that

C[g(x,G(x,f(x)))] C C[f] .

Then, by Corollary 5 .3, A[G(x,f(x))] C[g(x,G(x,f(x)))] . D

I

63

We have not managed to establish, for general provable Blum

measures, the existence of recursive functions f such that A[f] = C[f]

However , if ¢ has certain special properties, we can show that

Vt A[<±'] = C[<±'] t t

First, we need some definitions.

DEFINITIONS

(i) A Blum measure ¢ is said to be finitely invariant if

if ~- = ~- a.e., then
i J

= <.p.
i

and <p . a.e.
J

(ii) A Blum measure ¢ is said to have the Parallel Computation

Property (PCP) if Vi Vj 3 k

Vx ~k(x) =1(~i(x)

~, (x)
J

and <±'k (x) = min

if ¢. (x) < ¢. (x)
i J

otherwise

{<±'.(x),<±'.{x)}.
i J

The idea behind finite invariance is that we can modify an

algorithm's behaviour on finitely many inputs without increasing the

algorithm's almost-everywhere complexity.

The idea behind the PCP is that we can run two algorithms

in parallel without any extra cost in terms of complexity.

We now introduce provable analogues of definitions (i) and (ii).

DEFINITIONS

{iii) We say that ¢ is provably finitely invariant if

Vi

(iv)

and

V j if 4) . = 4) .
l J

3k (pk = 4).

We say that

4)k (x) ={4)i(x)

4) . (x)
J

3n r- 11 Vx > n

l

<fl

64

a . e. , then

and 3n r- 11 Vx > n cp k(x) < <fl .(x)" -
J

has the provable PCP if V i V j 3k

if <F. (x) <<fl . (x)
l J

otherwise

<Pk(x) <<F.(x)".
J

Note that, in general, if we can show that a Blum measure is

finitely invariant and has the PCP , then our arguments will be

reproducible in S and will show that the measure is provably finitely

invariant and has the provable PCP.

THEOREM 5.6 If cp is provably finitely invariant and has the

provable PCP , then

PROOF Suppose that f E C[<fl t] .

Then for some l , 4). = f
l

and <fl , < cp
l t a.e.

Since <F has the provable PCP , for some k ,

Vx

otherwise

and 3n r- 11 Vx > n <flk(x) < <F t(x)" .

Notice that = <.p.
l

a.e .

Since <fl is provably finitely invariant, for some J ,

*

65

(j) . = (j) . and 3 m r- 11 Vx > m <i>. (x) s cp (x) II .
J l J k

Thus, (j) . = f and 3v r- 11 rfx > V <p . (x) s <p (X) II .
J J t

Therefore , f E A [4>] D
t

The above result generalizes Theorem 7(1) [8] and Corollary 8 [8].

It is a simple exercise to check that the TAPE measure is provably

finitely invariant and has the provable PCP.

Theorem 5.6 indicates what strong conditions are required to

guarantee the existence of recursive functions f such that A[f] = C[f]

Many natural measures are finitely inva riant. However, most natural

measures do not have the PCP - for example, the TIME measure does not

have the PCP [2].

For general provable Blum measures, we have the following result,

which generalizes Corollaries 9 and 10 [8].

THEOREM 5.7 For some p-function b , Vt

PROOF

C[(j)t] c A[b(x, <i> t(x))] and

C[4>t] C A[b(x,~t(x))]

Define a Turing machine W(i,t,n,x) by

IF x > n and 4> i (x) > (j) t(x) and 4> . (x) > <i> (x)
l t

THEN output 0 ELSE calculate and output (j) .(x).
l

By Theorem 1.3, for some p-function w

W(i,t,n , x) = M (' t)(x)
11

• w i, , n

Let 0 = yow , where y is as in Theorem 1.1 .

Then 0 lS a p-function and W(i , t,n,x) = (j) (• t) (x) II • 0 i, ,n

and

66

Define b by

b(x,y) = max { ¢ (.) (x) a i,t,n I O < i,t,n < x and cp (x)
t = y} .

It is a simple exercise to show that b is a total function

Vi Vt Vn , for x > max {i,t,n} , ¢ . (x) < b(x, 4' t(x)) . a(i ,t,n)

Our arguments will be reproducible in S for a straightforward

Turing machine representation of b.

Thus, b is a p-function and

1-- 11 V i Vt Vn , for X > max { i , t , n } , cp (X) < b (X ' cp t (X)) II •
a(i,t,n)

Then for some i and some n,

Therefore tpa(i,t,n)

Let m = max {i,t,n}

= 4) . = f .
l

Then

4) . = f and
l

1-- 11 Vx > m <p . (X) < b (X 1 <pt (X)) 11
•

a(i,t,n)

Thus, f E A[b(x, Pt(x))]

By making the proof more complicated - for example, by

incorporating arguments from Lemma 5 .12 - we could have forced the

D

inclusions between the classes in Theorem 5.7 to be proper inclusions.

We now present some result for the B-classes.

-

67

For the following theorem we adopt the convention that the TAPE

cost of a Turing machine computation does not include the number of tape

squares initially required to write down the input value.

THEOREM 5 . 8 For the TAPE measure on the Turing machine enumeration M,

for any partial recursive function f ,

if 1- "f (x) :::. log x a. e . " , then B [f] C [f]

In Lemma 11 [8] Hartmanis establishes a similar result for the

TIME measure . 1 He attributes the result to A. Meyer.

Note that f may be greater than log without our being able

to prove it . Indeed, we can produce arbitrarily large recursive

functions f such that "f(x) :::. log x a . e ." . Nevertheless , for

the TAPE resource-bounds f usually considered, if f(x):::. log x a . e .,

then we can prove it .

PROOF OF THEOREM 5 . 8

Suppose 1- " f(x):::. log x a.e." , and suppose that g E C[f]

We shall show that g E B[f]

For some 1 and some n,

Vx > n TAPE. (x) < f(x)
l

M.
l

g and

Define a Turing machine M.
J

by the following algorithm

1 In Lemma 11 [8] there is no provable condition corresponding to our
condition that 1- "f (x) :::. log x a. e." . It seems to us that such
a provable condition is necessary for the proof to work.

1.

68

Lay-off log x tape. Within that length of tape, seek a

y > n such that TAPE. (y) > f (y) .
i

(It is easy to arrange

the search procedure so that if there were a y > n such that

TAPE. (y) > f(y) and f(y)+ , then for sufficiently large x ,
i

the search would find such a y .) Stop when the log x tape

is full .

2 . If such a y is found, then output O .

3. If no such y is found, then, re-using the log x tape,

calculate M. (x)
i

using the instruction set for M. .
i

Since Vx > n TAPE. (x) < f(x) , the algorithm always goes
i

through step 3.

Therefore, M. = M. = g .
J i

We now present an argument, which can be reproduced in S , to

show that TAPE. (x) S f(x) a.e.
J

Suppose that Vy> n TAPE.(y) S f(y).
l

Then for every x , the algorithm goes through step 3.

Therefore, Vx TAPE. (x) S max {log x,TAPE. (x)} .
J i

So, Vx > n TAPE.(x) S max {log x,f(x)} .
J

Since f(x) > log x a.e., TAPE. (x) S f (x)
J

a.e.

Now suppose it is not the case that Vy> n TAPE. (y) < f{y) .
i

Then 3y > n TAPE. {y) > f {y)
i

and f{y)+ .

Because of the search procedure in step 1, for all sufficiently large x ,

the algorithm goes through step 2 .

Therefore , TAPE. (x) = log X a . e .
J

Since f{x) log x a . e ., TAPE. (x) < f {x)
J

a .e.

1,

Thus , TAPE. (x) < f(x)
J

69

a.e .

The above argument can be reproduced in S .

Thus , 1- "TAPE. (x) S f(x)
J

So , g E B [f]

a . e ."

For general provable Blum measures we have the following result

THEOREM 5 . 9 For some p-function d , for any partial recursive

function f ,

C[f] C B[d(x , f(x))]

PROOF Let h be as in Theorem 1. 5 .

Define d by

d (x , y) h(x , max {log x,h (x,y) })

Then d i s a p - function .

Suppose that g E C[f]

Then , for some i , ~- = g and P . Sf a . e .
l l

Let y be as in Theorem 1 . 1 . Then, by Theorem 1 . 5,

TAPE - l (x)
y (i)

< h(x,¢ . (x)) < h(x,f (x))
l

It follows from Theorem 5 . 8 that , for some J ,

a.e.

M. = M and I- "TAPE. (x) < max {log x , h(x , f(x))} a . e. "
J y - l(i) J

Applying Theorem 1 . 5 and the definition of d, we have

1- " ¢ (x) < d(x,f(x)) a.e." y (j)

I'
1,

Now, ~y(j) = Mj = My-l(i)

Thus, g E B[d(x,f(x))]

70

= ~ - = g.
i

From Theorem 5 . 9 we can deduce

THEOREM 5.10 For infinitely many recursive functions f ,

B[f] C[f]

D

Thus, if we do not require that some explicit starting-point for

the bounding be given, then for infinitely many resource-bounds f ,

what we can prove to be computable within f is equal to what is

computable within f.

Actually, we can prove a stronger version of Theorem 5.10

THEOREM 5.10' For some p-function T , Va

(i) is monotonically increasing and

Vx

(ii) 1-- "if is total, then
T (a)

is tota l" ;

The existence of the p-function T shows that there is

actually an algorithm to produce functions such that

B[f] = C[f] Part (i) tells us that f can be made arbitrarily

large. From part (ii), f will be recursive when ~a is recursive,

and f will be a p-function when ~a is provably total.

I!

,,

I

I,

I!

11

71

PROOF OF THEOREM 5.10'

Let d be as in Theorem 5.9. Since d is a p-function, d

can be calculated by a provably total (j)r

Let a be as in Theorem 1.4.

Define T by T(a) = a(a , r) . Then T is a p-function.

By Theorem 1.4, for any a

1- 11 'i/i 'ifx > i <P i(x) < (j)T (a)(x) or

There f Ore , B [d (X , (j) T (a) (X))] C B [(j) T (a)]

By Theorem 5.9, C[(j) ()] C B[d(x, (j) () {x))] T a - T a

So ' B [(j) T (a)] = C [(j) T (a)] .

It also follows from Theorem 1.4 that for any a

(i) (j)T(a) is monotonically increasing and

'i/x (j)T (a) (x) ::: (j)a (x) ;

(ii) (j)
T (a)

I- II if is total, then is total " . D

The proofs of Theorems 5.4' and 5.10' can be combined to yield

THEOREM 5.11 For infinitely many recursive functions f ,

A[f] B[f] = C[f]

Thus for infinitely many resource-bounds f , what we can prove

to be computable within f will differ depending on whether we require

that an explicit starting-point for the bounding be given or simply ask

that almost-everywhere bounding be demonstrated.

II

Ii

72

Although our results so far for the A-classes and the B-classes

have shown differences , Theorem 5 .11 is the first result to actually

demonstrate that the two types of classes are different.

PROOF OF THEOREM 5.11

Let g and d be as in results 5.3 and 5.9 respectively.

Define m by m(x , y) = max {g(x,y) ,d(x,y)} .

Then m is a p-function and can be calculated by a provably total

Let a be as in Theorem 1.4.

Define T by t(a) = a(a , r) Then T is a p-function.

r

We can now follow the proofs of Theorems 5.4' and 5 .10' to show

that for any a

(i) is monotonically increasing and

(ii) I- II if is total, then is total"

(iii) [] C [] B ~T (a) = ~T(a) ;

(iv) if is recursive, then
T (a)

is recursive and

D

We showed in Theorem 5.6 that for some measures,

Vi A[¢ .] = B[¢.] = C[¢ .] i i i

On the basis of Theorem 5.6 and of Theorem 7 [8), it may be wondered

whether the complexity classes of the form C [<r> .]
i

are the only ones

for which there can be equality with the corresponding provable complexity

classes. In the case of the B-classes, we can show that for many

measures this is not so .

I

II
It

Ii
I t

It

Ii
11
I:
11

Ii
Ii

I:
Ii

I,

73

First , some preliminaries .

DEFINITION A Blum measure ¢ is said to be proper if Vi ¢ EC[¢ .]
l l

Many natural measures are proper - for example, the TIME and

TAPE measures are proper.

LEMMA 5 .1 2 For some p-function k

(i) k(x,y) is monotonically increasing in y

(ii) Vt if ~t is defined on an infinite domain, then

PROOF We can define a p-function K such that

Vt Vx ~K (t) (x)

Note that if ~t (x)+ '

= 1 + max { ~. (x)
l

then ~K(t)(x) + .

and

Suppose that ~t is defined on an infinite domain and that

¢i < ~t a.e.

Then for some x, ~t (x)+ , i S x and ¢i (x) < ~t(x)

Therefore, ~K (t) (x) {-

So, ~K (t) i ~i .

and ~K (t) (x) > ~i (x)

Thus, if ~t is defined on an infinite domain, then

Define k by

k(x,y) = max { ~ (x) , ¢ () (x) r K r
0 < r < X and ¢ (x) S y} . r

Then k is a p - function and k(x , y) is monotonically increasing in y .

11

1,

I

I

74

Further , Vt Vx > t

4>K (t) (x) S k(x, 4> t(x)) .

So , if q:> t is defined on an inf inite do ma in, then

D

We can now show tha t for proper provable Blum measures there a re

cla sses C[f] tha t are not equa l to some C [4>.]
l

B[f] = C[f] .

THEOREM 5 . 13 Let 4> be proper .

Then for infinitely many recursive functions f ,

A[f] B[f] = C[f]

Vi C [4> .] -/- C[f] .
l

and

and for which

PROOF Let g, d and k be as in resul ts 5 . 3 , 5 . 9 and 5 . 12

respectively .

Define m by m(x , y) = max {g(x , y) , d(x , y) , k(x , y)} .

Then m 1s a p-function and can be calculated by a provably total

Let a be as in Theorem 1 . 4 .

Define T by T (a) = a (a , r) . Then T 1s a p - function .

We can now show that for any a

(i) q) T(a) is monotonica lly increasing a nd

Vx <PT (a) (x) <Pa (x) ;

(ii) f- II i f <Pa is tota l, then q)T (a) is tota l"

<P r

75

(iv) i. f <.pa is recursive, then <.p
T (a)

is recursive and

A(<.p -r(a)] f C(<.p -r(a)] ;

(v) if 4' is proper and <.pa is recursive, then

\;j i C (4' .] I C [<.p ()] .
i T a

(i) to (iv) follow as in the proof of Theorem 5.11 .

We now prove (v).

Suppose that 4' is proper, that <.p
a

is recursive and that

We shall establish a contradiction.

Therefore, for some J , <.p, =4'.
J i

Since is recursive, <.p
T (a)

Therefore, <.p.(x)+ a.e. x.
J

and q:, < (f) •-'t'() J T a

is recursive.

By Lemma 5.12, C(<.p.] 5 C[k(x, 4' .(x)]
J / J

a.e.

Since k is monotonically increasing in its second argument,

k(x,4'j (x)) < k(x,<.p-r (a) (x)) a.e.

Therefore, C(<.pj] f C[k(x,<.p-r(a) (x))] .

Now, by Theorem 1.4, C[m(x,<.p-r(a) (x))] c C[<.p-r(a)] .

Therefore, C [k (x ,<.p T (a) (x))] c C [<.p -r (a)] .

So, C[<.pj] f C(<.p-r(a)] .

That is, C(4'i] f C[<.p-r(a)]

But this contradicts our supposition that C(4' .] = C[<.p] i -r(a) ·
D

It is perhaps worth noting that the argument to show (v) above

can be adapted to give a proof that

THEOREM For any proper Blum measure ¢ ,

form a class-determining set .

the functions 4' do not
i

11

76

This proof differs from the usual proofs o f the theorem in

that it uses the Gap Theorem rather than the more difficult Union Theorem .

{See [13].)

As for showing differences between B-classes and C-classes, the

best we have is

THEOREM 5.14 There exist provable Blum measures ¢ and recursive

functions f such that

B[f] C[f]

To prove Theorem 5.14, we need a few preliminaries.

DEFINITION A set F of partial recursive functions is said to be

recursively presentable if for some recursively enumerable Y c N,

F = {({). I i E Y} -
i

LEMMA 5.15 For any partial recursive function f ,

B [f] is recursively presentable.

PROOF An appropriate set Y is enumerated by the following algorithm

Generate the theorems of S. Whenever a theorem of the form

"¢. < f a.e." is generated, output i .
i

The following result appears in [10].

THEOREM There exist Blum measures ¢ and recursive functions f such

that C [f] is not recursively presentable.

II

77

In the proof of this Theorem , a Blum measure P is constructed

for which C[O] is not recursively presentable .

It is easy to check that ¢ is a provable Blum measure .

By Lemma 5 . 15 , B[O] C[O]

So , Theorem 5 . 14 is established .

78

CO NCLUSION

The study of provable conditions in computational complexity

provides new insights into the nature of problems in the complexity of

algorithms , for it considers the limitations on what we (working as we

do within a formal axiomatic system) can come to know about an algorithm's

properties. The main thrust of this thesis is that for many natural

questions in computational complexity what we can come to know , that is ,

what we can formally prove, falls unpleasantly short of what is actually

true.

The results in Chapter 3 show that what we can establish about

the complexity properties of a partial recursive function f depends on

the algorithm we initially use to define f .

For every partial recursive function f , there exist anomalous

<lefining algorithms - anomalous because of the discrepancy between what

is true about the algorithms and what can be proved about them. We can

never know what limitations our particular defining algorithm for f

imposes on us, for the only algorithms that we can recognize as

calculating f are those provably equivalent to our defining algorithm

for f. Anomalous algorithms exist among the provably total algorithms

and also among the ' very fast ' algorithms . It is only a hope that

intuitively natural defining algorithms are not anomalous .

In Chapter 4 we investigated the relationship between provable

equivalence and the computational complexity of algorithms . This

relationship is complex and not readily summarized, but it is closely

79

involved with provable relationships between the domains over which

algorithms are defined. A general conclusion we can draw from the

results in this chapter is that as the difference between the

complexities of algorithms increases, what we can prove about the

relationships between the algorithms decreases.

Chapter 5 concerned provable analogues of complexity classes.

The differences between the B-classes and the A-classes show that what

can be proved to be computable within a given resource bound may differ

depending on whether we ask merely that almost-everywhere bounding be

demonstrated or require further that an explicit starting-point for

the bounding be given.

In a practical situation , it seems natural to require that an

explicit starting- point for the bounding be given. In that case, the

differences between the C-classes and the A-classes show that for

infinitely many recursive functions there will be a discrepancy between

what is true and what can be proved about the complexity of the function,

no matter what algorithm is used to define the function. Furthermore,

such discrepancies will occur even among those functions that can be

proved to be total .

Our work here has left some obvious open questions - for example,

are there functions f such that A[f] = C[f] ? Perhaps answering

such questions requires only the invention of more ingenious algorithms ,

or perhaps it awaits the introduction of provable conditions into deeper

areas of complexity theory, such as the rich theorems relating recursive

enurnerability of classes to complexity properties .

80

Beyond these things , however, lies the h a unting question of what

it is about an algorithm that limits our ability (working within our

formal system) to analyse its complexity properties . Certainly, very

complex algorithms are difficult for us to analyse, but the answer is

not that simple since, as we showed in Chapter 3, anomalous algorithms

are to be found even among the LOG-SPACE and LINEAR-TIME algorithms.

Clearly, a much deeper understanding of the relationship between formal

provability and computational complexity is required.

81

BIBLIOGRAPHY

1 . Baker, T.P .

On "provable" analogs of P and NP.

Math . Systems Theory 12 (1979), 213- 218 .

2 . Biskup , J.

The TIME measure of one-tape Turing machines does not

have the parallel computation property .

SIAM J. Comp. 7, 1 (Feb . 1978), 115-118.

3. Blum, M.

A machine-independent theory of the complexity of recursive

functions.

J. ACM 14, 2 (April, 1967), 322-336.

4. Boolos, G. and Jeffrey, R.

Computability and Logic.

Cambridge University Press , 1974.

5. Fischer, P.C.

Theory of provable recursive functions.

Trans. AMS 117 (1965) , 494-520.

6. Garey, M.R. and Johnson, D.S.

Computers and Intractability.

W.H. Freeman and Company, 1979.

7. Gordon, D.

Complexity classes of provable recursive functions .

J. Comp. Sys. Sci . 18, 3 (1979), 294- 303 .

8 . Hartmanis, J .

Relat~ons between diagonalization, proof systems and

complexity gaps .

Theor. Comp . Sci. 8 (1 979), 239- 253 .

82

9. Hartrnanis, J.

Feasible computations and provable complexity properties.

SIAM 1978 monograph.

10. Hartmanis, J. and Hopcroft, J.E.

An overview of the theory of computational complexity.

J. ACM 18, 3 (July 1971), 444-475.

11. Hartmanis, J. and Hopcroft, J.E.

Independence results in computer science.

ACM SIGACT News 8 (Oct.-Dec. 1976), 13-24.

12. Kleene, S.C.

Introduction to Metamathematics.

North-Holland Publishing Company, 1967.

13. Mccreight, E.M. and Meyer, A.R.

Classes of computable functions defined by bounds on

computation.

Conference Record 1st ACM Symp. on Theory of Computing,

1969, 79-88.

14. Rogers, H. Jr.

Godel numberings of partial recursive functions.

J. Symbolic Logic 23, 3 (Sep. 1958), 331-341.

15. Rogers, H. Jr.

Theory of Recursive Functions and Effective Computability.

McGraw-Hill Book Company, 1967.

16. Sachse-AAerlind, D.

Anomalous algorithms and provable complexity properties.

Tech. Report TR-CS-82-16, Dept. of Computer Science, A.N.U.,

(Dec. 1982) 23pp .

83

17. Sachse-Akerlind , D.

Computational complexity and provable equivalence of algorithms .

Tech. Report TR- CS-83-03, Dept. of Computer Science , A. N. U.,

(Feb . 1983) 22pp.

18 . Sachse-~erlind , D.

Relations between complexity classes and provable complexity

classes.

Tech. Report TR-CS-83-04, Dept. of Computer Science, A.N.U.,

(Feb. 1983) 43pp.

19. Young, P.

Easy constructions in complexity theory

theorems.

Proc. AMS 37, 2 (Feb. 1973), 555-563.

20. Young, P.

Gap and Speed-up

Optimization among provably equivalent programs.

J. ACM 24, 4 (Oct. 1977), 693-700.

