
Polynomial Selection for the

Number Field Sieve

Shi Bai

白石

Sep 2011

A thesis submitted for

the degree of Doctor of Philosophy

of the Australian National University

Declaration

The work in this thesis is my own except where otherwise stated.

iii

Dedicated to my parents for their love and inspiration.

Acknowledgements

It is difficult to overstate my gratitude to my Ph.D. supervisor, Richard Brent. Over

the three-and-a-half years, Richard has provided tremendous help and encouragement,

lots of interesting ideas and insightful advice, without which my Ph.D study and this

thesis would not have been possible. His patience, valuable comments and careful

proofreading for the thesis is deeply appreciated.

Part of my research has been carried out during my visits to the CARAMEL group

of INRIA Nancy. I was fortunate to be able to spend a few months working with Paul

Zimmermann, from whom I learned much about the subject and to whom I must say

thank you. I am also very grateful to Pierrick Gaudry and Emmanuel Thomé for many

suggestions and help.

Many thanks go out to Thorsten Kleinjung, Peter Montgomery, Jason Papadopoulos

and Herman te Riele for various discussions and instructions regarding the number field

sieve, either face-to-face or via email.

Many people in the Mathematical Sciences Institute (MSI) and the Research School

of Computer Science (RSCS) of the Australian National University (ANU) assisted and

encouraged me in various ways during my studies. I am particularly grateful to Jörg

Arndt, Markus Hegland, Chin Khoo, Paul Leopardi, Weifa Liang, Jiakun Liu, Brendan

Mckay, Sudi Mungkasi, Judy-anne Osborn, Srinivasa Subramanya Rao, Alistair Rendell,

Peter Strazdins, Vikram Sunkara and Bin Zhou for various discussions and chatting;

Nick Guoth, Joshua Rich and Warren Yang for helping me play around with the cluster.

I must thank the MSI for providing me with office space and computing facilities.

I also thank ANU, the Research School of Computer Science at ANU, the Centre of

vii

viii

Excellence for Mathematics and Statistics of Complex Systems and the INRIA Nancy,

who generously provided a scholarship and funding for my research.

Last but not least, a big thank you to my parents for their love, support and

encouragement.

Abstract

The number field sieve is asymptotically the most efficient algorithm known for factoring

large integers. It consists of several stages, the first one being polynomial selection. The

running time of subsequent steps depends on the quality of the chosen polynomials. In

the thesis, we discuss the current state of the art in polynomial selection.

Polynomial selection can be divided into three stages: polynomial generation, size

optimization and root optimization. We give some analysis of polynomial generation

algorithms. We then describe some improvements for polynomial size optimization and

root optimization. The size optimization is based on determining a translation and

then locally optimizing the polynomial. The root optimization is based on Hensel’s

lifting lemma and a root sieve on congruences classes modulo small prime powers. The

improvements described here have been implemented and used to obtain some good

polynomials in practice. We also discuss some recent progress on polynomial selection

using lattice reduction.

ix

Notation

The following notations are used in this thesis.

Z The ring of rational integers.

Q The field of rational numbers.

C The field of complex numbers.

Z/nZ The ring of integers modulo n.

Fp The finite field of p elements.

Z[x] The polynomial ring with integer coefficients.

Z[α] The ring generated by a zero α of a given polynomial f ∈ Z[x].

Q[α] The field of fractions of Z[α].

OK The ring of algebraic integers of K = Q(α).

a | b a divides b.

a ∤ b a does not divide b.

log x The natural logarithm of x.

logb x The logarithm of x to base b.

exp(x) The exponential function of x.

⌊x⌋ The floor function of x.

xi

xii

⌈x⌉ The ceiling function of x.

f(x) = O(g(x)) There exist constants x0 and c such that |f(x)| ≤ c g(x) for all

x ≥ x0.

f(x) = o(g(x)) limx→∞ f(x)/g(x) = 0.

B-smooth An integer is B-smooth if none of its prime factors is greater

than B.

Factor base A set of (relatively) small prime numbers.

ρ(x) Dickman-de Bruijn “rho” function, see §2.3.

Ψ(x,B) Number of B-smooth integers ≤ x, see §2.3.
(

x

p

)

Legendre symbol, see §2.2.

νp(x) The exponent of the largest power of p dividing x ∈ Z. We define

νp(0) = ∞.

Ln(α, c) exp
(

(c+ o(1))(log n)α(log log n)1−α
)

, see §1.3.5.

l1(F) l1-norm on the coefficients of f , see §3.2.2.

l∞(F) l∞-norm on the coefficients of f , see §3.2.2.

L2(F) L2-norm of F , see §3.2.2.

Contents

Acknowledgements vii

Abstract ix

Notation xi

1 Introduction 1

1.1 Public-key cryptography . 1

1.2 RSA and Integer factorization . 2

1.3 Some algorithms for integer factorization 3

1.3.1 Pollard’s ρ method . 4

1.3.2 Pollard’s p− 1 method . 5

1.3.3 The elliptic curve method . 5

1.3.4 Congruence of squares . 7

1.3.5 The number field sieve . 8

1.4 Discrete logarithm . 10

1.5 Outline and contribution . 12

2 The number field sieve 15

2.1 The idea of the number field sieve . 15

2.2 The principle of the number field sieve 16

2.3 Complexity and parameters . 22

2.4 Stages of the number field sieve . 25

xiii

xiv CONTENTS

2.4.1 Polynomial selection . 25

2.4.2 Sieving . 26

2.4.3 Filtering . 27

2.4.4 Linear algebra and square root 27

3 Polynomial selection: general 29

3.1 Base-m expansion . 29

3.2 Quantifying the quality of polynomials 30

3.2.1 Sieving test . 31

3.2.2 Size property . 31

3.2.3 Root property . 34

3.2.4 Murphy’s E function . 41

3.3 Optimizing the quality of polynomials 42

3.4 Steps in polynomial selection . 43

4 Polynomial generation 45

4.1 Kleinjung’s first algorithm . 45

4.2 Kleinjung’s second algorithm . 50

4.2.1 Some variants . 56

5 Size optimization 61

5.1 Objective function . 61

5.2 Local descent optimization . 63

5.3 Some better methods . 65

5.3.1 Use of translation . 66

5.3.2 Better use of translation . 67

6 Root optimization 73

6.1 Root sieve . 73

6.2 A faster root sieve . 75

6.3 A two-stage method . 77

CONTENTS xv

6.3.1 Stage 1 . 77

6.3.2 Stage 2 . 80

6.3.3 Further remarks and improvements 83

7 Polynomial selection using lattice reduction 87

7.1 Use of two non-linear polynomials . 87

7.2 Two quadratic polynomials . 89

7.3 Two cubic polynomials . 90

7.4 Degree-(d, 1) polynomials . 93

8 Conclusions and further work 95

8.1 Conclusions . 95

8.2 Further work . 96

Appendix A Some polynomials 97

Bibliography 99

Chapter 1

Introduction

Public-key cryptography such as RSA [89] has been widely used in modern commu-

nication technologies. It allows users to communicate confidently without acquiring

a secret key in advance. The difficulty of some number-theoretical problems such as

integer factorization and discrete logarithm is relevant to the security of public-key

cryptosystems.

In this chapter, we describe public-key cryptography and some underlying mathe-

matical problems. We also discuss some algorithms for integer factorization and discrete

logarithms, without going into technical details which are the subject of later chapters.

1.1 Public-key cryptography

Modern cryptography is about communication in the presence of adversaries [88]. One

of the major goals of cryptography is privacy: two parties want to communicate pri-

vately, so that an adversary knows nothing about the content.

Modern cryptography can be divided into two categories: symmetric-key (secret-

key) cryptography and public-key cryptography. Symmetric-key cryptography uses

a single key or a pair of trivially-related keys for both encryption and decryption.

The communication channel needs to be secure to pass the key information from the

sender to the receiver. Public-key cryptography uses a pair of keys for encryption and

decryption. One of these keys (public key) is published or public and the other is kept

1

2 CHAPTER 1. INTRODUCTION

private (private key). The two keys are not trivially-related and the acquisition of the

public key does not lead to the exposure of the secret key. A public key algorithm

does not need to assume a secure communication channel to pass the decryption key,

although the channel should be authenticated to avoid “man-in-the-middle” attacks.

Diffie, Hellman and Merkle [30, 61] are among the pioneers to make the concept

of public-key cryptography public. Diffie and Hellman described a key-exchange pro-

tocol to allow two parties to agree on a shared secret key. In recognition of Merkle’s

contribution to the invention of public-key cryptography, it is named as the Diffie-

Hellman-Merkle key-exchange protocol [41]. The Diffie-Hellman-Merkle key-exchange

algorithm depends on the assumed difficulty of the discrete logarithm problem.

Rivest, Shamir and Adleman [89] proposed a public-key cryptographic algorithm

suitable for both signing and encryption, known as RSA. The RSA algorithm depends

on the assumed difficulty of the large integer factorization problem.

Koblitz and Miller [53, 62] proposed to realize public-key cryptography using the

algebraic structure of elliptic curves over finite fields, hence the name elliptic curve

cryptography (ECC). The ECC is becoming more and more popular due to the smaller

key size required in comparison to other cryptosystems such as RSA. It depends on the

assumed difficulty of the elliptic curve discrete logarithm problem.

The integer factorization and discrete logarithm problems are of great research

interest since they are believed to be difficult. On the other hand, their corresponding

reverse operations (integer multiplication and discrete exponentiation) are easy∗. Such

properties are used in or relevant to the construction of public-key cryptosystems. For

instance, the RSA cryptosystem is insecure if integer factorization is easy.

1.2 RSA and Integer factorization

The integer factorization problem is to decompose a composite integer into its prime

factors. It is believed to be hard and no algorithm is known to factor large integers in

polynomial time. We describe the relation between RSA and integer factorization.

∗“Easy” means they can be performed in polynomial time on a deterministic Turing machine.

1.3. SOME ALGORITHMS FOR INTEGER FACTORIZATION 3

RSA, named after Rivest, Shamir and Adleman, is one of the most widely used

public-key cryptosystems. It is believed to be secure, given a careful implementation

with appropriate parameters. RSA uses a pair of keys (public key and private key).

The public key is open and is used for encryption. The private key must be kept

secret to decrypt the ciphered message. We describe the ideas underlying a basic RSA

encryption algorithm.

Let n = pq where p and q are two distinct, large prime numbers of similar size.

Define ϕ(n) to be Euler’s totient function, which counts the number of integers less

than or equal to n and coprime to n. Since n is a product of two prime numbers,

ϕ(n) = (p− 1)(q − 1). Choose e such that 1 < e < ϕ(n) and is coprime to ϕ(n). e and

n are published as the public key. The private key d can be computed from d = e−1

(mod ϕ(n)).

The receiver publishes the public key and keeps the private key secret. The sender

uses the public key from the receiver to encrypt a message. Let m be a message which is

encrypted by c = me (mod n). The ciphered message c is used in the communication.

Given m, d, the receiver deciphers the message using m = cd (mod n).

There is no known practical method to break the RSA cryptosystem, assuming a

careful implementation and choice of parameters. If the e-th root modulo a composite

integer n can be computed efficiently, the message can be recovered. Alternatively, if n

can be factored efficiently, the message can be recovered. The difficulty of the integer

factorization problem is crucial to the security of RSA. It is clear that, if the size of n is

small, RSA can be broken by factoring n. However, no efficient algorithm is known for

factoring large general integers. In the next section, we describe some algorithms for

integer factorization. For more information on integer factorization, we refer to surveys

by Brent, Lenstra, Montgomery and Pomerance [16, 56, 67, 86].

1.3 Some algorithms for integer factorization

In recent years, the limits of the best integer factorization algorithms have been ex-

tended greatly, due in part to Moore’s law and in part to algorithmic improvements [15].

4 CHAPTER 1. INTRODUCTION

It is now routine to factor numbers of 512 bits, and feasible to factor numbers of 768

bits [50]. We describe several integer factorization algorithms.

1.3.1 Pollard’s ρ method

Pollard [81] described a Monte Carlo factorization algorithm in 1975, known as Pollard’s

ρ method. This method is efficient to find small factors.

Let x0 be a random integer in Z/nZ and f(x) ∈ Z[x] be an easily-computable

polynomial. For instance, f(x) = x2 + a with a 6= −2, 0. We consider a sequence of

pseudo-random integers {x0, x1, x2, · · · , xi, · · · } formed by xi+1 = f(xi) (mod n). Let

p be a non-trivial factor of n. If xi ≡ xj (mod p) and xi 6≡ xj (mod n) for some i, j,

we see that p | gcd(xi − xj , n) < n. Therefore, gcd(xi − xj , n) is likely to yield some

non-trivial factor of n.

Since the subring Z/pZ is finite, there exist integers µ and λ such that xµ ≡ xµ+λ

(mod p), and hence xµ+i ≡ xµ+λ+i (mod p) for all i ≥ 0. The smallest such integers λ

and µ respectively are the period and aperiodic lengths of the pseudo-random sequence.

Under the assumption that the function f(x) behaves like a random mapping, the

expected value of µ+λ is about
√

(πp)/2 [40, 35]. How can we detect such i, j efficiently

with feasible memory?

A cycle-detection algorithm can be applied with a small penalty in the running

time. Pollard used Floyd’s cycle-detection algorithm [52]. Floyd’s method uses only

a small, constant amount of memory. The worst case takes µ + λ iterations, each of

which consists of three evaluations and one comparison. Brent [11] described another

cycle-detection method which also uses only a small memory and is about 36 percent

faster than Floyd’s on average. The application of Brent’s method to factoring is about

24 percent faster than Pollard’s original version. Montgomery and Pollard [81, 64] also

described some methods to reduce the GCD (greatest common divisor) costs in the

algorithms.

Pollard’s ρ method runs heuristically in average bit-complexity O(n1/4 log2 n) [11].

In practice, the method is efficient for integers with small factors. The eighth Fermat

1.3. SOME ALGORITHMS FOR INTEGER FACTORIZATION 5

number† was factored by Brent and Pollard [17] using a variation of the above method,

finding a 16-digit factor.

1.3.2 Pollard’s p− 1 method

Pollard [80] proposed another factorization algorithm based on Fermat’s little theorem

(FLT), known as Pollard’s p− 1 method.

Let p be a prime factor of n and a be an integer coprime to p. It is clear from FLT

that ap−1 ≡ 1 (mod p). We may try various integers e in the hope that (p− 1) | e. We

may then use gcd(ae − 1, n) to recover the factor p. The idea is to choose a suitable

exponent e such that ae ≡ 1 (mod p), but ae 6≡ 1 (mod n).

The basic way is to choose e to be a product of small prime powers under some limit

B. Then we raise a to the e-th power and compute above greatest common divisor.

This method fails if any prime power factor of p− 1 is larger than the bound B.

In practice, a large prime variant is often used, namely the two-stage method. We

choose another bound B′ > B. In the two-stage method, we require that all but one

of the prime power factors of p− 1 are smaller than B, and the largest prime factor of

p− 1 is smaller than B′.

Pollard [80] described a standard two-stage method that tests successive large primes

qi. Let a1 ≡ ae (mod n) from the first stage. We look up a table consisting of values

a
qi+1−qi
1 (mod n) and multiply it by aqi1 (mod n) to form a

qi+1

1 (mod n). Pollard [80]

also suggested a Fast Fourier Transform (FFT) continuation. Some other second-stage

methods have been proposed for the p − 1 factorization algorithm. We refer to works

by Brent, Kruppa, Montgomery and Silverman [12, 64, 70, 69]. Some of these also have

analogues for the elliptic curve method, described in the next subsection.

1.3.3 The elliptic curve method

Lenstra [59] proposed a sub-exponential‡ algorithm for integer factorization that uses

the group structure of elliptic curves, namely the elliptic curve method (ECM). For

†The i-th Fermat number is Fi = 22
i

+ 1.
‡Sub-exponential time means expected time eo(x) where x is the input size.

6 CHAPTER 1. INTRODUCTION

background on elliptic curves, we refer to the literature [92].

ECM uses a similar idea to the p−1 method, but replacing the multiplicative group

of a finite field by the group of points on a random elliptic curve. It may have two

stages, analogous to the p− 1 method.

Let n be a composite integer. We choose a random elliptic curve E and a random

point P on the curve. In the first stage, we compute a multiple eP of the point P ,

where e is a product of small prime powers. In the second stage, we compute various

qieP for some larger primes qi up to some bound. We hope to meet the point at infinity

on the elliptic curve, in which case we can recover the factor by taking a GCD.

Let p be a factor of n and E(Fp) be the group of points on the elliptic curve over

the finite field Fp. Let N be the order of E(Fp). We see that NP = ∞. If N consists of

smaller prime factors and one large prime qi, the above procedure may give the factor.

The group order N is in [p+ 1− 2
√
p, p+ 1+ 2

√
p] by Hasse’s theorem [92]. We hope

to see a random curve with a smooth group order.

In the p− 1 factoring method, the multiplicative group of Fp of order p− 1 is used.

The method is usually successful if p− 1 has only small prime factors. Similarly, ECM

is usually successful if the group order has only small prime factors, i.e. is smooth. If

one trial of ECM is unsuccessful, we can repeat the algorithm by starting with another

random elliptic curve and hope its group order is smooth. Heuristically, ECM has

expected running time

exp
(

(
√
2 + o(1))(log p)1/2(log log p)1/2

)

.

Some notable factorizations by ECM include the complete factorization of the tenth

and eleventh Fermat numbers by Brent [14, 13]. The current record§ for ECM is a 73-

digit factor found by Bos, Kleinjung, Lenstra and Montgomery [10].

We refer to the literature [7, 12, 64, 65, 94, 99] for analysis, further improvements

and implementations of ECM. We also mention some recent development in using hy-

perelliptic curves [25] to factor integers.

§At the time when the thesis is written.

1.3. SOME ALGORITHMS FOR INTEGER FACTORIZATION 7

1.3.4 Congruence of squares

Fermat’s method [86] tries to find two integers x, y such that n = x2−y2. If such integers

are found, we may recover a factor by taking gcd(n, x− y). The basic procedure is to

choose many xi ≥ ⌈√n⌉ and hope that x2i − n is a square for some i.

The running time of above methods depends mainly on the size of the prime factors.

We now describe a class of methods (congruence of squares) whose running time depends

mainly on the size of n.

Kraitchik [86] described a way to produce a congruence of squares by combining

products of easily-factorisable elements x2i − n. The basic procedure is to compute a

sequence of {x2i − n} and find a set I that
∏

i∈I(x
2
i − n) is a square.

Morrison and Brillhart’s CFRAC (continued fraction) method [71] uses the contin-

ued fraction expansion of
√
kn for some small k to generate a sequence of numbers.

They also described a systematic way to produce a square congruence by linear algebra.

The CFRAC method has expected running-time

exp
(

(2 + o(1))(log n)1/2(log log n)1/2
)

.

The seventh Fermat number was factored by Morrison and Brillhart in 1970 using

CFRAC [71].

Pomerance [85] described a sieve-based algorithm named the quadratic sieve (QS),

which is asymptotically faster than the above methods. Like the above methods, QS

attempts to find many xi such that x2i − n factors completely into small prime powers.

This is done by a sieve using the following principle. Let p be a prime such that p | f(x)

for some polynomial f(x) ∈ Z[x], e.g. f(x) = x2 − n, then p | f(x+ jp) for all j. This

procedure is repeated for all the primes in the factor base. In the end, we find all f(xi)

which are smooth and use linear algebra to find a dependency. The sieve method is

asymptotically and practically better than testing smoothness by trial division.

Montgomery and Silverman [93] gave a way to choose several different polynomials

for the sieving, leading to the multiple polynomial quadratic sieve (MPQS). The sieving

8 CHAPTER 1. INTRODUCTION

on various polynomials can be parallelised.

Heuristically, the quadratic sieve method has expected running time

exp
(

(1 + o(1))(log n)1/2(log log n)1/2
)

.

Asymptotically, this is comparable to ECM if we assume the size of the smallest factor

p is about half of the size of n.

Some notable factorizations by MPQS include the factorization of RSA-100, RSA-

110, RSA-120 and RSA-129 [31, 29, 4]. All the other factored RSA numbers were done

by the number field sieve.

1.3.5 The number field sieve

The general number field sieve (GNFS) [57] is the most efficient algorithm known for

factoring large general integers. It uses a similar idea to the “congruence of squares”

methods. The general number field sieve were developed from the special number field

sieve (SNFS) [83], where the latter method can be used to factor integers of certain

forms. For example, the ninth Fermat number was factored completely using SNFS in

1990 [58].

GNFS has a conjectured running time Ln(1/3, (64/9)
1/3) as n → ∞. Here the

L-function on input n for parameters c, α (0 ≤ α ≤ 1) is defined to be

Ln(α, c) = exp
(

(c+ o(1))(log n)α(log logn)1−α
)

.

If α = 0, Ln(0, c) = (log n)c+o(1) gives a polynomial function in the input size log n. If

α = 1, Ln(1, c) = nc+o(1) gives an exponential function in the input size log n. The NFS

runs in sub-exponential time. In comparison, SNFS runs in Ln(1/3, (32/9)
1/3) due to

smaller coefficients of the polynomial pair (see Chapter 3).

GNFS has been used in many (current and previous) record factorizations such

as RSA-768 [50]. Due to the factorization of RSA-768, whose size is 768 bits, the

parameter n in RSA should be at least 1024 bits. It also suggests that it is prudent

1.3. SOME ALGORITHMS FOR INTEGER FACTORIZATION 9

to phase out usage of 1024-bit RSA within the next three to four years [50, 9]. We

extend Brent’s analysis [16] on curve fitting and extrapolation. Assuming Moore’s law,

we expect (log n)1/3(log log n)2/3 is roughly a linear function of calendar year. We plot

(log n)1/3(log log n)2/3 of some RSA numbers¶ against the year they were factored in

Figure 1.1.

15

20

25

30

35

40

1990 2000 2010 2020 2030

RSA-130

RSA-140

RSA-155

RSA-160

RSA-576

RSA-200

RSA-768

RSA-896

RSA-1024

RSA-1536

Factored
Extrapolation

Figure 1.1: (log n)1/3(log log n)2/3 versus Year

The straight line fitted by the least-squares method is

x = 2.15y + 1951.45

where x stands for Year and y stands for (log n)1/3(log logn)2/3. Three projected fac-

torization years for RSA numbers are RSA-896, RSA-1024 and RSA-1536 in order. The

fitted function roughly give years 2014, 2018 and 2031 respectively. Assuming Moore’s

law and adequate algorithmic improvements, it may be feasible to factor RSA-1024

within the next decade.

Coppersmith [23] used multiple number fields (defined by polynomials with the

¶RSA-130, RSA-140, RSA-155, RSA-160, RSA-576, RSA-200, RSA-768.

10 CHAPTER 1. INTRODUCTION

same root modulo n) to reduce the asymptotic complexity of NFS for factoring from

Ln(1/3, 1.923)
‖ to Ln(1/3, 1.902). The idea is to reuse the rational-side sieve on a−bm.

The algebraic smoothness tests are applied on pairs which pass the rational sieve.

The smoothness tests are often done by ECM. In the same paper, Coppersmith also

gave a method to reuse some pre-computations to factor integers close to n, namely

the “factorization factory” method. The main idea is that the root of polynomials

is independent from n. The individual factorization takes Ln(1/3, 1.639). The pre-

computation requires to save a table of Ln(1/3, 1.639) space.

In this thesis, the term “number field sieve” refers to the general number field

sieve [57] unless otherwise mentioned. We will describe the principle of the number

field sieve for integer factorization in the next chapter.

1.4 Discrete logarithm

The discrete logarithm can be considered as the inverse operation of discrete exponen-

tiation in a finite abelian group∗∗. For instance, let g and h be elements of a finite

cyclic group such that gx = h. The solution x is a discrete logarithm of h to base g.

The discrete logarithm problem (DLP) is believed to be hard in certain groups.

There is no known efficient algorithm to solve the DLP in the multiplicative group of

a finite field or in an elliptic curve group in the general case. In the finite-field case,

there is a sub-exponential algorithm but in the elliptic curve case only fully exponen-

tial algorithms are known. The presumed hardness is relevant to many cryptographic

protocols/systems such as Diffie-Hellman key-exchange and ElGamal encryption [33].

The Pollard ρ method for discrete logarithm [82] and its variants [96] are proba-

bilistic algorithms to solve DLP. The main ideas are similar to Pollard’s ρ algorithm

for factoring. They work by defining a pseudo-random sequence of group elements and

looking for a cycle in the sequence. The elements in the pseudo-random sequence are

generated by an iteration function xi+1 = f(xi). The procedure is completed when

‖The constant is (64/9)1/3(≈ 1.923). For convenience, we use the decimal notation in the rest of
this chapter.

∗∗The group operation is expressed in multiplicative notation.

1.4. DISCRETE LOGARITHM 11

it generates a collision. A collision happens when an element is drawn that has been

drawn before. For the elliptic curve discrete logarithm problem (ECDLP), there is no

known general sub-exponential algorithm. Van Oorschot and Wiener’s parallelised Pol-

lard’s ρ method [97] is the most efficient method known for the ECDLP in the general

case.

There exist sub-exponential algorithms for discrete logarithm problems over multi-

plicative groups of finite fields. We outline some developments.

For prime fields Fp, Gordon [37] described a method to solve the discrete loga-

rithm in heuristic running time Lp(1/3, 2.080). Schirokauer [91] defined some easily-

computable maps (named Schirokauer maps) which help to construct the linear system

for solving the DLP. His algorithm runs in time Lp(1/3, 1.923), which is the same as

GNFS for factoring. Joux and Lercier [45] described some ways to compute individual

logarithms efficiently once some pre-computation is done. They also gave a polyno-

mial selection method to produce pair of polynomials of degrees d and d + 1. The

individual logarithms take heuristically Lp(1/3, 1.442) once a pre-computation in time

Lp(1/3, 1.923) is done.

Matyukhin [60], using Coppersmith [23] (multiple number fields) and Schirokauer’s

ideas, gave an algorithm to compute discrete logarithms in Lp(1/3, 1.902). Individual

logarithms require the same amount of work. Commeine and Semaev [22] improved the

individual logarithm computation and adapted Coppersmith’s multiple polynomials

idea. The individual logarithms take Lp(1/3, 1.442), after a pre-computation in time

Lp(1/3, 1.902) is done. Bărbulescu and Gaudry [18] used the factorization factory

idea to speed up the pre-computation to Lp(1/3, 1.639) and individual logarithm to

Lp(1/3, 1.232).

In finite fields Fpn of small characteristic, the function field sieve (FFS) [2] is the

best known algorithm for computing discrete logarithms. FFS chooses a polynomial to

construct an extension field over Fp(x). The sieve tries to identify irreducible polyno-

mials of small degrees. Joux and Lercier [44] described an efficient version of FFS. The

FFS and its variant run in time Lpn(1/3, 1.526). Both of them are suitable for the case

12 CHAPTER 1. INTRODUCTION

when the base field is small and the extension degree grows. For finite fields of medium

characteristic, Joux, Lercier, Smart and Vercauteren [46, 47] described some variants

of FFS and NFS. Their methods have running time Lpn(1/3, c) for various constants c.

1.5 Outline and contribution

The number field sieve starts with generating two polynomials, which share a common

root modulo n. The running time of subsequent steps depends on the quality of the

chosen polynomial pair. This thesis discusses algorithms for polynomial selection in

the number field sieve. We mainly focus on polynomial selection with two polynomials,

one of which is a linear polynomial. The chapters are organized as follows.

• Chapter 2 reviews the principle of number field sieve for integer factorization.

• Chapter 3 discusses some classic methods to generate polynomials for the number

field sieve. We also examine some ways to quantify and compare the quality of

polynomials.

• In Chapter 4, we review and analyze two standard techniques for polynomial

generation due to Kleinjung [48] [49]. The polynomials generated can be further

optimized in terms of size and root properties. The methods for size and root

optimization are studied in Chapters 5 and 6.

• Chapter 5 discusses how to optimize the size of polynomials using translation,

rotation and changing skewness. Jointly with Paul Zimmermann, we give some

better methods for size optimization, focusing on sextic polynomials.

• In Chapter 6, we study the root optimization problem: finding polynomials that

have many roots modulo small primes and prime powers. We describe a faster

root sieve based on Hensel’s lifting lemma. Furthermore, we describe a two-stage

algorithm for the root optimization. In the first stage, we find polynomials with

many roots modulo a product of tiny primes and prime powers. The procedure

uses Hensel’s liftings on a p2-ary tree. In the second stage, we apply the improved

1.5. OUTLINE AND CONTRIBUTION 13

root sieve on congruence classes defined by the product (from the first stage). This

chapter is joint work with Richard Brent and Emmanuel Thomé.

• Chapter 7 considers polynomial selection using lattice reduction. We review some

recent progress on finding two non-linear polynomials for the number field sieve.

In addition, we discuss how to generate degree-(d, 1) polynomial pairs using lattice

reduction.

• Chapter 8 summarises the thesis and suggests some areas for further work.

Most of the algorithms for polynomial selection described in this thesis, including

polynomial generation, size optimization and root optimization, are implemented and

can be found in CADO-NFS [6].

Chapter 2

The number field sieve

The number field sieve is the most efficient algorithm known for factoring large integers

which do not have small factors. It consists of several stages including polynomial

selection, sieving, filtering, linear algebra and finding square roots. In this chapter, we

describe the principle of the number field sieve for integer factorization.

2.1 The idea of the number field sieve

Let n be the integer to be factored. The “congruence of squares” idea aims to find

integers u, v such that u2 ≡ v2 (mod n). A factor of n can be recovered by gcd(u−v, n),

provided that u 6≡ ±v (mod n). The number field sieve is based on this idea.

The number field sieve starts by choosing two irreducible, coprime polynomials f, g

over Z which have a common root m in Z/nZ.

f(m) ≡ g(m) ≡ 0 (mod n).

We assume that the polynomials are monic and one polynomial is linear:

f(x) =
d
∑

i=0

cix
i, g(x) = x−m.

For convenience, f(x) is referred to as the algebraic polynomial and g(x) is referred to

15

16 CHAPTER 2. THE NUMBER FIELD SIEVE

as the rational polynomial. Let Z[α] = Z[X]/〈f〉 be the ring generated by a zero α of

f . There is a ring homomorphism φα, that sends α to m (mod n).

φα : Z[α] → Z/nZ. (2.1)

We want to find a set S of (a, b) pairs (a, b ∈ Z) such that

∏

(a,b)∈S

(a− bα) = γ2 and
∏

(a,b)∈S

(a− bm) = v2 (2.2)

for some γ ∈ Z[α] and v ∈ Z. Assume the set S is found and φα(γ) ≡ u (mod n). We

can see that

u2 ≡
∏

(a,b)∈S

φα(a− bα) ≡
∏

(a,b)∈S

(a− bm) ≡ v2 (mod n).

The congruence of squares u2 ≡ v2 (mod n) may give a factor of n with probability at

least 1/2.

2.2 The principle of the number field sieve

We outline how we can find the congruence of squares in number fields. For convenience,

we first describe some notations that will be used in this chapter.

Let f(x) be a monic, irreducible polynomial of degree d and g(x) = x−m. Let Z[α]

be the ring generated by a zero α of f . K = Q(α) is the field of fractions of Z[α], with

K∗ being its multiplicative group. Let OK be the ring of algebraic integers of Q(α).

An order is a subring of OK which is finitely generated as a Z-module of rank d.

The ring Z[α] ⊆ OK is an order. It follows that the ring of integers OK in K is the

unique maximal order. All other orders in K are contained in OK [21].

The norm N(γ) (γ ∈ K) is the determinant of the Q-linear map that sends x ∈ K

2.2. THE PRINCIPLE OF THE NUMBER FIELD SIEVE 17

to γx ∈ K. It is the product of all conjugates σi(γ):

N(γ) =

d
∏

i=1

σi(γ)

where σi’s are the d-embeddings of Q(α) into C. The norm is a multiplicative function

whose image lies in Q. In particular, N(γ) ∈ Z if γ ∈ OK .

An integer is B-smooth if none of its prime factors is larger than B. An element

γ ∈ Z[α] is B-smooth if its norm N(γ) is B-smooth. In the number field sieve, we are

interested in elements of the form a− bα whose norm is given by

N(a− bα) = bdf(a/b) =

d
∑

i=0

cia
ibd−i.

If
∏

(a,b)∈S(a− bα) is a square in Z[α], its norm is a square in Z.

The norm N(p) of an ideal p ⊆ Z[α] is the cardinality of the quotient ring Z[α]/p.

Let p be a non-zero prime ideal of Z[α]. The quotient Z[α]/p is a finite field. p is called

a first degree prime ideal if Z[α]/p is isomorphic to Fp for some prime integer p. A

prime ideal p divides an element γ if p contains γ.

Let r be a root of the polynomial f(x) (mod p). There is a 1-1 correspondence

between the pairs (p, r) and the first degree prime ideals p of Z[α], where p is the

characteristic of Z[α]/p. There is a canonical ring homomorphism π : Z[α] → Fp that

maps α to r.

Let νp(x) (x ∈ Z) be the exponent of the largest power of p dividing x. We define

νp(0) = ∞. Given a prime integer p, a root r of f (mod p) and a − bα such that

gcd(a, b) = 1, we define

ep,r(a− bα) =

νp (N(a− bα)) , if a = br (mod p);

0, otherwise.

We get N(a − bα) = ±∏(p,r) p
ep,r(a−bα). Propositions 2.1–2.3 from [19] are useful to

find the congruence of squares in Equation (2.2).

18 CHAPTER 2. THE NUMBER FIELD SIEVE

Proposition 2.1. Given a prime ideal p of Z[α], there exists a group homomorphism

lp : K
∗ → Z such that

1. lp(γ) ≥ 0 for all γ ∈ Z[α], γ 6= 0; If γ ∈ Z[α], then lp(γ) > 0 ⇔ γ ∈ p;

2. lp(γ) = 0 for all but finitely many p, and

|N(γ)| =
∏

p

N (p)lp(γ)

where p ranges over the set of all prime ideals of Z[α].

If Z[α] = OK , lp is the exponent of the largest power of p that appears in the ideal

factorization of γOk. We apply Proposition 2.1 to γ = a− bα for a, b ∈ Z.

Corollary 2.2. Let (a, b) be a coprime pair and p be a prime ideal of Z[α]. If p is not

a first degree prime ideal of Z[α], then lp(a− bα) = 0. If p is a first degree prime ideal

corresponding to some pair (p, r), then lp(a− bα) = ep,r(a− bα).

If Z[α] = OK , the factorization of (a − bα)OK gives first degree prime ideals.

Proposition 2.3 gives a necessary condition to find a square.

Proposition 2.3. Let S be a finite set of coprime pairs (a, b) such that
∏

(a,b)∈S(a−bα)

is a square of an element in K. For each prime integer p and root r such that f(r) ≡ 0

(mod p), the following relation holds.

∑

(a,b)∈S

ep,r(a− bα) ≡ 0 (mod 2).

If Z[α] = OK ,
∏

(a,b)∈S(a− bα)OK is a square of an ideal in OK . However, this may

not be true in the general case when Z[α] ⊂ OK . There are some further obstructions

as mentioned in [19]. Even if
∏

(a,b)∈S(a − bα)OK is a square of an ideal q in Ok, q

need not be principal. Assume further
∏

(a,b)∈S(a− bα)OK = γ2OK for some γ ∈ OK .

It may not be true that
∏

(a,b)∈S(a − bα) = γ2. Finally, even if
∏

(a,b)∈S(a − bα) = γ2

for some γ ∈ OK , it is not necessary that γ ∈ Z[α].

2.2. THE PRINCIPLE OF THE NUMBER FIELD SIEVE 19

There are some methods to tackle these obstructions in practice. The last obstruc-

tion can be resolved in the following way. If
∏

(a,b)∈S(a − bα) = γ2 for γ ∈ OK , then

γf ′(α) ∈ Z[α]. Hence f ′(α)2
∏

(a,b)∈S(a− bα) = f ′(α)2γ2 is a square in Z[α].

Let V be the multiplicative group consisting of γ such that lp(γ) is even for all

prime ideals p of Z[α]. The elements of V can be produced in the sieve. Let V1 ⊂ V

be the subgroup of elements γ such that γOk is a square of a fractional ideal. Let

V2 ⊂ V1 be UK∗2 where U is the unit group. The elements in V2 ∩ OK are free of

the second obstruction. Finally, let V3 = K∗2 be the subgroup of squares. We see

that V3 ⊂ V2 ⊂ V1 ⊂ V . It can be shown that the dimension of the F2-vector space

V/V3 is bounded by log n. Therefore, the first three obstructions are not too serious.

In practice, they can be solved efficiently by introducing quadratic characters [1]. For

convenience, we define the Legendre symbol on x and an odd prime p to be

(

x

p

)

=

1, if x is a quadratic residue modulo p and p ∤ x;

−1, if x is a quadratic non-residue modulo p and p ∤ x;

0, if p | x.

Proposition 2.4. Let S be a set of coprime pairs (a, b) such that
∏

(a,b)∈S(a−bα) = γ2

is a square in Ok. Let s be a root of f (mod q) for an odd prime q such that f ′(s) 6≡ 0

(mod q) and

a 6≡ bs (mod q) for all (a, b) ∈ S.

Then the product of Legendre maps is

∏

(a,b)∈S

(

a− bs

q

)

= 1.

The converse of the proposition also holds. Let q be a first degree prime ideal in

Z[α]. The isomorphism Z[α]/q ∼= Fq induces the map G : Z[α] \ q → Fq \ {0}. Define

the character map χq : Z[α] \ q → {±1} to be the composition of G and the Legendre

map Fq \ {0} → {±1}. Let (q, s) be the pair corresponding to a first degree prime ideal

20 CHAPTER 2. THE NUMBER FIELD SIEVE

q. It follows that

χq(a− bα) =

(

a− bs

q

)

.

The converse of the proposition shows that, if γ ∈ Z[α] \ {0} satisfying χq(γ) = 1

for all but finitely many first degree prime ideals q not lying above γ, then γ is a square

in Q(α). A probabilistic version of the proposition shows, if the statement is true for

sufficiently many such prime ideals, the element is a square with high probability. In

practice, extra columns of character maps for such q’s are added in the linear algebra

stage to overcome the above obstructions.

Given a polynomial pair f, g, we want to find many coprime pairs (a, b) ∈ Z2 such

that N(a − bα) and a − bm are both smooth with respect to some integers BF , BG.

Line sieving and lattice sieving [84] are commonly used to identify such pairs (a, b). The

running-time of the sieving and subsequent steps depend on the quality of the chosen

polynomial pair. For the moment, we assume that a polynomial pair is better if its

coefficients are smaller.

Homogeneous polynomials. In practice, a non-monic, homogeneous polynomial

pair is often used since its coefficients are expected to be smaller than in the monic case.

We outline the resulting modifications in the number field sieve. Let the polynomial

pair be

F (x, y) =
d
∑

i=0

cix
iyd−i and G(x, y) = m2x−m1y.

The dehomogenized polynomials f, g share the common rootm1/m2 (mod n) and hence

F (m1,m2) =
d
∑

i=0

cim
i
1m

d−i
2 ≡ 0 (mod n).

In sieving, we want to find coprime pairs (a, b) ∈ Z2 such that F (a, b) and G(a, b)

are smooth. Let α ∈ C be a root of f(x). In the linear algebra stage, we want to find

a set S such that
∏

(a,b)∈S(a− bα) is a square in OK .

The dehomogenized polynomial f is non-monic. The root α of f is not an algebraic

integer in general and hence Z[α] may not be an order. A homomorphism (similar to

2.2. THE PRINCIPLE OF THE NUMBER FIELD SIEVE 21

that in Proposition 2.1) can be defined from an order Z[α]∩Z[α−1] to Z, which depends

on the prime ideals of Z[α] ∩ Z[α−1]. We relate the norm of a − bα and the norm of

prime ideals. The pairs p and (r1 : r2) such that p | F (r1, r2) are in 1-1 correspondence

with the first degree prime ideals of Z[α] ∩ Z[α−1]. In this case, the set S of coprime

pairs (a, b) needs to have even cardinality (see Equation (2.3)).

Congruence of squares. We describe how to construct the congruence of squares.

Let fcd(x) = F (x, cd). A root ω ∈ C of the polynomial fcd(x) is an algebraic integer.

For the moment, suppose we have found a set S such that the product
∏

(a,b)∈S(a− bα)

is a square. Hence

c#S
d

∏

(a,b)∈S

(a− bα) =
∏

(a,b)∈S

(cda− bω)

is also a square where the square root lies in OK . Let f1 = ∂f/∂x and F1(x, y) be the

homogeneous polynomial of f1(x). We see that

(F1(ω, cd)/cd)
2
∏

(a,b)∈S

(cda− bω) = β2

where β ∈ Z[ω]. In the square root stage, β is represented in the basis form
∑d−1

i=0 βiω
i.

On the other hand, let u ∈ Z be defined by

∏

(a,b)∈S

(am2 − bm1) = u2

and h ∈ Z be

h ≡ c
d−2+#S/2
d F1(m1,m2) (mod n).

We also define

l ≡ m
#S/2
2 (2.3)

and

v ≡
d−1
∑

i=0

βic
i
dm

i
1m

d−1−i
2 (mod n).

22 CHAPTER 2. THE NUMBER FIELD SIEVE

The congruence of the squares is given by (hu)2 ≡ (lv)2 (mod n). We outline the

equivalence.

Let the homomorphism φα : Z[α] → Z/nZ be defined by φα(α) = m1/m2 (mod n).

It follows that φα(m2ω) = cdm1 (mod n). The map φα(β
2m

2(d−1)+#S
2) equals

φα(m
2(d−1)+#S
2 (F1(ω, cd)/cd)

2
∏

(a,b)∈S

(cda− bω))

= φα((m
(d−1)
2 F1(ω, cd)/cd)

2
∏

(a,b)∈S

m2(cda− bω)).

We apply the homomorphism to the product. The above is equivalent to

φα(F
2
1 (ωm2, cdm2)/cd)

∏

(a,b)∈S

cd(am2 − bm1)

≡ (cd−2
d F1(m1,m2))

2
∏

(a,b)∈S

cd(am2 − bm1)

≡ (c
d−2+#S/2
d F1(m1,m2))

2u2 (mod n)

and this is h2u2 (mod n). On the other hand, β =
∑d−1

i=0 βiw
i gives

φα(β
2m

2(d−1)+#S
2) ≡ (

d−1
∑

i=0

βic
i
dm

i
1m

(d−1−i)
2)2 l2 ≡ v2l2 (mod n).

Therefore, we have the congruence (hu)2 ≡ (lv)2 (mod n).

2.3 Complexity and parameters

We explain the heuristic running-time of the number field sieve for factoring. In sieving,

we want to find pairs whose norm is smooth∗. The first degree prime ideals of norm

bounded by B comprise the algebraic factor base. The primes bounded by B comprise

the rational factor base. The factor base has size B1+o(1). In linear algebra, we work

over F2 and try to find a non-trivial linear dependency. This requires that the number

of smooth pairs is comparable to the size of the factor base. We consider the probability

∗Let the algebraic and rational smoothness bounds be the same. We also assume f, g are monic.

2.3. COMPLEXITY AND PARAMETERS 23

that a number of size x is B-smooth.

Let Ψ(x, x1/u) be the number of x1/u-smooth integers below x for some u. The

Dickman-de Bruijn function ρ(u) [39] is often used to estimate Ψ(x, x1/u). It can be

shown that

lim
x→∞

Ψ(x, x1/u)

x
= ρ(u).

The Dickman-de Bruijn function satisfies the differential equation

uρ′(u) + ρ(u− 1) = 0, ρ(u) = 1 for 0 ≤ u ≤ 1.

It may be shown that ρ has the asymptotic estimate

log(ρ(u)) = −(1 + o(1))u log u as u → ∞.

For practical purposes, the frequency of smooth numbers can be approximated by the

following theorem [43].

Theorem 2.5. For any fixed ǫ > 0, we have

Ψ(x, x1/u) = xu−u(1+o(1))

as x1/u and u tends to infinity, uniformly in the region x ≥ uu/(1−ǫ).

In sieving, we find smooth polynomial values |N(a− bα)(a− bm)|. We assume a, b

are bounded by {(a, b) | |a| ≤ U, 0 < b ≤ U}. The polynomial values are bounded by

2dn2/dUd+1 since

|N(a− bα)| ≤ (d+ 1)n1/dUd, |a− bm| ≤ n1/dU.

We also make the key assumption that polynomial values behave like random integers

of similar size (though see §3.2.3 and Chapter 6). We have 2U2 integers bounded by

2dn2/dUd+1. Buhler, Lenstra and Pomerance [19] show that, when U2 integers of size

2dn2/dUd+1 are generated with the property that the number Ψ(x,B) of B-smooth

24 CHAPTER 2. THE NUMBER FIELD SIEVE

integers (x = 2dn2/dUd+1) satisfies the bound

U2Ψ(x,B)

x
≥ g(B)

for some g such that g(B) = B1+o(1) as B → ∞, a lower bound for U is given by

U = exp

[

(1/2 + o(1))

(

d log d+
√

(d log d)2 + 4 log (n1/d) log log (n1/d)

)]

and B ≈ U . The function g(B) is roughly the size of factor base. The theorem gives

a lower bound on U , when the number of smooth integers is more than the size of the

factor base.

The sieve across region 2U2 takes U2+o(1) time. In the linear algebra stage, the

sparse matrix has B1+o(1) non-zero entries. It takes B2+o(1) time to find some depen-

dencies. Sieving and linear algebra are the dominating steps in the number field sieve

and their asymptotic running-time is similar. Therefore, the number field sieve runs in

time U2+o(1) when U,B are

exp

[

(1/2 + o(1))

(

d log d+
√

(d log d)2 + 4 log (n1/d) log log (n1/d)

)]

as n → ∞. The optimal degree d is

d = (31/3 + o(1))

(

log n

log log n

)1/3

which gives

U = B = Ln(1/3, (8/9)
1/3)

and running-time

Ln(1/3, (64/9)
1/3)

as n → ∞. The sieving region 2U2 is about Ln(1/3, (64/9)
1/3).

2.4. STAGES OF THE NUMBER FIELD SIEVE 25

2.4 Stages of the number field sieve

We outline the main stages in the number field sieve: polynomial selection, sieving,

filtering, linear algebra and finding square roots.

2.4.1 Polynomial selection

The polynomial selection generates two irreducible and coprime polynomials f and g

over Z which have a common root m modulo n. In practice, non-monic, homogenized

polynomials F (x, y) and G(x, y) are often used.

In the next stage (sieving), we want to find many coprime pairs (a, b) ∈ Z2 such

that the integers F (a, b)G(a, b) are smooth with respect to some smoothness bound

B. The running-time of sieving depends on the smoothness of the polynomial values

F (a, b)G(a, b). We assume that the polynomial values behave like random integers

of size |F (a, b)G(a, b)|. In practice, the chance of smoothness may be better since two

factors F (a, b) andG(a, b) are already known. The number of relations (smooth coprime

pairs) can be approximated by

6

π2

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

ρ

(

log|G(x, y)|
logB

)

dx dy

where Ω is the sieving region of (a, b). Therefore, we want to choose a polynomial pair

such that the size of |F (a, b)| and |G(a, b)| is small on average over all (a, b). This

requires that the coefficients of the polynomials are small in absolute value. Since the

running-time of the sieving depends on the quality of the chosen polynomial pair, many

polynomial pairs will be considered in order to find a good one.

The standard method for polynomial selection is to expand kn in base (m1,m2) so

kn =
∑d

i=0 cim
i
1m

d−i
2 where k is a small constant. There are various methods to find

such an expansion [19, 73, 48, 49]. We will describe the details in Chapter 3.

26 CHAPTER 2. THE NUMBER FIELD SIEVE

2.4.2 Sieving

We describe some methods to find smooth pairs (a, b). The straightforward way is to

use line sieving (or classical sieving). We fix b and solve for a in a/b ≡ r (mod p),

where r is a root of f(x) (mod p). Then we sieve across a′ ≡ a (mod p) in a range.

We consider all p’s in the factor base and then move to the next b.

Pollard [84] described lattice sieving methods by rows and vectors. He only sieves

over pairs (a, b) where f(a/b) is known to be divisible by some special large prime q’s.

Lattice sieving is more efficient than line sieving (for large integers) in practice.

We first find a set of primes q’s for which f(x) ≡ 0 (mod q) have solutions. q is

often chosen to be larger than the smoothness bound. Let s be a root of f(x) (mod q).

The pairs (a, b) such that q divides f(a/b) form a lattice generated by vectors e1 = (q, 0)

and e2 = (s, 1). We compute a reduced basis e′1 = (e′11, e
′
12) and e′2 = (e′21, e

′
22).

Lattice sieving by rows is similar to line sieving on the q-lattice. Let r be a solution

of f(x) (mod p) for p in the factor base. We fix j0 and solve for i0 in

i0e
′
11 + j0e

′
21

i0e′12 + j0e′22
≡ r (mod p).

The sieve is done for i ≡ i0 (mod p) in a range. As for line sieving, we consider all p’s

in the factor base and then proceed to next j.

Lattice sieve by vectors considers the points on a p-sublattice of the q-lattice. Let

r be a solution of f(x) (mod p) for p in the factor base. A pair (i, j) on the q-lattice

leads to a root of f(x) (mod p) if

ie′11 + je′21
ie′12 + je′22

≡ r (mod p).

It can be expressed as

i

j
≡ −e′21 − e′22r

e′11 − e′12r
≡ r̃ (mod p).

All points (a, b) on the p-sublattice can be generated by v1 = (p, 0) and v2 = (r̃, 1). We

compute a reduced basis v′1 and v′2. The linear combinations of v′1 and v′2 give points

2.4. STAGES OF THE NUMBER FIELD SIEVE 27

(a, b) such that pq | f(a/b). For large p’s, the initialization cost could be more expensive

than the sieve. Franke and Kleinjung [51] described an efficient way to compute the

indices in the sieve. One can also use the bucket sieving [3] to reduce cache misses for

larger p’s.

2.4.3 Filtering

After sieving, the relations contain many duplicate (a, b) pairs. We want to remove the

duplicates. Standard hash-coding techniques can be used to identify duplicates. For a

large relation file, the memory requirement of the hash table could be huge. We can

partition the relation file and detect duplications on each partition.

We are interested in an even number of occurrences of the first degree prime ideals.

The prime ideals which appear only once (singletons) can be discarded. In practice,

removing singletons may lead to new singletons. Hence several passes of singleton-

removal are often applied. The number of remaining relations should be more than

the number of prime ideals after singleton-removal. For large integer factorization, we

could also reduce the memory usage by partitioning the prime ideals and taking several

passes.

In sieving, we often use large prime variants that allow relations with a few large

primes. We need to combine the relations with matched large prime ideals. Further,

we can reduce the matrix size by combining relations, at the price of increasing the

density of the matrix [20].

2.4.4 Linear algebra and square root

Linear algebra is currently a major bottleneck for factoring large integers. The standard

Gaussian elimination can be modified for use by the number field sieve. However, the

elimination process can introduce many nonzero entries (fill-in’s) during row operations.

Structured Gaussian elimination [55] is a more practical way to solve the (very) sparse

system in number field sieve. The columns corresponding to small prime ideals are

dense, while those for large primes are sparse. The idea is to start the elimination on

28 CHAPTER 2. THE NUMBER FIELD SIEVE

the sparse parts. If the sparse parts are eliminated first, one can get a reduced matrix,

which is slightly more dense but much smaller.

Coppersmith [24] described the block Lanzcos algorithm. It has comparable run-

ning time as the structured Gaussian elimination and much smaller space requirements.

Montgomery [68] gave another block Lanczos method, which constructs the orthogonal

vectors differently. It is one of the most efficient methods known for finding nullspaces

of sparse matrices. In practice, a parallelised version of Montgomery’s method can

be used for large integers. We distribute the block Lanczos solution over several pro-

cessors. However, the communication overheads could dominate. Another algorithm

proposed by Coppersmith, the block Wiedemann method, is easier to parallelise than

the block Lanczos method. The block Wiedemann method generates a sequence by

linear recursion (on a random vector) and finds relations in Krylov subspaces using

the Berlekamp-Massey algorithm. One can parallelise the algorithm by computing

sequences with different random vectors.

In the final step, we want to find the square roots (of products) of algebraic numbers.

Couveignes [26] described a method based on the Chinese Remainder Theorem. It

requires that the degree of f is odd. Montgomery [66] gave an algorithm which works

for general polynomials. It uses the known ideal factorization of the algebraic integers.

Nguyen [76] discussed a variant of Montgomery’s method. Overall, the square root

appears to be an easy step in the number field sieve due to the algorithms described

above.

Chapter 3

Polynomial selection: general

The running-time of sieving and subsequent steps depends on the quality of the chosen

polynomial pair. Many polynomials are generated to find a good one. In this chapter,

we give a brief discussion of polynomial selection.

We describe some classic ways to generate polynomials. We also discuss some

methods to quantify and compare the quality of polynomials. Finally, we consider how

to further optimize the polynomials in the number field sieve.

3.1 Base-m expansion

The base-m expansion [19, 73] of n can give a polynomial f(x) such that f(m) ≡ 0

(mod n). In the simple case, the linear polynomial is given by a monic polynomial

g(x) = x − m. Given n and d, we choose m to be close to n1/d. We obtain a monic

f(x) by expanding n in base m where

n = md + cd−1m
d−1 + · · ·+ c1m+ c0

such that each |ci| ≤ m/2. Then we define

f(x) = xd + cd−1x
d−1 + · · ·+ c1x+ c0.

29

30 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

We attempt to reduce the size of the coefficients of f(x), while keeping the property

f(m) ≡ 0 (mod n). Polynomials with smaller (in size) coefficients heuristically give

smaller polynomial values.

A better way is to use a non-monic f(x) so

n = cdm
d + cd−1m

d−1 + · · ·+ c1m+ c0

where cd is small and has only (very) small prime factors. Murphy [73] also described

a method to generate polynomials with small cd−1’s. Given n, cd, the coefficient cd−1

can be controlled using

(n− cdm
d)/md−1 ≈ cd−1 + cd−2/m.

We can choose a root m which is close to (n/cd)
1/d. We leave the size of cd−2 to

chance. If cd−2 is not small, we try another cd or m. Otherwise, we keep the polynomial

pair for further inspection and optimization. We will discuss some better methods for

polynomial selection in Chapters 4–6.

Remark 3.1. In Chapters 4–6, we study the polynomial selection with two polynomials,

one of which is linear. In Chapter 7, we discuss the polynomial selection with two non-

linear polynomials based on the papers [34, 74, 73, 87]. We do not cover Coppersmith’s

multiple polynomial number field sieve (MNFS) [23] in this thesis.

3.2 Quantifying the quality of polynomials

In this section, we discuss some methods to estimate and compare the quality of poly-

nomials∗.

It is desirable that the polynomial pair can produce many smooth integers across

the sieve region. This heuristically requires that the size of polynomial values is small

in general. In addition, one can choose an algebraic polynomial f(x) which has many

∗The “quality of polynomials” means the same as the “quality of polynomial pairs”.

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 31

roots modulo small prime powers. Then the polynomial values are likely to be divisible

by small prime powers. This may increase the smoothness chance for polynomial values.

3.2.1 Sieving test

A sieving experiment over short intervals is a relatively accurate method to compare

polynomial pairs. It is often used to compare several polynomial candidates in the final

stage of the polynomial selection.

Ekkelkamp [32] also described a method for predicting the number of relations

needed in the sieving. The method conducts a short sieving test and simulates relations

based on the test results. Experiments show that the prediction of the number of

relations is within 2% of the number of relations needed in the actual factorization.

3.2.2 Size property

Let (a, b) be pairs of relatively prime integers in the sieving region Ω. For the moment,

we assume that a rectangular sieving region is used where |a| ≤ U and 0 < b ≤ U . We

also assume that polynomial values |F (a, b)| and |G(a, b)| behave like random integers

of similar size. The polynomial values are B-smooth with probability

ρ

(

log|F (a, b)|
logB

)

and ρ

(

log|G(a, b)|
logB

)

.

An approximation for the number of sieving reports (coprime pairs that lead to smooth

polynomial values) is given by

6

π2

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

ρ

(

log|G(x, y)|
logB

)

dx dy.

The multiplier 6/π2 accounts for the probability of a, b being relatively prime.

Since G is a linear polynomial, we may assume that log(|G(a, b)|) does not vary

much across the sieving region. Hence, we omit G in the size estimate for the moment.

32 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

A simplified approximation to compare polynomials is

∫∫

Ω

ρ

(

log|F (x, y)|
logB

)

dx dy. (3.1)

Skewness. The base-m method gives polynomials whose coefficients are O(n1/(d+1)).

The leading coefficients cd and cd−1 are much smaller than n1/(d+1). The coefficient

cd−2 is slightly smaller than n1/(d+1). It is often better to use a skewed sieving region

where the sieving bounds for a, b have ratio s. We consider the cases for d = 5 and 6.

Let the sieving bounds for a, b be |a| ≤ U and 0 < b ≤ U . Hence s ≈ 1. The

polynomial values are dominated by ciU
d for i < d − 2, where ci = O(n1/(d+1)). It is

often better to choose s to be larger than 1, while keeping the area of the sieving region

2U2. The sieving bounds become |a| ≤ U
√
s and 0 < b ≤ U/

√
s. Each monomial in

the polynomial is bounded by ciU
dsi−d/2.

The polynomial values are dominated by terms cd−3U
dsd/2−3 and (or) ciU

dsi−d/2

for i ≥ d − 2. As an example, we can control the terms involving cd and cd−3, forcing

cd−3s
d/2−3 ≈ cds

d/2. Hence s ≈ (cd−3/cd)
1/3.

If d = 5, cd−3U
dsd/2−3 = c2s

−1/2U5 and cdU
dsd/2 = c5U

5s5/2 ≈ c2s
−1/2U5. The

terms involving c3 and c4 are both bounded by c3s
1/2U5, since c4 ≈ c5. If c3 is small,

the term c2s
−1/2U5 (bounding the terms involving c5 and c2) is smaller if we choose

s ≈ (c2/c5)
1/3.

If c3 is large, we can equalize the terms involving c3 and c2. The dominating terms

are bounded by c2s
−1/2U5 where s ≈ c2/c3.

If d = 6, the term c3U
6 dominates the polynomial values. We will discuss some

ways to optimize degree six polynomials in Chapter 5.

Size estimates. In the integral (3.1), computing ρ is time-consuming, especially if

there are many candidates. We can use some coarser approximations.

ρ(u) is a decreasing function of u. We can choose the polynomial pair such that

the average size of |F (a, b)| is small. This roughly requires that the coefficients of

the polynomials are small in absolute value. We discuss several estimates to compare

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 33

polynomials.

We can compare polynomials by the logarithmic average of polynomial values across

the sieving region.

log

∫∫

Ω

|F (x, y)| dx dy

 .

For computational convenience, one can use the logarithmic L2-norm for polynomial

F (x, y).

logL2(F) =
1

2
log

∫∫

Ω

F 2(x, y) dx dy

 . (3.2)

The logarithmic L2-norm is influenced by the skewness and the location of real

roots. The integral in (3.2) can be expressed as a polynomial in the coefficients of

F (x, y).

One can also change the range and shape of the integral region (the domain Ω),

while keeping the skewness. We consider a modified logarithmic L2-norm defined by

1

2
log

(

s−d

∫ 1

−1

∫ 1

−1
F 2(xs, y) dx dy

)

(3.3)

where s is the skewness of sieving region.

If computing the integral is still too expensive, we can use the logarithmic lp-norm

on the (absolute values of) coefficients of F (x, y). For instance, the logarithmic l∞ and

l1-norm are defined by

log l∞(F) = log

(

max
0≤i≤d

|cisi−
d
2 |
)

and

log l1(F) = log

(

d
∑

i=0

|cisi−
d
2 |
)

.

In practice, cd−3 to c0 are often similar and hence we can also compare individual

coefficients ci for i ≥ d − 2. However, the l1 and l∞-norm are not sensitive to the

location of real roots.

A more accurate estimate generally takes a longer time. Various levels of approx-

34 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

imations can be used in different stages of polynomial selection, depending on the

efficiency-accuracy tradeoff.

Polynomial selection often starts with generating a large number of polynomials.

We want to quickly compare the polynomials and discard the worst ones. The l1-norm

can be used to rapidly identify such polynomials. For instance, let d = 6 and allow

coefficients c0 to c3 to be in O(n1/(d+1)). If c6, c5 are trivially small, we can focus on

the size of c4.

The polynomial norm also depends on the skewness. We can optimize the skewness

with respect to a particular norm. If we assume that the optimal skewness with respect

to various norms does not differ too much, the optimized l1 and l∞-norms roughly

correlate with each other. We can bound the two norms by l∞ ≤ l1 ≤ (d+ 1) l∞.

3.2.3 Root property

If a polynomial f(x) has many roots modulo small prime powers, the polynomial values

may behave more smoothly than random integers of about the same size. Boender,

Brent, Montgomery and Murphy [8, 72, 73, 74] described some quantitative measures

of this effect (root property).

Expected p-valuation. Let p be a fixed prime. Let νp(x) be the exponent of the

largest power of p dividing x and νp(0) = ∞. Let S be a set of integers. We use (the

same) notation νp(S) to denote the expected p-valuation of s ∈ S.

Let S be a set of uniformly distributed random integers. For a fixed prime p, the

expected p-valuation νp(S) is

1 ·
(

1

p
− 1

p2

)

+ 2 ·
(

1

p2
− 1

p3

)

+ · · · = 1

p− 1
.

Thus, in an informal (logarithmic) sense, an integer s in S contains an expected power

p1/(p−1).

Let S be a set of polynomial values f(x). We use (the same) notation νp(S) (or

νp(f)) to denote the expected p-valuation of the polynomial values S. We assume

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 35

the polynomial values behave like uniformly random integers. Hensel’s lemma gives

conditions when a root of f (mod pe) can be lifted to a root of f (mod pe+1).

Lemma 3.2 (Hensel’s lemma). Let r1 be a root of f(x) modulo an odd prime p.

1. If r1 is a simple root, f(x) (mod pe) has an unique root re ≡ r1 (mod p) for each

e > 1.

2. If re is a multiple root† of f (mod pe) for e ≥ 1, there are two possible cases. If

pe+1 | f(re), then ∀ i ∈ [0, p), pe+1 | f(re+ i pe). If pe+1 ∤ f(re), re cannot be lifted

to a root modulo pe+1.

There are two cases. First, suppose p ∤ ∆, the discriminant of f(x). p is an

unramified‡ prime. Then f(x) (mod p) has only simple roots. Let np be the number

of roots. The expected p-valuation of polynomial values is νp(f) = np/(p− 1).

The second case is when p | ∆. Here one may get multiple roots. We can count the

number of lifted roots for the expected p-valuation. For the moment, we consider p to

be unramified.

In the number field sieve, we want to know the expected p-valuation of homogeneous

polynomial values F (a, b), where (a, b) is a pair of coprime integers, and F (x, y) is the

homogenous polynomial corresponding to f(x). We discuss the roots of F (x, y). Let

p | F (a, b) for some coprime integers a and b. Then there are two cases: either p ∤ b

and f(a/b) ≡ 0 (mod p), or p | b and p | cd.

If p | F (a, b) and p ∤ b, there exists r ≡ a/b (mod p) that that p | f(r). We can

map these pairs (a, b) to the points on a projective line P1(Fp). The points on P1(Fp)

are defined by the equivalence classes (x : y) = (x/y (mod p) : 1) when p ∤ y, and

(x : y) = (1 : 0) (the point at infinity) when p | y and p ∤ x. We call the point (a : b) on

P1(Fp) an affine root of F (x, y) (mod p) if p | F (a, b) and p ∤ b. All points except the

point at infinity on P1(Fp) are the affine roots of F (x, y) (mod p).

†We say that re is a multiple root of f (mod pe) if f ′(re) ≡ 0 (mod p).
‡A prime number p is said to be unramified in the number field K if the prime ideal factorization

of p has no repeated prime ideal factors.

36 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

If p | F (a, b) and p | b, it can be shown that p | cd and p ∤ a since a is coprime to b.

In this case, these pairs (a, b) correspond to the point at infinity (1 : 0) on P1(Fp) and

is referred to as the projective root of F (x, y) (mod p).

Let the sample space be pairs (a, b) ∈ Fp × Fp excluding those (a, b) for which

p | a, p | b simultaneously. F (x, y) can have p possible affine roots and 1 projective

root. Each affine root (r : 1) (or simply r) relates to p− 1 equivalent pairs (a, b) where

a/b ≡ r (mod p). The projective root (1 : 0) relates to p− 1 equivalent pairs (a, 0) for

a ∈ Fp \ {0}. A coprime pair (a, b) chosen at random falls into a particular class of

roots with probability 1/(p+ 1).

We extend the sample space to pairs (a, b) ∈ Z/peZ× Z/peZ excluding those (a, b)

such that p | a, p | b simultaneously. Then (a, b) maps to an equivalence class (a : b) on

the projective line over the ring Z/peZ. Let pe | F (a, b) for some coprime integers a, b

and some integer e. Then there are two cases: either p ∤ b and f(a/b) ≡ 0 (mod pe) or

p | b and h(b/a) ≡ 0 (mod pe) where h(x) = xdf(1/x). F (x, y) can have pe possible

affine roots, each of which relates to pe− pe−1 equivalent (a, b) pairs. Given p | b, p ∤ a,

we partition (a, b) into equivalent classes defined by (1, b/a (mod pe)) and call each

class a projective root. There are pe−1 possible projective roots. Each projective root

relates to pe − pe−1 equivalent (a, b) pairs.

Hence there are pe + pe−1 roots where each relates to pe − pe−1 equivalent (a, b)

pairs. A coprime pair (a, b) chosen at random maps to a particular root with probability

1/(pe−1(p+ 1)).

Given an unramified p, let F (x, y) (mod p) have np affine and projective roots. The

expected p-valuation νp(F) is

νp(F) =
∞
∑

e=1

e
np

pe−1(p+ 1)

(

1− 1

p

)

=
npp

p2 − 1
. (3.4)

The primes p’s we discussed here only give simple roots (of F (x, y) (mod p)) and

hence the average p-valuation admits a geometric representation. For multiple roots,

the contribution of the lifted roots is more complicated. One can count the number of

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 37

roots modulo pe for e ≤ d. The number of (multiple) roots over small primes can have

strong impacts on the expected p-valuation. Therefore, the above geometric formula

should be used with caution for small primes. We describe an example.

Let f, g be the polynomial pair A768 in Appendix A. A768 is generated by Msieve [78]

(followed by optimization carried out in CADO-NFS [6]) in an online collaborative

search [77]. It is an alternative (but slightly worse) polynomial for RSA-768 compared

to the polynomial actually used in the factorization [50]. For each prime between 2 and

17, we generate 105 random pairs (a, b). We only consider the coprime pairs (about

(6/π2) · 105). We compare the total p-valuation between the estimates and the actual

values in Table 3.1.

Primes #(a, b) Actual Estimate Better Estimate

2 60774 235509 81032 235500
3 60673 121858 68258 121346
5 60906 51140 38067 50755
7 61005 41058 26690 40670
11 60888 22367 22326 22326
13 60474 13829 14039 13679
17 60815 7114 7180 7180

Table 3.1: Total p-valuation

The second column of Table 3.1 denotes number of coprime pairs. The third column

is the actual total p-valuation: the sum of p-valuation over all F (a, b)’s. Equation (3.4)

assumes that roots are simple. The column“Estimate” is the estimate in Equation (3.4)

multiplied by #(a, b). In the column “Better Estimate”, we consider np,e, the number

of simple and multiple roots for each pe for e ≤ d. The better estimate is

νp(F) =
1

p+ 1

d
∑

e=1

np,e

pe−1
. (3.5)

In Equation (3.5), we assume the lifting pattern becomes stationary for e ≥ d. The

primes 2, 3, 5, 7, 13 ramify. Table 3.1 shows that, for ramified small primes, it is neces-

sary to examine the lifted roots instead of simply using Equation (3.4).

Remark 3.3. Given a set of coprime (a, b) pairs, we assume that (a (mod pe) : b

38 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

(mod pe)) are distributed uniformly over the set of (affine or projective) roots. In

practice (sieving), the distribution is not uniform (the pairs (a, b) corresponding to the

polynomial roots occur more frequently). We give some experimental data. Let f(x)

be the algebraic polynomial used in Table 3.1. We consider a sieving test consisting

of 300000 relations. The (a, b) pairs in the relations give various classes of roots a/b

(mod p) in Table 3.2.

For each (a, b) in the relation file and a prime p, we record either a/b (mod p) or

∞ if p | b. We count the occurrences of a/b (mod p) and ∞. The bottom row “Roots

of f(x)” gives the roots of f(x) modulo each p. For instance, the polynomial f(x) has

roots 0, 3, 5 modulo 7. The (a, b) pairs in the relation file occur more frequently at

0, 3, 5.

a/b (mod p) 2 3 5 7 11

∞ 90385 82352 39073 29588 21467
0 134962 66265 51927 52608 30749
1 74653 63133 52118 29490 21377
2 - 88250 39513 29695 28416
3 - - 68165 50118 21280
4 - - 49204 38077 30297
5 - - - 40535 21459
6 - - - 29889 30186
7 - - - - 21513
8 - - - - 21399
9 - - - - 21571
10 - - - - 30286

Roots of f(x) 0 0, 2 0, 1, 3 0, 3, 5 4, 6, 10

Table 3.2: Distribution of roots in sieving

In this thesis, we assume that the pairs fall into each class (of root) uniformly.

Cumulative expected p-valuation. Murphy defined the α(F) function to compare

the cumulative expected p-valuation of polynomial values to random integers of similar

size. α(F) can be considered as the logarithmic benefit of using polynomials values

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 39

compared to using random integers.

α(F) =
∑

p≤B
p prime

(

1

p− 1
− npp

p2 − 1

)

log p =
∑

p≤B
p prime

(

1− npp

p+ 1

)

log p

p− 1
.

For ramified p, we can replace (npp)/(p
2 − 1) by νp(F), the actual p-valuation. On av-

erage, np is 1 for random, monic polynomials for unramified p’s, due to the Chebotarev

density theorem [75]. In the number field sieve, α(F) is often negative since we are

interested in the case when F (x, y) has more than one root.

Expected minimum α(F). We want to estimate the expected minimum α(F) after

K polynomials are chosen. Emmanuel Thomé described a method (personal communi-

cation) to estimate the expected minimum of α(F) using order statistics. We assume

that the α(F) values of random polynomials follow a standard Gaussian (normal) dis-

tribution N(µ, σ2) (see Figure 3.1).

Let Φ(x) be the cumulative density function for the standard N(0, 1) normal dis-

tribution φ(x) where

φ(x) =
1√
2π

e−x2/2, Φ(x) =
1

2

(

1 + e

(

x√
2

))

.

In Φ(x) , e(x) is the error function [36] defined by

e(x) =
2√
π

∫ x

0
e−t2 dt.

The probability distribution for the minimum order statistic is given by

pK(x) = K (1− Φ(x))K−1 φ(x)

where K is the cardinality of the sample set. To compute the expected value of the

minimum order statistic, we can use numerical integration. Alternatively, we can use

an asymptotic approximation [27, 79] for the expected value of the minimum order

40 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

statistic of the normal distribution (a more accurate estimate can be found in [90]).

µ− σ

(

√

2 logK − log(logK) + 1.3766

2
√
2 logK

)

. (3.6)

In practice, we need to estimate the parameters µ, σ of the actual distribution. We

examine a data set of 107 polynomials for RSA-768. The polynomials are generated by

CADO-NFS [6] and Msieve [78] [77]. They are optimized in terms of size, as discussed

later.

0

0.1

0.2

0.3

0.4

0.5

-4 -3 -2 -1 0 1 2 3 4

D
en
si
ty

α(F)

Data
Gaussian

Figure 3.1: Distribution of α

The data has mean µ = −0.257 and standard deviation σ = 0.824. In Figure 3.1,

we show the density estimate of the data. The estimated distribution of α(F) is close

to a Gaussian distribution with parameters µ, σ. We can use this Gaussian distribution

to compute the expected value of the minimum order statistic.

Combined L2 score. The logarithmic L2-norm in Equation (3.2) can be modified

to take the root property into account. Since the α(F) function affects the polynomial

3.2. QUANTIFYING THE QUALITY OF POLYNOMIALS 41

size on logarithmic scale, the combined function is defined as follows:

α(F) +
1

2
log

∫∫

Ω

F 2(x, y) dx dy

 .

In practice, the combined score seems to be inaccurate (a more accurate score is given

by Equation (3.7)). Polynomials with similar combined scores can differ much in the

test sieving. Thus, the combined score is often used as a threshold to decide which

polynomials should be retained for further optimization.

3.2.4 Murphy’s E function

After polynomial optimization, there might be too many polynomials to conduct sieving

experiments. Murphy described a way to identify the best polynomials with a reliable

ranking function.

For accuracy, both the algebraic polynomial f(x) and the linear polynomial g(x)

are considered. An estimate for the number of sieving reports is given by

6

π2

∫

Ω
ρ

(

log|F (x, y)|
logB1

)

ρ

(

log|G(x, y)|
logB2

)

dx dy.

The root property is considered to give a refined estimate

6

π2

∫

Ω
ρ

(

log|F (x, y)|+ α(F)

logB1

)

ρ

(

log|G(x, y)|+ α(G)

logB2

)

dx dy. (3.7)

The Dickman-de Bruijn function ρ(x) does not admit a closed form solution. An

asymptotic expansion can be used to approximate its values [5].

Murphy used a summation over a set of uniformly distributed sample points to

compare the polynomials. An elliptic region for the sieving area can also be used. For

comparison purposes, we can discard the constant multiplier 6/π2. Murphy [73] defined

E(F,G) to be the following summation over K sample points (ΩA cos θi, ΩB cos θi):

K
∑

i=1

ρ

(

log|F (ΩA cos θi,ΩB sin θi)|+ α(F)

logB1

)

ρ

(

log|G(ΩA cos θi,ΩB sin θi)|+ α(G)

logB2

)

.

42 CHAPTER 3. POLYNOMIAL SELECTION: GENERAL

The ΩA and ΩB are the major and minor axes of the elliptic sieving region. The angles

θi determine uniform points on the boundary of the elliptic region. Murphy’s E function

provides a better estimate compared to the L2-norm since it uses the Dickman-de Bruijn

function. Stahlke and Kleinjung [95] showed that the Murphy score function correlates

well with the scores of polynomials in sieving experiments.

3.3 Optimizing the quality of polynomials

Given a pair of polynomials f, g, we can generate some related pairs of polynomials

using translation and rotation. Translation and rotation are useful to optimize the

size and root properties. Let f(x) =
∑d

i=0 cix
i and g(x) = m2x − m1 where m1/m2

(mod n) is the common root.

Translation of f(x) by k gives a new polynomial fk(x) defined by fk(x) = f(x+ k).

The root of fk(x) ism1/m2−k (mod n). The linear polynomial gk(x) ism2x−m1+km2.

Given a raw polynomial, we want to use translation and rotation to find a polynomial

of smaller norm.

We consider some impacts of translation. Translation does not alter the root prop-

erty in general. It is often used in the final stage of polynomial selection to optimize

the size. However, translation only will often increase the polynomial size. We want to

apply a combination of translation and rotation to reduce the polynomial size. If the

skewness of the polynomial is larger than k, the translation does not affect the norm

significantly. This can be seen from the coefficients of f(x + k). Applying rotation on

suitable fk(x) can help reduce the polynomial size.

Rotation by a polynomial λ(x) gives a new polynomial fλ(x)(x) defined by fλ(x)(x) =

f(x) + λ(x) (m2x−m1). The linear polynomial is unchanged gλ(x)(x) = g(x) = m2x−

m1. The root is unchanged. λ(x) is often a linear or quadratic polynomial, depending

on n and the skewness of f(x). Rotation can affect both size and root properties.

A good choice of λ(x) can improve the root property. Further, if λ(x) only has small

coefficients, the norm of fλ(x) is close to that of f(x). Therefore, the (root) quality of

the polynomial can be improved without significantly increasing the size.

3.4. STEPS IN POLYNOMIAL SELECTION 43

3.4 Steps in polynomial selection

We describe a common procedure for polynomial selection. It involves three steps:

polynomial generation, size optimization and root optimization. Given n and d, we can

choose cd which has small prime factors.

In polynomial generation, the l∞ or l1-norm is used to filter good polynomials. We

decide m2 and m1 first, and then examine the coefficients cd−1, cd−2. If their size is

admissible, we proceed to complete the other coefficients of the polynomial. If some

coefficients are too large, we discard the polynomial and proceed to the next one.

We want to reduce the polynomial size in size optimization. To compare polynomi-

als, we often use a better approximation, such as the L2-norm.

In root optimization, we rotate the polynomial and attempt to generate a poly-

nomial which has many roots modulo small prime powers. The new polynomial is

expected to have similar or slightly larger size. We can optimize the size by translation

since translation does not change affine roots.

Finally, we rank the best polynomials using Murphy’s E function. For the top

polynomials, we use some sieving tests to identify the best one.

Chapter 4

Polynomial generation

Murphy’s base-m expansion [73] generates two polynomials, one of which is a linear

monic polynomial. In this chapter, we discuss some methods which can generate poly-

nomial pairs with non-monic linear polynomials. In these methods, the size of the

polynomials’ leading coefficients can be controlled.

4.1 Kleinjung’s first algorithm

Kleinjung [48] described a way to generate non-monic linear polynomials in polynomial

selection using the base-(m1,m2) expansion of n. Given integers m1 and m2, the base-

(m1,m2) expansion of n is given by

n =
d
∑

i=0

cim
i
1m

d−i
2 .

He also gave an efficient algorithm to enumerate and check the size of the polynomial

coefficients. We describe the method in this section.

Let an integer n, degree d and leading coefficient cd be fixed. Let m0 = (n/cd)
1/d.

We fix an integer m2 having only small prime factors and choose an integer m1 ≈ m0

such that cdm
d
1 ≡ n (mod m2). This is a necessary condition for the existence of

a base-(m1,m2) expansion of n. We compute the polynomial coefficients ci from the

base-(m1,m2) expansion. The algebraic polynomial is given by f(x) =
∑d

i=0 cix
i, while

45

46 CHAPTER 4. POLYNOMIAL GENERATION

the linear polynomial is g(x) = m2x−m1. We assume that m0 . m1 and m2 ≪ m1.

The existence of the base-(m1,m2) expansion can be shown in a constructive way.

Let rd = n. We define ri, ci for i = d− 1 to 0 by

ri =
ri+1 − ci+1m

i+1
1

m2
,

ci =
ri
mi

1

+ δi where 0 ≤ δi < m2 such that ri ≡ cim
i
1 (mod m2).

Each ri can be expressed as

ri =
i
∑

j=0

cjm
j
1m

i−j
2 .

Coefficients. We discuss the size of coefficients in the base-(m1,m2) expansion. Let

σ = m1 −m0. The coefficient cd−1 can be computed from

cd−1 =
n− cdm

d
1

m2m
d−1
1

+ δd−1.

By construction, (n/cd)
1/d = m0 = m1 − σ, which shows that

n = cd(m1 − σ)d = cdm
d
1 + dcdm

d−1
1 σ +O(md−2

1 m2
2).

Therefore, cd−1 is about

cd−1 ≈
dcdσ

m2
+ δd−1.

If the difference between m1 and m0 is small, the size of cd−1 is also likely to be small.

We choose n, d and a small m2 consisting of a product of very small factors. m1

(mod m2) is found by solving the congruence equation n = cdm
d
1 (mod m2). We choose

m1 satisfying that congruence equation and m1 & m0. The difference σ is smaller than

m2. The other coefficients ci for i ≤ d− 2 are controlled by

ci =
ri+1 − ci+1m

i+1
1

m2mi
1

+ δi =
δi+1m1

m2
+ δi.

Since δi is bounded by m2, the coefficients ci are bounded by m1 +m2. Note that we

4.1. KLEINJUNG’S FIRST ALGORITHM 47

may also choose δi ∈ [−m2/2,m2/2) and/or m1 ≤ m0.

Parameters. In the algorithm, we first choose some norm bound M depending on

n, d. The permissible values for cd then depend on n, d and M . We fix m2 such that

m2 ≪ m0 and then choose m1 ≈ m0 to ensure that cd−1 is small. We describe how to

choose parameters to control cd, cd−1, cd−2.

The l∞-norm on the coefficients can be used to control the size of the coefficients.

In practice, we often choose an upper bound M for the l∞-norm where M < n1/(d+1).

We allow c0 and c1 to be close to m0. Considering the skewness, we may assume that

the term c1 dominates the l∞-norm. On the other hand, cds
d/2 ≤ M . The optimal

skewness lies in range
(m0

M

) 2
d−2 ≤ s ≤

(

M

cd

) 2
d

.

This gives the range for the possible leading coefficients:

cd ≤
(

M2d−2

n

)

1
d−3

.

We also want to control the size of cd−1 and cd−2 . For d/2 ≤ i < d, the l∞-norm

bound shows that |cisi−d/2| ≤ M . If we choose skewness to be the minimum in the

permitted range, an upper bound on cd−1 is given by M2/m0. Similarly, an upper

bound on cd−2 is given by

cd−2 ≤
(

M2d−6

md−4
0

) 1
d−2

. (4.1)

The upper bound on cd−2 is used in the algorithm to filter out bad polynomials. We

discard polynomials with cd−2 larger than this bound. The other coefficient cd−1 is

already small due to the choice of m1 in the base-(m1,m2) expansion.

Checking the size of cd−2. Kleinjung proposed an efficient way to check the coeffi-

cients cd−2 for many polynomials in a batch. The algorithm chooses m2 as a product

of small primes
∏l

i=1m2,i such that n ≡ cdx
d (mod m2) has dl solutions. Each root

can be expressed as xµ =
∑l

i=1 xi,µi . The µ = (µ1, · · · , µl) for µi ∈ {1, · · · , d} is a

48 CHAPTER 4. POLYNOMIAL GENERATION

multi-index notation of dl possible values. Given a fixed i, xi,j for 1 ≤ j ≤ d are the d

solutions of n ≡ cdx
d (mod m2,i) satisfying

0 ≤ xi,j < m2,
m2

m2,i
| xi,j .

Each root of n ≡ cdx
d (mod m2) can be obtained from the individual roots modulo

m2,i using the Chinese Remainder Theorem.

Let m̃0 be an integer close to m0 and m2 | m̃0. We define m1,µ to be m1,µ = m̃0+xµ.

We consider the base-(m1,µ,m2) expansions of n, where the linear polynomial is given

by g(x) = m2x − m1,µ. It can be seen that the coefficients cd−1 and cd−2 depend on

some base pair (m1,µ,m2) and hence we denote them as cd−1,µ and cd−2,µ. We want to

express cd−1,µ in a similar way as we express m1,µ in terms of xi,j . Kleinjung described

the following method.

Lemma 4.1. Given n,m2, d, cd, µ and m1,µ, there exist integers 0 ≤ ei,j ≤ m2 for

1 ≤ i ≤ l and 1 ≤ j ≤ d such that

cd−1,µ =
l
∑

i=1

ei,µi

satisfies

cd−1,µm
d−1
1,µ ≡

n− cdm
d
1,µ

m2
(mod m2).

The ei,j’s can be given by

e1,j = cd−1,(j,1,··· ,1) (mod m2),

ei,1 = 0 for i > 1,

ei,j = cd−1,(1,··· ,1,j,1,···1) − cd−1,(1,··· ,1) (mod m2) for i > 1, j > 1.

Let 1 ≤ k ≤ l be fixed. Assume that µ = (µ1, · · · , µl) and µ′ = (µ′
1, · · · , µ′

l) satisfy

µi = µ′
i for all i 6= k. It can be shown that cd−1,µ − cd−1,µ′ (mod m2) only depends

on the difference xk,µk
− xk,µ′

k
. We can express dl coefficients cd−1,µ in terms of linear

4.1. KLEINJUNG’S FIRST ALGORITHM 49

combinations of O(ld) variables.

The algorithm compares the size of cd−2,µ to that ofm1,µ. If cd−2,µ/m1,µ is very close

to an integer, then cd−2,µ can be made small since we can add multiples of polynomial

(m2x −m1,µ)x
d−2 to remove the integral part. Since m0, m̃0 and m1,µ are similar, we

have the following estimate

cd−2,µ

m1,µ
≈ cd−2,µ

m̃0
≈

n− cdm
d
1,µ − cd−1,µm

d−1
1,µ m2

m̃d−1
0 m2

2

≈ n− cdm̃
d
0

m̃d−1
0 m2

2

+
−cdd(m1,µ − m̃0)− cd−1,µm2

m2
2

.

Let f0 =
n− cdm̃

d
0

m̃d−1
0 m2

2

and

fi,j = −dcd xi,j
m2

2

− ei,j
m2

for 1 ≤ i ≤ l, 1 ≤ j ≤ d.

Since m1,µ = m̃0 + xµ = m̃0 +
∑l

i=1 xi,µi , the estimate satisfies

cd−2,µ

m1,µ
≈ f0 +

l
∑

i=1

fi,µi .

Therefore, dl such values cd−2,µ/m1,µ can be estimated from O(ld) values xi,j and ei,j .

Kleinjung also described an efficient way to identify those µ’s which lead to poly-

nomials with small cd−2,µ’s. It takes O(ldl/2 log d) time to check dl polynomials.

Let ǫ = cd−2,max/m0 be a real number bounding the size of cd−2, where cd−2,max is

computed in the RHS of Equation (4.1). We partition the dl polynomials into two lists

of similar size. Let l′ = ⌊l/2⌋. We compute two lists comprised of the fractional parts

of f0 +
∑l′

i=1 fi,µi and −∑l
l′+1 fi,µi . We sort the two lists and then search linearly in

one list to see whether any element is within the ǫ−neighbourhood of an element from

the other list.

Computing xi,j ,mi,j , ei,j and fi,j takes time O(ld). Preparing, sorting and check-

ing two sorted lists take time O(ldl/2 log d). The overall running-time is bounded by

O(ldl/2 log d). On average, we spent O(ld−l/2 log d) for each polynomial. For efficiency,

50 CHAPTER 4. POLYNOMIAL GENERATION

we want l to be large.

Algorithm. In summary, the algorithm consists of the following steps.

1. Given n, we determine the degree d and an upper bound M ≤ n1/(d+1) for the

sup-norm of f(x). We also choose l as the number of prime factors in m2 and

choose an upper bound on their size.

2. We compute the upper bound for cd such that cd,max ≤
(

M2d−2/n
)1/(d−3)

. For

each cd in the range, we find a set S of primes p such that cdx
d ≡ n (mod p) has

d solutions. We also calculate m0 = (n/cd)
1/d and upper bounds for cd−1 and

cd−2 where cd−1,max = M2/m0, cd−2,max =
(

M2d−6/md−4
0

)1/(d−2)
.

3. For all (or some) subsets of S of length l whose product is smaller than cd−1,max,

we compute xi,j ,mi,j , ei,j , f0 and fi,j .

4. Let ǫ = cd−2,max/m0. We find those µ such that f0 +
∑l

i=1 fi,µi

(

≈ cd−2,µ

m1,µ

)

lies

within the ǫ-neighborhood of an integer.

The polynomials have small cd, cd−1 due to construction in Steps 2 and 3, and small

cd−2 due to the ǫ-bound in Step 4.

Kleinjung [49] gave another algorithm for polynomial selection which generates

highly skewed polynomials whose coefficients cd−2 can be controlled. We call it Klein-

jung’s second algorithm.

4.2 Kleinjung’s second algorithm

The aim of the algorithm is to find a good polynomial with large skewness. If the

skewness is similar to the sieving area, the memory use in sieving can be reduced [49].

The algorithm also gives an efficient way to control the size of cd−2.

Let the number n and degree d be fixed. We want to choose m1 and m2 such that

the size of cd−1, cd−2 can be controlled. Let the expansion of n be n =
∑d

i=0 cim
i
1m

d−i
2 .

4.2. KLEINJUNG’S SECOND ALGORITHM 51

In Kleinjung’s first algorithm, we partially (in an informal sense) compute cd−1, cd−2

in the expansion and then check the size of cd−2. To estimate and control cd−1, we use

the estimate (n− cdm
d
1)/(m

d−1
1 m2). To check cd−2, we use information on cd−1 in the

expansion to estimate cd−2.

In Kleinjung’s second algorithm, we want to bound cd−2 without explicitly expand-

ing terms cd−1 and cd−2. The idea is to write n = cdm
d
1 + cd−1m

d−1
1 m2 + m2

2R. We

want to choose m1,m2 such that R/md−2
1 is expected to be small.

Coefficients. We describe how the coefficients are generated and controlled in Klein-

jung’s second algorithm.

Let the linear polynomial be g(x) = m2x−m1. m1 is chosen to be close to (n/cd)
1/d

so that cd−1 is small. We find an equivalent expansion of n which has zero cd−1 by

translation.

Let n =
∑d

i=1 cim
i
1m

d−i
2 be the expansion. We express it as

n = cd

(

md
1 +

cd−1

cd
md−1

1 m2

)

+
d−2
∑

i=0

cim
i
1m

d−i
2 .

We complete the d-th power to remove the (d− 1)-th term. It can be seen that

cd

(

m1 +
cd−1

dcd
m2

)d

= cdm
d
1 + cd−1m

d−1
1 m2 +m2

2R0, (4.2)

where R0 is

cd

d
∑

i=2

(

d

i

)

md−i
1

(

cd−1

dcd
m2

)i

.

The first two terms in Equation (4.2) are in the expansion of n, and hence n can be

expressed as

n = cd

(

m1 +
cd−1

dcd
m2

)d

−m2
2R0 +

d−2
∑

i=0

cim
i
1m

d−i
2 .

It follows that

ddcd−1
d n = (cddm1 + cd−1m2)

d − ddcd−1
d m2

2R0 + ddcd−1
d

d−2
∑

i=0

cim
i
1m

d−i
2 .

52 CHAPTER 4. POLYNOMIAL GENERATION

Denote ñ = ddcd−1
d n and m̃ = dcdm1 + cd−1m2. Then we see that

ñ = m̃d +m2
2 R̃ (4.3)

for some R̃. cd is fixed in the beginning of the algorithm and hence ñ is a constant. It

can be also seen that m̃ ≈ cddm1 ≈ ñ1/d since m2 ≪ m1. Therefore we want to choose

m̃ to be close to ñ1/d. We expand Equation (4.3).

ñ = m̃d +m2
2

d
∑

i=2

md−i
1 mi−2

2

(

ddcd−1
d cd−i −

(

d

i

)

(cdd)
d−icid−1

)

.

The coefficient cd−2 appears in the second term in the expansion. We will estimate it

in terms of ñ and m̃.

Equation m̃ = dcdm1 + cd−1m2 shows m1 = (m̃ − cd−1m2)/(dcd). The remainder

term R̃ is

R̃ =
ñ− m̃d

m2
2

=
d
∑

i=2

md−i
1 mi−2

2

(

ddcd−1
d cd−i −

(

d

i

)

(cdd)
d−icid−1

)

=
d
∑

i=2

mi−2
2

(

m̃− cd−1m2

dcd

)d−i(

ddcd−1
d cd−i −

(

d

i

)

(cdd)
d−icid−1

)

=
d
∑

i=2

mi−2
2 (m̃− cd−1m2)

d−i

(

dici−1
d cd−i −

(

d

i

)

cid−1

)

.

We want to estimate the size of cd−2 in R̃. The coefficient of cd−2 is dominated by

d2cdm̃
d−2. We divide R̃ by the dominating coefficient.

R̃

d2cdm̃d−2
=

ñ− m̃d

m2
2d

2cdm̃d−2

=
d
∑

i=2

mi−2
2 (m̃− cd−1m2)

d−i

m̃d−2

(

(dcd)
i−2cd−i −

(

d

i

)

cid−1d
−2c−1

d

)

=
d
∑

i=2

(

1− cd−1m2

m̃

)d−i (m2

m̃

)i−2
(

(dcd)
i−2cd−i −

(

d

i

)

cid−1d
−2c−1

d

)

.

4.2. KLEINJUNG’S SECOND ALGORITHM 53

We assume that m2 ≪ m1 ≤ m̃. An approximation of R̃/(d2cdm̃
d−2) is

d
∑

i=2

(m2

m̃

)i−2
(

(dcd)
i−2cd−i −

(

d

i

)

cid−1d
−2c−1

d

)

≈
d
∑

i=2

(m2

m̃

)i−2
(dcd)

i−2cd−i

≈ cd−2 +
m2

m1
cd−3 +

(

m2

m1

)2

cd−4.

In practice, cd−3 and cd−4 are O(m1). If m2 is smaller than cd−2, (R̃)(d2cdm̃
d−2) is

about cd−2.

Given ñ and cd, we search for some m̃ which is close to m̃0 = ñ1/d = dc
1−1/d
d n1/d.

Let σ̃ be the difference between m̃0 and m̃. Denote m0 = (n/cd)
1/d. An approximation

of |R̃|/(d2cdm̃d−2) is

|R̃|
d2cdm̃d−2

=
|ñ− m̃d|

m2
2d

2cdm̃d−2
=

|m̃d
0 − m̃d|

m2
2d

2cdm̃d−2

=
|(m̃0 + σ̃)d − m̃d

0|
m2

2d
2cdm̃d−2

≈ m̃0σ̃

dcdm
2
2

= m0
σ̃

m2
2

We want to choose m2 to be large and the difference σ̃ to be small.

Algorithm. Kleinjung gave a way to find such m2 and m1 efficiently. Given n, d, cd

(and hence ñ), it is sufficient to find m̃ and m2 such that ñ = m̃d +m2
2 R̃. Let m̃0 be

the integral part of ñ1/d. Given ñ, we first compute roots of the following equations for

primes p ∈ [B, 2B].

ñ ≡ (m̃0 + r)d (mod p)

The roots r are lifted to modulo p2 where r′ ≡ r (mod p).

ñ ≡ (m̃0 + r′)d (mod p2) (4.4)

Secondly, we search for collisions on r′ among equations modulo different prime

54 CHAPTER 4. POLYNOMIAL GENERATION

powers. If some r′ satisfies both equations for p1, p2, then

ñ ≡ (m̃0 + r′)d (mod p21p
2
2).

We choose m2 = p1p2 and m̃ = m̃0 + r′. Given m̃, d, cd,m2 and the expression m̃ =

dcdm1 + cd−1m2, we compute cd−1 in

cd−1 ≡
m̃

m2
(mod dcd)

provided that gcd(dcd,m2) = 1. Hence 0 ≤ cd−1 < dcd. The size of cd−1 can often be

smaller than in Kleinjung’s first algorithm, where |cd−1| was about dcdσ/m2 +m2.

Finally,m1 can be calculated fromm1 = (m̃−cd−1m2)/(dcd). It is close to (n/cd)
1/d.

The difference between m1 and (n/cd)
1/d is small. Therefore the coefficients ci for

0 ≤ i < d− 2 can be bounded by O(m1) using Lemma 4.1.

The size of m2 depends on the size of its factors p. We want p to be large so that

the ratio σ̃/m2
2 is small to keep cd−2 small. On the other hand, the size of p has to be

moderate to facilitate the solutions of ñ ≡ (m̃0 + r′)d (mod p2). In the general case,

r′ is bounded by O(B2). If there is a collision, r′ is O(B2) while m2 is O(B4). The

coefficient cd−2 is O(m0/B
2).

Performance. We estimate the expected number of collisions for each cd. Let k

integers bounded by X be drawn randomly from a uniform distribution. For the i-th

integer α being drawn, the chance that α collides with some previously drawn integer

is about

1−
(

X − 1

X

)i−1

.

The expected number of collision after k selections is

k
∑

i=1

(

1−
(

X − 1

X

)i−1
)

= k −X +X

(

1− 1

X

)k

.

4.2. KLEINJUNG’S SECOND ALGORITHM 55

If X is large and k ≪ X, we consider an approximation by the truncated expansion

k−X+X

(

1− 1

X

)k

= k−X+X

(

1− k

X
+

k2 − k

2X2
+O

(

k3

X3

))

=
k2 − k

2X
+O

(

k3

X2

)

.

Since k/X is small, the equation is dominated by k2/(2X).

Solutions r′ in Equation (4.4) are in the range [0, 4B2) (or [−2B2, 2B2)). We con-

sider roots r′ ∈ [−M,M] for some M . For each cd, we solve Equation (4.4) for all

primes p ∈ [B, 2B]. On average, each equation has one root modulo p. We assume that

the roots can be uniquely lifted to modulo p2 and behave like uniform random integers

of that size. Hence, it is similar to the situation where we draw O(B/ logB) random

integers from a uniform distribution of size 2M .

Let (p, r) be a pair satisfying Equation (4.4). For each p, the range 2M allows

2M/p2 such roots r∗. The expected total number of pairs (p, r) per cd (for all primes

between B and 2B) about

2B
∑

p=B
p prime

2M

p2
≈ 2M

∫ 2B

B

1

x2 log x
dx ≈ M

B logB
.

Therefore, the expected number of collisions per cd is

(M/(B logB))2

4M
=

M

4B2 log2B
.

We consider the time spent per collision. The algorithm generates M/(B logB)

pairs which we expect to give M/(4B2 log2B) collisions. We use a hash table to record

all pairs for which the amortized time per insertion is a constant. The total time spent

on generating and recording pairs is about

O

(

M

B logB
+

B

logB

)

.

∗It is about 1 if M ≈ 2B2.

56 CHAPTER 4. POLYNOMIAL GENERATION

The expected time per collision is

O

(

B3 logB

M
+B logB

)

.

If r ∈ Z/p2Z, then M = O(B2). The expected number of collisions per cd is

O(1/(log2B)). About O(log2B) trials of cd give one collision. The expected time per

collision is O(B logB).

WhenB is large, finding a collision becomes difficult. We may setM , the permissible

range of r, to be larger. The disadvantage is that it gives a worse bound on cd−2 due

to |cd−2| ≈ m0M/m2
2.

4.2.1 Some variants

We review some variants of the algorithm. For convenience, the method discussed above

is referred as the original method.

Factors of m2. Kleinjung [49] described some alternate ways of choosing m2. We

can replace m2 = p1p2 by m2 = cp (c ∈ C, p ∈ P) where C = [P1, P2] and P is a set

of primes in [P2, P3]. The collision can be detected within the P -pairs and between

C-pairs and P -pairs. More generally, the collision can be detected between integers c1

and c2 provided that they have no common factor. Otherwise, the size |cd−2| could be

worse due to a smaller m2 = c1c2/ gcd(c1, c2).

Paul Zimmermann (personal communication) described a variant which chooses

m2 = p1p2q1q2 such that m2 consists of four primes factors. Let B be the prime bound

used in the original method. We consider two sets of primes P and Q, where P contains

primes in [
√
B, 2

√
B] and Q contains primes in [2

√
B, 3

√
B]. For all primes p (and q),

we solve r in the following equations.

ñ ≡ (m̃0 + r)d (mod p2).

For distinct prime pairs p1, p2 ∈ P (or q1, q2 ∈ Q), we find roots r′ for the following

4.2. KLEINJUNG’S SECOND ALGORITHM 57

equations using Chinese Remainder Theorem.

ñ ≡ (m̃0 + r′)d (mod p21p
2
2).

We search for collisions on the roots between equations modulo p21p
2
2 and q21q

2
2. If there

is a collision on root r′, we can see that

ñ ≡ (m̃0 + r′)d (mod p21p
2
2q

2
1q

2
2).

There are O(B/ log2B) pairs p1p2 (or q1q2) and hence O(B2/ log4B) such p21p
2
2q

2
1q

2
2.

m2 = p1p2q1q2 which is about O(B2). The coefficient cd−2 is about m0/B
2. The

expected number of collisions per cd is

O

(

(

B/(log2B)
)2

B2

)

= O(1/ log4B).

The time spent on solving equations is smaller than the original method due the

smaller size of the primes (O(
√
B) versus O(B)). We need to solve O(

√
B/(logB))

equations and then generates B/ log2B pairs using CRT. The practical performance

depends on the efficiency on solving equations, CRTs and hash table operations.

Special-q. Solving congruence equations is expensive. Kleinjung [49] gave a way to

reuse the roots. In the first step, we search for collisions on rp for pairs (p, rp) where

p ∈ [B, 2B]. We denote the set of such primes p as P .

ñ ≡ (m̃0 + rp)
d (mod p2).

In the second step, we choose a set Q of primes not in [B, 2B] as the special-q’s. We

solve the equations

ñ ≡ (m̃0 + rq)
d (mod q2).

58 CHAPTER 4. POLYNOMIAL GENERATION

For each q and all p, we calculate ip ∈ [0, q2) from

rq + ipq
2 ≡ rp (mod p2)

such that

ñ ≡ (m̃0 + rq + ipq
2)d (mod p2).

We record the pairs (p, ip) in the hash table. If there is a collision on i between

(p1, i) and (p2, i), then

ñ ≡ (m̃0 + rq + iq2)d (mod p21p
2
2q

2).

Let m2 = p1p2q and r = rq + iq2. We see that

ñ ≡ (m̃0 + r)d (mod m2
2).

We consider the performance of the special-q variant. Let Bq be an upper bound on

the special-q primes. For the first step, the analysis remains the same as before. The

range for rp is O(B2) and the number of pairs generated is O(B/ logB). The expected

collisions per cd is O(1/ log2B).

For each special-q pair (q, rq), we generate O(B/ logB) pairs (p, ip) where ip is

bounded by O(B2). The expected collisions per pair (q, rq) is O(1/ log2B). The ex-

pected total number of collisions for all special-q’s is O(Bq/(log
2B logBq)) where Bq

is the bound for q. The special-q variant is efficient in practice since solving equations

is traded by computing modulo inverses.

As a summary, we describe Kleinjung’s second algorithm in Algorithm 4.1.

In practice, Kleinjung’s second algorithm is found to be more efficient than Klein-

jung’s first algorithm. First, it has a better control on the size of coefficients cd−2.

The cd−2 in the second algorithm size is often smaller. In addition, the first algorithm

restricts the search space much more than the second algorithm.

4.2. KLEINJUNG’S SECOND ALGORITHM 59

Algorithm 4.1: Kleinjung’s second algorithm

input : n, d, cd, prime sets P and Q;
output: (m1,m2) for the base expansion of n;
compute ñ, m̃0 from n, d, cd;1

for p ∈ P do2

solve rp in ñ ≡ (m̃0 + rp)
d (mod p2);3

record (p, rp) and detect collisions on rp;4

for q ∈ Q do5

solve rq in ñ ≡ (m̃0 + rq)
d (mod q2);6

for each rq do7

for p ∈ P do8

for each rp do9

solve ip in ñ ≡ (m̃0 + rq + ipq
2)d (mod (pq)2);10

record (p, ip) and detect collisions on ip;11

Chapter 5

Size optimization

Polynomial generation (e.g. using Kleinjung’s methods [48, 49]) can yield many raw

polynomials with small leading coefficients. The raw polynomials have very small

|cd|, |cd−1| and small |cd−2|. The coefficients |cd−3|, · · · , |c0| are comparable to (n/cd)
1/d.

In this chapter, we discuss how to optimize the size of raw polynomials by changing

the skewness, translating and rotating.

5.1 Objective function

In size optimization, we want to use translation and rotation to produce polynomials

with smaller L2-norm. The logarithmic L2-norm given in Equation (3.3) is defined on

a square domain.

logL2(F) =
1

2
log

(

s−d

∫ 1

−1

∫ 1

−1
F 2(xs, y) dx dy

)

.

For computational convenience, this chapter uses a variant L2-norm defined on an

elliptic domain. We change to polar coordinates where x = r cos θ and y = r sin θ.

logL2(F) =
1

2
log

(

s−d

∫ 2π

0

∫ 1

0
F 2(s cos θ, sin θ) r2d+1 dr dθ

)

. (5.1)

This chapter is joint work with Paul Zimmermann.

61

62 CHAPTER 5. SIZE OPTIMIZATION

The logarithmic L2-norm in Equation (3.3) is not exactly the same as the loga-

rithmic L2-norm in Equation (5.1), because the integrals are over different domains

(rectangle and ellipse). They are both (but slightly different) approximations to the

size of polynomials.

For sextic polynomials, the logarithmic L2-norm in Equation (5.1) can be expressed

as

logL2(F) =
1

2
log
(π

7168

(

231 c̃20 + 42 c̃0c̃2 + 14 c̃0c̃4 + 10 c̃0c̃6 + 21 c̃21 + 14 c̃1c̃3

+ 10 c̃1c̃5 + 7 c̃22 + 10 c̃2c̃4 + 14 c̃2c̃6 + 5 c̃23 + 14 c̃3c̃5 (5.2)

+ 7 c̃24 + 42 c̃4c̃6 + 21 c̃25 + 231 c̃26
)

)

where c̃i = cis
i−d/2.

In our analysis, it is often tedious to work the with L2-norm. We make the assump-

tion that the L2-norm and l∞-norms are correlated. Then we can find polynomials

with good l∞-norm and hope that they also have good L2-norm.

If the optimal skewness of L2-norm and l∞-norm does not differ too much, the

correlation roughly follows from the expression in Equation (5.2). We also give some

empirical evidence here.

B768 in Appendix A is a raw polynomial generated by Kleinjung’s second algo-

rithm [49] that could be used for RSA-768. Let f, g be the polynomial pair in B768. We

translate f by some uniformly-distributed sample points k ∈ [−1010, 1010]. For each

translated polynomial, we compute the optimized (in terms of skewness) L2-norm and

l∞-norm. Figure 5.1 shows that the logarithmic L2 and l∞-norms of the translated

polynomials have a similar trend.

In size optimization, we want to produce polynomials with smaller logarithmic L2-

norm (e.g. Equation (5.1)) by changing the skewness, translating and rotating.

For raw quintic polynomials, coefficients |c5|, |c4| and |c3| are small. The next

non-controllable coefficient is c2. We consider the l∞-norm (e.g. assuming correla-

tion between L2 and l∞-norms) on polynomial coefficients. Let the sieving bounds be

5.2. LOCAL DESCENT OPTIMIZATION 63

72

74

76

78

80

82

84

86

88

-10 -5 0 5 10

L
og
ar
it
h
m
ic

n
or
m

sgn(k) log10 |k|

log l∞

logL2

Figure 5.1: Logarithmic L2, l∞-norm of translation

|a| ≤ U
√
s and 0 < b ≤ U/

√
s. The l∞-norm is bounded below by |c2|s−1/2U5. As

s ≥ 1, the contribution of c2 on the polynomial value is already reduced by a factor of

s−1/2.

For raw sextic polynomials, the polynomial values are bounded below by terms

|c3|U6. As c3 is not controlled in the polynomial generation step, we do not naturally

get a small norm in the raw polynomials. Therefore, it is important to size-optimize

them before trying to optimize the root properties. In this chapter, we focus on the

size optimization of raw, sextic polynomials.

5.2 Local descent optimization

Let f(x) be a sextic polynomial. We can use quadratic rotations since c3, · · · , c0 have

order (n/cd)
1/d. Rotation by wx2 + ux+ v is given by

fw,u,v(x) = f(x) + (wx2 + ux+ v) g(x). (5.3)

64 CHAPTER 5. SIZE OPTIMIZATION

Murphy [73] used the classical multivariable optimization technique to optimize the

L2-norm. For sextic polynomials, there are five variables w, u, v, k, s, where k is the

translation amount and s is the skewness. w, u, v, k are integers and s is real.

The allowed range of these parameters is huge. Standard iterative methods, such

as gradient descent, are slow and tend to get stuck in local minima. For efficiency,

we use a local descent method to optimize the size. In each iteration, we attempt

some translations k and rotations w, u, v, and descend into the local minimum in the

direction determined by some k, w, u, v. During the procedure, we need to re-optimize

the skewness of the polynomial. We describe the method in Algorithm 5.1.

Algorithm 5.1: Local descent method

input : polynomial pair f(x) =
∑d

i=0 cix
i and g(x) = m2x−m1;

output: polynomial pair f ′, g′ of smaller L2-norm;

k = w = u = v = 1;1

while local minimum is found or loop limit is reached do2

f ′(x) = f(x± k), g′(x) = g(x)± km2;3

if either L2(f ′) < L2(f) then4

f = f ′, g = g′, k = 2k;5

else6

k = ⌈k/2⌉;7

f ′(x) = f(x)± w x2 g(x);8

if either L2(f ′) < L2(f) then9

f = f ′, w = 2w;10

else11

w = ⌈w/2⌉;12

Search similarly (e.g. Lines 8-12) for linear and constant rotations;13

return f(x), g(x);14

The method seems to work for quintic polynomials, when the searching space is not

too huge. However, it performs badly for sextic polynomials. Many iterations get stuck

at local minima without giving much reduction in size. We demonstrate this situation.

We examine a data set consisting of 105 raw sextic polynomials for RSA-768. The

polynomials are generated by Kleinjung’s second algorithm [49]. Figure 5.2 shows the

(discrete) density distribution of logarithmic L2-norm for the raw and optimized (by

local descent) polynomials.

In Figure 5.2, the raw polynomials have average logarithmic L2-norm 80.75 and

5.3. SOME BETTER METHODS 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

68 70 72 74 76 78 80 82

D
en
si
ty

Logarithmic L2 norm

Raw
Optimized

Figure 5.2: Local descent optimization

standard deviation 1.00. The optimized polynomials have average logarithmic L2-norm

79.06 and standard deviation 3.55. It can be seen that only a few polynomials are

optimized well by the local descent procedure. Many of them seem to descend to a local

minimum rapidly and then get stuck. We discuss some better methods to optimize such

polynomials.

5.3 Some better methods

To overcome local minima, we could try some standard global optimization methods

such as simulated annealing. However, they do not seem to work well in our experi-

ments, perhaps due to the huge search space and large coefficients.

Instead, we first translate the algebraic polynomial to increase the skewness. Heuris-

tically, it moves away from the starting point and decreases the chance to get stuck

in a local minimum. If the skewness of the polynomial is larger than the translation

amount k, the translation does not affect the norm significantly. This can be seen from

the coefficients of f(x+ k).

66 CHAPTER 5. SIZE OPTIMIZATION

5.3.1 Use of translation

One question is how to decide the translation amount. We first describe a heuristic

method.

The aim is to produce a polynomial with a better shape, such that each ratio ci/ci−1

correlates with the skewness. In the meantime, we want to keep the polynomial size

from changing too much during the translation.

One way is to increase k successively until an increase of the L2-norm occurs. Em-

pirically, the norm of translated polynomials stays steady initially and then increases

rapidly as k increases further (see Figure 5.1). We can choose k to be the turning point

of the norm. We then use a local descent method to search for a local minimum.

The method works better than a local descent method. For comparison, we con-

sider the same data set of 105 polynomials used in Figure 5.2. Figure 5.3 shows the

(discrete) density distribution of the logarithmic L2-norm for the raw and optimized

polynomials. The optimized polynomials have average logarithmic L2-norm 76.83 and

standard deviation 4.64.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

68 70 72 74 76 78 80 82

D
en
si
ty

Logarithmic L2 norm

Raw
Optimized

Figure 5.3: Translation and local descent

5.3. SOME BETTER METHODS 67

5.3.2 Better use of translation

The heuristic method in Subsection 5.3.1 still does not work for many polynomials.

Figure 5.3 shows that more than half of the polynomials are not optimized well. We

describe a better method.

In the raw polynomial, c0, c1, c2, c3 have similar size and are much larger than

c4, c5, c6. In Equation (5.2), the c̃0, c̃1, c̃2 are bounded by c̃3. Therefore, the L2-norm

can be controlled by terms involving c̃3, c̃4, c̃6. A lower bound, not depending on skew-

ness, is dominated by the term c̃23 = c23. Since a small c3 is a necessary condition for a

small L2-norm, an idea is to minimize c3 by translation.

Translation by k gives a polynomial whose coefficients are functions of k:

f(x+ k) = c6x
6

+ (6c6k + c5)x
5

+ (15c6k
2 + 5c5k + c4)x

4

+ (20c6k
3 + 10c5k

2 + 4c4k + c3)x
3

+ · · · .

Let ci(k) be the coefficients of the i-th term in the translated polynomial. c3(k) of

f(x+k) is a cubic polynomial in k. The coefficients c0(k), c1(k), c2(k) will increase due

to translation. We can use rotation to reduce them, if needed.

Minimizing c3(k). The cubic polynomial c3(k) has either one or three real roots.

For each real root, we choose k to be the nearest integer to the root. We translate f(x)

by k. The optimization is expected to work for all sextic polynomials since there exists

at least one real root for a cubic polynomial.

Translation causes a larger c5(k) and c4(k), compared to c5 and c4. In the cubic

polynomial c3(k), the constant term c3 is about O(m1). The real root has approximate

order O((m1/c6)
1/3). Hence c5(k) is bounded by O((m1/c6)

1/3) and c4(k) is bounded

by O((m1/c6)
2/3 + c4). Empirically, c4 is comparable to (m1/c6)

2/3. This shows that

68 CHAPTER 5. SIZE OPTIMIZATION

the coefficient c5(k) can increase significantly.

The coefficients c2(k), c1(k), c0(k) are also increased during translation. We can

reduce them using rotation (e.g. in a local descent optimization). After translation,

c3(k) is minimized and often smaller than the original c3. This also gives some room

to reduce c2(k), c1(k), c0(k) by rotation.

Compared to the raw polynomial, c4(k), c2(k), c1(k), c6 are comparable (or the

same), while c5(k) and c0(k) are increased. If the gain from a smaller c3(k) exceeds the

deterioration from a larger c5(k), the L2-norm can be reduced. In translated polyno-

mials, the L2-norm is dominated by terms involving c3(k), c4(k), c5(k) and c6(k). Once

k is fixed in minimizing c3(k), we can further optimize the polynomial locally by the

descent method.

Example and statistics. We give an example for a polynomial that could be used

for RSA-768. B768 in Appendix A is a raw polynomial for RSA-768 generated by

Kleinjung’s second algorithm. It has logarithmic L2-norm 72.59. The coefficient of x3

in f(x+ k) is

71727600k3 + 190647000k2 + 1129504938822234180339372k+

718693701130240225274612814188142.

The cubic polynomial has a real root near k = −191352410. We translate f(x) by k and

then apply the local descent optimization to the translated polynomial. The optimized

polynomial C768 in Appendix A has L2-norm 67.60. Empirically, some sieving tests

over short intervals show C768 sieves about 1.75 times faster than B768.

The method works better on average than previous methods. We consider the same

data set of 105 polynomials used in Figure 5.2 and Figure 5.3. Figure 5.4 shows the

(discrete) density distribution of the logarithmic L2-norm for the raw and optimized

polynomials. The improved method can reduce the average logarithmic L2-norm to

70.34 with a standard deviation 0.60.

5.3. SOME BETTER METHODS 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 66 68 70 72 74 76 78 80 82

D
en
si
ty

Logarithmic L2 norm

Raw
Optimized

Figure 5.4: Translation and local descent: better

Further improvement. Thorsten Kleinjung (personal communication) describes a

method which can further reduce the norm. Before translation, we attempt several

cubic rotations by f(x) + δx3g(x) for small δ’s on the raw polynomial f(x). This gives

some variation during the optimization. For each rotated polynomial, we repeat the

optimization procedure and record the minimum norm found.

The variation gives some benefits in practice. We consider the same data set of 105

polynomials used in Figure 5.2. In experiments, we rotate polynomials by |δ| ≤ 256

and optimize the size using the above method. Figure 5.5 shows the (discrete) den-

sity distribution of logarithmic L2-norm for the raw and optimized polynomials. This

method can further reduce the average logarithmic L2-norm to 69.84 with a standard

deviation 0.56.

Trade-off between size and root

The raw polynomial often has a small c5, which permits a larger rotation bound in

root optimization. The size optimization procedure leads to a much larger c5 due to

translation. This may lead to a smaller rotation space. We could have optimized the

70 CHAPTER 5. SIZE OPTIMIZATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

64 66 68 70 72 74 76 78 80 82

D
en
si
ty

Logarithmic L2 norm

Raw
Optimized

Figure 5.5: Translation and local descent: further improvement

root property (of the raw polynomial) first and then optimized the size by translating

and changing the skewness. If the root property is outstanding, we might expect that

it can better than the size-root (in order) optimization. However, we give a heuristic

argument that this is difficult in practice.

Let fu,v,w(x) be the rotated polynomial in Equation (5.3). If c3 ∼ O(m1) and

c0 ∼ c3s
3, c1 ∼ c3s

2, c2 ∼ c3s, we have an upper bound O(s6) for the rotation space.

We want to estimate the expected minimum α(F) afterK polynomials are chosen where

K is about s6.

Assume α(F) follows a normal distribution as in Figure 3.1. The data has mean

µ = −0.257 and deviation σ = 0.824. Equation (3.6) shows that the expected minimum

α is about −0.257− 1.648
√
3 log s. Hence the expected minimum α is proportional to

the square root of logarithmic scale of skewness.

We consider the situation of sextic polynomials for RSA-768. Let s = 1010, which

is reasonably large for raw polynomials. Equation (3.6) gives an expected minimum

α = −13.80 after s6 polynomials are generated. In an ideal situation, we can expect to

find such α without affecting the size. In practice, a rotation space of s6 is very likely

to destroy the size and it is very hard to find polynomials with such α while keeping the

5.3. SOME BETTER METHODS 71

size constrained. We can also apply a size optimization of two variables (translation

and skewness) afterwards. However, such optimization is restricted as no rotation can

be used and is likely to be ineffective.

On the other hand, if we first conduct size optimization, Figure 5.5 shows that a

reduction of 10 in norm is common. A following root optimization can further reduce the

combined norm by 7–11, despite increasing the size. Put together, size-root (in order)

optimization often behaves much better than root-size optimization in experiments.

Therefore, it is suggested to optimize the size property first and then the root property.

Chapter 6

Root optimization

Many polynomials can have comparable size after size optimization. We produce and

choose the best polynomials in terms of good α-values. This roughly requires that

the polynomials have many roots modulo small prime and prime powers. This step

is referred to as root optimization and involves polynomial rotation. We discuss some

algorithms for root optimization in this chapter.

6.1 Root sieve

We focus on root optimization for sextic polynomials in this chapter. Given a poly-

nomial pair (f, g), we want to find a rotated polynomial with similar size but bet-

ter root properties. For sextic polynomials, one can use quadratic rotations defined

by fw,u,v(x) = f(x) + (wx2 + ux + v) g(x) for some integers w, u, v. Let W,U, V

be upper bounds for w, u, v. W is often small (for the integers we are interested

in). To reduce the search space, it is sufficient to consider linear rotations defined

by fu,v(x) = f(x) + (ux + v) g(x). We want to choose (u, v) such that fu,v(x) has a

small α-value.

The straightforward way is to look at individual polynomials fu,v(x) for all possible

(u, v)’s and compare their α-values. This is time-consuming and impractical since the

permissible bounds on U, V are often huge.

This chapter is joint work with Richard Brent and Emmanuel Thomé.

73

74 CHAPTER 6. ROOT OPTIMIZATION

Murphy [73] described a sieve-like procedure, namely the root sieve, to find polyno-

mials with good root properties. It is a standard method to optimize the root property

in the final stage of polynomial selection. We describe Murphy’s root sieve in Algo-

rithm 6.1. Let B be the bound for small primes and U, V be bounds for the linear

rotation. The root sieve fills an array with estimated α-values. The α-values are esti-

mated from p-valuation for small primes p ≤ B. Alternatively, it is sufficient to calculate

the summation of the weighted p-valuation νp(F) log p for the purpose of comparison.

The idea of the root sieve is that, when r is a root of fu,v(x) (mod pe), it is also a root

of fu+ipe,v+jpe(x) (mod pe).

Algorithm 6.1: Murphy’s root sieve

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values of dimension U × V ;

for p ≤ B do1

for e where pe ≤ B do2

for x ∈ [0, pe − 1] do3

for u ∈ [0, pe − 1] do4

compute v in f(x) + (ux+ v) g(x) ≡ 0 (mod pe);5

update νp(fu+ipe,v+jpe) by sieving;6

In general, the root sieve does not affect the projective roots significantly. It is

sufficient to only consider the affine roots’ contribution to the α-value. In the end, we

identify slots with small α-values in the sieving array. For each such slot (polynomial),

we can compute a more accurate α-value with a large bound B and then re-optimize

its size (by translation only).

We consider the asymptotic complexity of Murphy’s root sieve.

∑

p≤B
p prime

⌊ logB
log p

⌋
∑

e=1

pepe
(

O(1) +
UV

p2e

)

= O

(

B3

logB

)

+ UV
∑

p≤B
p prime

⌊

logB

log p

⌋

≈ UV logB

∫ B

2

1

log2 p
dp

= O

(

UV
B

logB

)

.

6.2. A FASTER ROOT SIEVE 75

We are interested in small primes and hence B/ logB is small. The sieving bounds

U, V dominate the running-time O(UV B/ logB).

The classical root sieve works for small bounds U, V . For sextic polynomials, the

permissible ranges for U, V are huge. We discuss some better methods for root opti-

mization based on the root sieve.

6.2 A faster root sieve

In the root sieve, we identify the number of roots of rotated polynomials fu,v(x) for

small primes and prime powers. In most cases, the roots are simple, and hence their

average p-valuation follows Equation (3.4). There is no need to count the lifted roots

for them. We describe a faster root sieve based on this idea.

We use the following facts based on Hensel’s lemma. Suppose r1 is a simple root of

f(x) (mod p). There exists a unique lifted root re of f(x) (mod pe) for each e > 1. In

addition, each lifted root re is a simple root of f(x) (mod p). For convenience, we say

re is a simple root of f(x) (mod pe) if f ′(re) 6≡ 0 (mod p).

Let re be a simple root of a rotated polynomial fu,v(x) (mod pe) for e ≥ 1. It

is clear that fu+ipe,v+jpe(x) ≡ fu,v(x) (mod pe) for integers i, j. It follows that re is

also a simple root of the rotated polynomials fu+ipe,v+jpe(x) (mod pe). Given a simple

root r1 of a polynomial fu,v(x) (mod p), the contribution of the root r1 to νp(Fu,v) is

p/(p2−1). We can update the score for all rotated polynomials fu+ip,v+jp(x) in a sieve.

If re is a multiple root of f(x) (mod pe) for some e ≥ 1, there are two possible

cases. If f(re) ≡ 0 (mod pe+1), then ∀l ∈ [0, p), f(re + lpe) ≡ 0 (mod pe+1). There are

p lifted roots re+1 satisfying re+1 = (re + lpe) ≡ re (mod pe), ∀l ∈ [0, p). In addition,

the lifted roots re+1 are multiple since f ′(re+1) ≡ 0 (mod p). On the other hand, if

f(re) 6≡ 0 (mod pe+1), re cannot be lifted to a root modulo pe+1.

Let re be a multiple root of a rotated polynomial fu,v(x) (mod pe) for e ≥ 1. It is

also a multiple root for all rotated polynomials fu+ipe,v+jpe(x) (mod pe).

Let r be a fixed integer modulo p. We discuss the case when r is a multiple root for

some rotated polynomial fu,v(x) (mod p). We see that f(r)+(ur+v)g(r) ≡ 0 (mod p)

76 CHAPTER 6. ROOT OPTIMIZATION

and f ′(r) + ug(r) + (ur + v)g′(r) ≡ 0 (mod p). Since (ur + v) ≡ −f(r)/g(r) (mod p),

we get ug2(r) ≡ f(r)g′(r)− f ′(r)g(r) (mod p).

Therefore, only 1 in p u’s admits a multiple root at r (mod p). For the other u’s,

we can compute v and update the simple contribution p/(p2 − 1) to slots in the sieve

array. If r is a multiple root of fu,v(x) (mod p), we have to lift to count the lifted roots.

We discuss the details of the lifting method in the following sections. For the moment,

we describe the improved root sieve in Algorithm 6.2.

Algorithm 6.2: A faster root sieve

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values of dimension U × V ;

for p ≤ B do1

for x ∈ [0, p− 1] do2

compute ũ such that ũg2(x) ≡ f(x)g′(x)− f ′(x)g(x) (mod p);3

for u ∈ [0, p− 1] do4

compute v such that f(x) + uxg(x) + vg(x) ≡ 0 (mod p);5

if u 6= ũ;6

then7

update νp(fu+ip,v+jp) in sieving;8

else9

lift to count multiple roots of fū,v̄(x) (mod pe) such that10

(ū, v̄) ≡ (u, v) (mod p), ū, v̄ ≤ pe, pe ≤ B and then sieve;

Let r = x be fixed in Line 2. In Line 3, we compute ũ such that r is a multiple root

of fũ,v(x) for some v. If u 6= ũ, r is a simple root for this u, and some v which will be

computed in Line 5. If u = ũ, fu,v(x) admits r as a multiple root. We need to lift (up

to degree d) to count the roots. The running-time to do this is about

∑

p≤B
p prime

(

p

(

(p− 1)
UV

p2
+O

(

UV

p2

)))

= O

(

UV
B

logB

)

.

The asymptotic running-time of the improved root sieve has the same magnitude

as Algorithm 6.1. In practice, however, we can save arithmetic by avoiding considering

the prime powers in many cases.

For comparison, Murphy’s root sieve takes about UV
∑

p≤B
p prime

(logB)/(log p) oper-

ations, while Algorithm 6.2 takes about UV
∑

p≤B
p prime

1 operations. Taking B = 200 for

6.3. A TWO-STAGE METHOD 77

instance.
∑

p≤200
p prime

(log 200)/(log p) ≈ 2705 and
∑

p≤200
p prime

1 = 46.

6.3 A two-stage method

We give a two-stage algorithm for the root optimization. The algorithm is motivated by

previous work by Gower [38], Jason Papadopoulos (personal communication), Stahlke

and Kleinjung [95], which suggested to consider congruence classes modulo small primes.

If the permissible rotation bounds U, V are large, the root sieve can take a long time

for each polynomial. This is even more inconvenient if there are many polynomials.

We describe a faster method for root optimization based on the following ideas.

A polynomial with only a few roots modulo small prime powers pe is less likely to

have a good α-value. Therefore, rotated polynomials with many roots modulo small

prime powers are first detected. A further root sieve for larger prime powers can then

be applied.

In the first stage, we find a (or some) good rotated pair (u0, v0) (mod pe11 · · · pemm)

such that the polynomial fu0,v0(x) has many roots modulo (very) small prime powers

pe11 , · · · , pemm . Let Bs be an upper bound for pemm . In the second stage, we apply the

root sieve in Algorithm 6.2 to the polynomial fu0,v0(x) for larger prime powers up to

some bound B.

6.3.1 Stage 1

Given f(x), we want to find a rotated polynomial fu0,v0(x) which has many roots

modulo small primes and small prime powers. Let the prime powers be pe11 , · · · , pemm .

There are several ways to generate fu0,v0(x).

First, we can root-sieve a matrix of pairs (u, v) of size (
∏m

i=1 p
ei
i)

2 and pick up the

best (u, v) pair(s) as (u0, v0). If the matrix is small, there is no need to restrict the

bound in the root sieve to be Bs. We can use the larger bound B. If the matrix is

large, however, the root sieve might be slow. We describe a faster strategy.

We first find m (or more∗) individual polynomials fui,vi,pi(x) (1 ≤ i ≤ m) each of

∗For each pi, we may generate several polynomials. In Stage 2 we consider multi-sets of combinations.

78 CHAPTER 6. ROOT OPTIMIZATION

which has many roots modulo small peii . The values ui and vi are bounded by peii .

We combine them to obtain a polynomial fu0,v0(x) (mod
∏m

i=1 p
ei
i) using the Chinese

Remainder Theorem. The polynomial fu0,v0(x) (mod pki) has the same number of roots

as the individual polynomials fui,vi,pi(x) (mod pki) for 1 ≤ k ≤ ei. Hence the combined

polynomial is likely to have many roots modulo small prime powers pe11 , · · · , pemm .

Individual polynomials. To find individual polynomials fui,vi,pi(x) that have many

roots modulo small prime powers peii , we can root-sieve a square matrix peii × peii and

pick up the good pairs.

Alternatively, we use a lifting method together with a p2i -ary tree data structure.

This seems to be more efficient when p2eii is large. For each peii , we construct a tree

of height ei and record good (u, v) pairs during the lift. The lift is based on Hensel’s

lemma. For convenience, we fix f(x) (mod p) where p = pi and e = ei for some i. We

describe the method.

We create a root node. In the base case, we search for polynomials fu,v(x) (mod p)

(u, v ∈ [0, p)) which have many roots and record them in the tree. There could be at

most p2 level-1 leaves for the root node.

Let a level-1 leaf be (u, v) (mod p). A simple root is uniquely lifted. If the poly-

nomial fu,v(x) (mod p) only gives rise to simple roots, we already know the exact

p-valuation of fu,v(x). In case of multiple roots, we need to lift and record the lifted

pairs. Assume that fu,v(x) (mod p) has some multiple root rm and some simple root

rs. We want to update the p-valuation for rotated polynomials

f(x) +

(

(

u+
e−1
∑

k=1

ikp
k
)

x+
(

v +
e−1
∑

k=1

jkp
k
)

)

g(x) (mod pe) (6.1)

where each ik, jk ∈ [0, p). We give the following procedure for the lifting.

1. For a simple root rs, we find out which of the rotated polynomials fu+ip,v+jp(x)

(mod p2) admit rs as a root. If fu+ip,v+jp(rs) ≡ 0 (mod p2) for some i, j, then

(irs + j)g(rs) + fu,v(rs)/p ≡ 0 (mod p). (6.2)

6.3. A TWO-STAGE METHOD 79

Hence the set of (i, j)’s satisfies a linear congruence equation. For simple roots,

there is no need to compute the lifted root. It is sufficient to update the p-

valuation contributed by rs to polynomials fu+ip,v+jp(x).

2. Let rm be a multiple root of fu,v(x) (mod p). If a rotated polynomial fu+ip,v+jp(x)

(mod p2) admits rm as a root for some (i, j), all the {rm + lp} (0 ≤ l < p) are

also roots for the polynomial. In addition, f ′
u+ip,v+jp(rm + lp) ≡ 0 (mod p). We

record the multiple roots {rm+ lp} together with the {(u+ ip, v+ jp)} pairs. The

procedure also works for the lift from pe to pe+1 for higher e’s.

We consider the memory usage of the p2-ary tree. If r is a root of fu,v(x) (mod p),

Equation (6.2) shows a node (u, v) (mod p) gives p lifted nodes (u+ip, v+jp) (mod p2)

for some (i, j)’s. Since fu,v(x) (mod p) can potentially have other roots besides r, there

could be at most p2 pairs (u+ ip, v+ jp) (mod p2). The procedure also needs to record

the multiple roots for each node. We are mainly interested in the bottom level leaves

of the tree, those (u, v) (mod pe). It is safe to delete the tree path which will not be

used anymore. Hence a depth-first lifting method can be used. In practice, the memory

usage is often smaller than a sieve array of size p2e.

For each p, we find a polynomial that either has many simple roots or many multiple

roots which can be lifted further. Tiny primes p’s are more likely to be ramified. Hence

we are more likely to meet multiple roots for tiny p.

CRTs. For each p, we have generated some polynomial(s) rotated by (ux + v)g(x)

(mod pe) which have comparably good expected p-valuation. For convenience, we iden-

tify the rotated polynomial by pair (u, v).

Stage 1 repeats for prime powers pe11 , · · · , pemm . We generate the multi-sets combi-

nations of pairs {(u, v)} and recover a set of {(u0, v0)} (mod
∏m

i=1 p
ei
i). We fix such a

pair (rotated polynomial) (u0, v0) (mod
∏m

i=1 p
ei
i).

The whole search space is an integral lattice of Z2. In Stage 2, we want to root-sieve

on the sublattice points defined by (u0 + γ
∏m

i=1 p
ei
i , v0 + β

∏m
i=1 p

ei
i) where (γ, β) ∈

Z2. The sublattice points are expected to give rotated polynomials with good root

80 CHAPTER 6. ROOT OPTIMIZATION

properties, since the polynomials have many roots modulo pe11 , · · · , pemm .

We often choose the pi’s to be the smallest consecutive primes since they are likely

to contribute most to the α-value. The exponents ei in prime powers peii need some

more inspection. If ei is too small, the sieving range (γ, β) ∈ Z2 can be large. If

ei is too large,
∏m

i=1 p
ei
i is large and hence some polynomials which have good size

property might be omitted in the root sieve. One heuristic is to choose peii . p
ej
j for

i > j, i, j ∈ [1,m]. To determine m, one can choose
∏m

i=1 p
ei
i to be comparable to the

sieving bound U . We can discard those (u0, v0)’s such that u0 > U . If u0 is comparable

to U , it is sufficient to use a line sieve for constant rotations.

Remark 6.1. In the implementation, we may want to tune the parameters by trying

several sets of parameters such as various pi’s and ei’s. We can run a test root sieve in

short intervals. The set of parameters which generates the best score is then used.

6.3.2 Stage 2

In Stage 2, we apply the root sieve in Algorithm 6.2 to polynomial fu0,v0(x), perhaps

with some larger prime bound. In the root sieve, one can reuse the code from Stage 1,

where the updates of α-values can be batched. We describe the method as follows.

Sieve on sublattice. Let M =
∏m

i=1 p
ei
i and (u0, v0) be fixed from Stage 1. In the

second stage, we do the root sieve for (larger) prime powers on the sublattice defined

by {(u0 + γM, v0 + βM)} where γ, β ∈ Z. Let p be a prime and rk (mod pk) be a root

of

f(x) +
(

(u0 + γM)x+ (v0 + βM)
)

g(x) (mod pk)

for some fixed integers γ, β. The sieve on the sublattice follows from

f(rk) +
(

(

u0 +M(γ + ipk)
)

rk +
(

v0 +M(β + jpk)
)

)

g(rk) ≡ 0 (mod pk)

for integers i, j ∈ Z. We consider the root sieve for a fixed prime p in Algorithm 6.2.

Let f(x), g(x),M, u0, v0 be fixed from Stage 1. In Algorithm 6.2, we assume u, r

6.3. A TWO-STAGE METHOD 81

are fixed for the moment. Let p be a prime not dividing M . The sieve array has

approximate size ⌊U/M⌋ × ⌊V/M⌋. Each element (γ, β) in the sieve array stands for a

point (u0 + γM, v0 + βM) in Z2. We solve for v in f(r) + urg(r) + vg(r) ≡ 0 (mod p).

Knowing (u, v), we can solve for (γ, β) in u ≡ u0 + γM (mod p) and v ≡ v0 + βM

(mod p), provided that p ∤ M .

For the moment, we fix integers γ, β. If r is a simple root, it is sufficient to sieve

(γ + ip, β + jp) for various (i, j)’s and update the p-valuation p log p/(p2 − 1) to each

slot. If r is a multiple root, we can use a similar lifting procedure as in Stage 1. We

describe the recursion to deal with multiple roots in Algorithm 6.3.

Algorithm 6.3: Recursion for multiple roots

input : a polynomial pair f, g; integers U , V , B; node (u, v), tree height e,
current level k, prime p;

output: updated α-values array;

for multiple roots r of fu,v(x) (mod p) do1

for k < e do2

compute (i, j)’s in (ir + j)g(r) + fu,v(r)/p
k ≡ 0 (mod p);3

create child nodes (u+ ipk, v + jpk) with roots {r + lpk}, ∀l ∈ [0, p);4

recursively call Algorithm 6.3 on (u, v)’s leftmost child node;5

change coordinates for current node (u, v) and sieve;6

delete current node and move to its sibling node or parent node;7

From Stage 1, we know u0, v0. In Algorithm 6.2, we fix u, r and solve for v.

Given a multiple root r of f(x) (mod pk), we find pairs (u′, v′) such that fu′,v′(r) ≡ 0

(mod pk+1) where u′ ≡ u (mod pk) and v′ ≡ v (mod pk). We can construct nodes

representing the (u′, v′) pairs together with their roots. In the recursion, we compute

the lifted nodes in a depth-first manner. Once the maximum level pe is reached, we do

the root sieve for the current nodes and delete the nodes which have been sieved.

When a lifted tree node (u′, v′) (mod pk) is created, the number of roots for fu′,v′(x)

(mod pk) is known. In the root sieve, the α-scores can be updated in a batch for all

the roots of fu′,v′(x) (mod pk). For each node (u′, v′), we also need to compute the

corresponding coordinates in the sieve array.

82 CHAPTER 6. ROOT OPTIMIZATION

Primes p dividing M . We have assumed that p is a prime not dividing M . From

Stage 1, M is a product of prime powers peii for 1 ≤ i ≤ m. For accuracy, we can also

consider primes powers p
e′i
i with e′i 6= ei such that pi appears in the M . Let r be root of

fu,v(x) (mod p). If r is a simple root, there is no need to consider any liftings. Hence

we consider polynomials fu,v(x) (mod p) which have a multiple root.

We fix some p = pi and e = ei, which are used in Stage 1. Let u, v, p be fixed in

Algorithm 6.2. Let e′ be the exponent of p that we want to consider in Stage 2. There

are two cases depending on e′.

If e′ ≤ e, the points on the sublattice have equal scores contributed by roots modulo

pe
′
. It is sufficient to look at the multiple roots modulo pk for k ≤ e′. In Algorithm 6.2,

we either sieve all slots of the array or do not sieve at all. Given u, v, p, k, if v ≡ v0

(mod pk) in v ≡ v0 + βM (mod pk), we need to sieve the whole array. This can be

omitted because it will give the same result for each polynomial and we only want to

compare polynomials. If v0 6≡ v (mod pk), no slot satisfies the equation. Therefore, it

is safe to skip the current iteration when e′ ≤ e.

If e′ > e, the rotated polynomials (u, v) (mod pk) for e < k ≤ e′ may have differ-

ent behaviors. We describe some modifications in the lifting procedure. Let u ≡ u0

(mod pk), r, v0 be fixed in Algorithm 6.2. We compute v. We want to know which

points (polynomials) on the sieve array are equivalent to (u, v) (mod pk).

For k ≤ e, the situation is similar to the case when e′ ≤ e. If the equation v ≡ v0

(mod pk) is satisfied, we record the node (u, v) (mod pk) for further liftings. There is

no need to sieve since all slots on the sieve array have equal scores for roots modulo pk.

If v0 6≡ v (mod p) where k = 1, we have neither to root-sieve nor record the node. Let

e < k ≤ e′. If (u′, v′) (mod pk) satisfies u′ ≡ u (mod p) and v′ ≡ v (mod p), we need

v0 + βM ≡ v′ (mod pk).

The equation is solvable for β only if

v0 ≡ v′ (mod pk).

6.3. A TWO-STAGE METHOD 83

Hence it is safe to discard those (u, v) (mod p) such that u ≡ u0 (mod p) but

v 6≡ v0 (mod p).

On the other hand, we consider some k in e < k ≤ e′. In the lifting procedure, we

record nodes without sieving until we reach the level-(e + 1) nodes. Starting from a

node (u, v) modulo pe+1, that is k > e, we want to solve the equation

v0 + βM ≡ v (mod pk).

The depth-first lifting procedure shows that

v0 ≡ v (mod pe).

Hence β is solvable in the following equation

v0 − v

pe
+

M

pe
β ≡ 0 (mod pk−e)

since gcd(M/pe, p) = 1. In the root sieve, we step the array by β + jpk−e for various j.

6.3.3 Further remarks and improvements

Let (U, V) be the rotation bounds for the polynomial. The root sieve in Algorithm 6.2

runs asymptotically in time UV B/ logB (ignoring constant factors). In Stage 2, the

searching space is restricted to a sublattice determined by M =
∏m

i=1 p
ei
i , where the

parameters pi’s depend on Stage 1. Hence, the root sieve in Stage 2 runs in time about

UV B/(M2 logB).

In Stage 2, the points not on the sublattice are discarded since compared to points

on the sublattice they have worse p-valuation for those p’s in Stage 1. We assumed that

they were unlikely to give rise to polynomials with good root properties. However, a

polynomial could have good α(F) while some p in M gives a poor p-valuation. This of-

ten happens when some p′-valuation of p′ ∤ M , those ignored in Stage 1, is exceptionally

good, and hence mitigates some poor p-valuation where p | M .

84 CHAPTER 6. ROOT OPTIMIZATION

Alternatively, we can use a root sieve to identify good rotations in Stage 1 for some

small sieving bounds (U ′, V ′). Then we examine the pattern of p-valuation of these

polynomials and decide the congruence classes used in Stage 2.

We have ignored the size property of polynomials in the algorithms. We have

assumed that polynomials rotated by similar (u, v)’s have comparable size. In practice,

some trials are often needed to decide the sieving bounds (U, V). We give some further

remarks regarding the implementation.

Block sieving. The root sieve makes frequent memory references to the array. How-

ever, there is only one arithmetic operation for each array element. The time spent

on retrieving memory often dominates. For instance, the root sieve may cause cache

misses if the sieve on p steps over a large sieve array. A common way to deal with cache

misses is to sieve in blocks.

We partition the sieving region into multiple blocks each of whose size is at most

the cache size. In the root sieve, we attempt to keep each block in the cache while

many arithmetic operations are applied. The fragment of the block sieving is described

in Algorithm 6.4.

Algorithm 6.4: Block sieving

input : a polynomial pair f, g; integers U , V , B;
output: an array of approximated α-values in dimension U × V ;

for x ≤ B do1

for each block do2

for p where x < p ≤ B do3

· · · · · ·4

We have also changed the order of iterations to better facilitate the block sieving.

This might give some benefits due to the following heuristic. In Algorithm 6.2, when

p is small, polynomial roots x modulo p are small. The number of roots x ≤ p blocked

for sieving is also limited. Instead we block primes p. If x is small, there are still many

p’s which can be blocked.

For multiple roots, we might need to sieve in steps pk for k ≥ 1. When pk is not

6.3. A TWO-STAGE METHOD 85

too small, each block has only a few (or none) references. In this case, we may use a

sorting-based sieving procedure like the bucket sieve [3].

Arithmetic. The coefficients of the rotated polynomials are multiple precision num-

bers. Since pe can often fit into a single precision integer, it is sufficient to use single

precision in most parts of the algorithms.

The algorithms involve arithmetic on pk for all k ≤ e. It is sufficient to store

polynomial coefficients modulo pe and do the modulo reduction for arithmetic modulo

pk. Let D be a multiple precision integer. In the algorithm, we use a single precision

integer S instead of D where S = D (mod pe). If x ≡ D (mod pk) for k ≤ e, it is clear

that x ≡ S (mod pk). Hence we can use the S in the root optimization.

In addition, the range of possible α-values is small. We may use short integers to

approximate the α-values instead of storing floating point numbers. This might save

some memory.

Quadratic rotation. Sextic polynomials have been used in the factorizations of

many large integers such as RSA-768. Rotations by quadratic polynomials can be used

for sextic polynomials if the coefficients and skewness of the polynomials are large. We

have assumed that W is small in fw,u,v(x) and we use linear rotations in this section. If

the permissible bound for W is large, we can use a similar idea to that in Stage 1 to find

good sublattices in three variables. At the end of Stage 1, a set of polynomials having

good α-values are found which are defined by rotations of (w0, u0, v0)’s. In Stage 2, we

root-sieve on the sublattice {(w0 + δM, u0 + γM, v0 + βM)} where δ, γ, β ∈ Z.

Chapter 7

Polynomial selection using lattice

reduction

In Chapters 4–6, we discussed the polynomial selection with two polynomials, one of

which is linear. In the number field sieve, two non-linear polynomials can also be used

and this may give some benefits. In this chapter, we review some methods to generate

two non-linear polynomials based on lattice reduction. In addition, we discuss some

similar (lattice-based) methods for generating degree-(d, 1) polynomial pairs.

7.1 Use of two non-linear polynomials

We want to find two irreducible, coprime, non-linear polynomials f1, f2 which have a

common root m modulo n. For convenience, we assume that both polynomials are

monic and have the same degree d.

f1(x) =
d
∑

i=0

aix
i, f2(x) =

d
∑

i=0

bix
i.

Let Z[α] = Z[X]/〈f1〉 and Z[β] = Z[X]/〈f2〉 be the rings generated by zeros of f1, f2 re-

spectively. K1 and K2 denote their fields of fractions. There exist ring homomorphisms

87

88 CHAPTER 7. POLYNOMIAL SELECTION USING LATTICE REDUCTION

φα and φβ such that

φα : Z[α] → Z/nZ, φβ : Z[β] → Z/nZ.

We want to find a set S of (c, e) pairs (c, e ∈ Z) such that

∏

(c,e)∈S

(c− eα) = γ2 and
∏

(c,e)∈S

(c− eβ) = δ2

for some γ ∈ Z[α] and δ ∈ Z[β]. Assume that the set S is found. φα(γ) ≡ u (mod n)

and φβ(δ) ≡ v (mod n). It follows that

u2 ≡
∏

(c,e)∈S

φα(c− eα) ≡
∏

(c,e)∈S

(c− em) ≡
∏

(c,e)∈S

φβ(c− eβ) ≡ v2 (mod n).

The congruence of squares u2 ≡ v2 (mod n) may give a factor of n.

Crandall and Pomerance [28] have shown that it is advantagenous to use two

non-linear polynomials. Let F1, F2 be the homogeneous polynomials of f1, f2. In

sieving, we find smooth polynomial values F1(c, e)F2(c, e). The polynomial values

F1(c, e)F2(c, e) are known to consist of two factors of similar size. Let X be an up-

per bound on the values F1(c, e)F2(c, e) and B be the smoothness bound. The B-

smoothness change for polynomial values is ρ2(log(X)/2 log(B)) = ρ2(u/2) ≈ u−u2u

where u = log(X)/ log(B). This is 2u times better than ρ(u) ≈ u−u if X is not known

to consist of two factors. Let the pair (d1, d2) be the degree of polynomials in number

field sieve. In the number field sieve with polynomials of degree (d − 1, 1), the factor

from the linear polynomial is much smaller than the factor from the algebraic polyno-

mial. It is beneficial to use two polynomials of degree (d/2, d/2), so that the polynomial

values have similar size.

For convenience, let the polynomials have degree (d, d). The resultant of two poly-

nomials is the determinant of the Sylvester matrix of the two polynomials. It is a

homogeneous polynomial of degree 2d in the coefficients of the polynomials, and hence

may be used to measure the size property. The resultant is a multiple of n. We prefer it

7.2. TWO QUADRATIC POLYNOMIALS 89

to be as small as possible, so we want to find polynomials of degree (d, d) with resultant

±n. Prest and Zimmermann [87] described some heuristic evidence that such polynomi-

als exist. Polynomials of degree (d, d) have 2d+2 coefficients. We choose 2d+2 random

integers (as coefficients) bounded by O(n1/(2d)). There are about (n1/(2d))2d+2 = n1+1/d

possible values for the resultant. It is reasonable to expect that about n1/d of them

equal n.

Montgomery [63] showed that finding polynomials of degree (d, d) with coefficients

O(n1/(2d)) was equivalent to find a geometric progression modulo n of length 2d − 1

bounded by O(n1−1/d). He gave a good way to do this for d = 2 (see Section 7.2).

Given a set of non-linear polynomials F1, F2, we want to compare and optimize

these polynomials. We may use the logarithmic L2-norm for the product of polynomials

F1, F2

1

2
log

∫∫

Ω

(F1(x, y)F2(x, y))
2 dx dy

 (7.1)

where Ω is the sieving region. Murphy’s E function can also be used as a better estimate

to rank the top polynomials before the sieving test.

At the moment, we don’t know how to optimize the root and size properties for two

non-linear polynomials of similar degree. For polynomials of degree (d, 1), the rotations

by the linear polynomials are critical to reduce the coefficients and improve the roots

without greatly increasing the size. For two non-linear polynomials, a rotation is likely

to increase the size significantly.

7.2 Two quadratic polynomials

Montgomery’s two-quadratic method [34, 73] is a standard way for generating two

quadratic polynomials. Given n, it finds a pair of quadratic polynomials with a common

root m (mod n), each of whose coefficients are O(n1/4). We find a small geometric

progression c = (c0, c1, c2) of ratio m (mod n). It is not a geometric progression over

Z, since otherwise the two polynomials are not coprime. Explicitly, the vector c can be

constructed as follows.

90 CHAPTER 7. POLYNOMIAL SELECTION USING LATTICE REDUCTION

Given n, we fix a prime p <
√
n for which n is a quadratic residue. We choose r

such that |r − n1/2| ≤ p/2 and r2 ≡ n (mod p). The geometric progression is given by

c =
(

p, r, (r2 − n)/p
)

in which the ratio m is r/p (mod n). It can also be expressed

as c = (p, pm, pm2) (mod n). The terms in the geometric progression are bounded by

O(n1/2).

Let f1(x) = a2x
2+ a1x+ a0 and f2(x) = b2x

2+ b1x+ b0 be two polynomials having

a common root m modulo n. Then (a0, a1, a2) and (b0, b1, b2) are orthogonal to the

vector (p, pm, pm2) modulo n. Two such orthogonal vectors can be given by (r, −p, 0)

and ((rt− c2)/p, −t, 1) where t ≡ c2/r (mod p) and c2 ≡ (r2 − n)/p (mod n). We

apply the LLL reduction to get two reduced vectors and use them as (a0, a1, a2) and

(b0, b1, b2).

We consider the size of reduced vectors (coefficients). The two basis vectors have

coefficientsO(n1/2). Let the matrix formed by two basis vectors beM . The determinant

(volume) of the lattice spanned by the basis vectors is given by
√

det(MMT) ≈ pn1/2.

Therefore, the shortest vector is about
√
pn1/4. If p is small, the coefficients are O(n1/4).

The resultant is O(n).

In the two-quadratic method, we use a small geometric progression of length 3. To

generate two cubic polynomials (of small coefficients), one need to find a small geometric

progression of length 5. It is not known how to generate such geometric progression

of length 2d − 1 efficiently. Alternatively, there exist some methods to produce small

geometric progressions of length d+ 1.

7.3 Two cubic polynomials

Williams’ method. Williams [98] described a variant of the two-quadratic method

to produce two cubic polynomials. We start with a four-term geometric progression

(1, r, r2, r3 − n) where r = n1/3 + δ for some δ. The terms r2 and r3 − n are bounded

by O(n2/3) when δ is small. For convenience, we write r2 = r2 and r3 = r3 − n. We

construct the following basis matrix. The basis (row) vectors represent independent

7.3. TWO CUBIC POLYNOMIALS 91

polynomials having r as a root:

M =

r −1 0 0

r2 0 −1 0

r3 0 0 −1

. (7.2)

We apply LLL reduction to the matrix. The reduced vectors give coefficients of the form

(a0, a1, a2, a3). The lattice has determinant O(n2/3) and hence the shortest vector is

O(n2/9). The coefficients of the reduced polynomials are O(n2/9). Since the resultant

is a homogeneous polynomial of degree 6, it is O(n4/3).

Prest and Zimmermann’s method. Prest and Zimmermann [87] described an

improved method which could further reduce the size and resultant. It considers a

geometric progression of length d+ 1 and takes skewed polynomials into account. We

consider the case of generating two cubic polynomials.

Let r be an integer close to n1/3. We start with a four-term geometric progression

(1, r, r2, r3−n) as before. To capture the skewed polynomials, we consider the skewness

matrix S.

S =

1 0 0 0

0 s 0 0

0 0 s2 0

0 0 0 s3

.

We multiply the skewness matrix S by M in Equation (7.2).

MS =

r −s 0 0

r2 0 −s2 0

r3 0 0 −s3

. (7.3)

Two reduced vectors give skewed coefficients of the form (a0, a1s, a2s
2, a3s

3) and

(b0, b1s, b2s
2, b3s

3). We apply the inverse S−1 to recover the coefficients.

Let K be the expected length of the shortest vector. Prest and Zimmermann sug-

92 CHAPTER 7. POLYNOMIAL SELECTION USING LATTICE REDUCTION

gested to minimize the“median”size of the coefficients, more precisely
√
a0a3 ≈ Ks−3/2.

Here K is about
(

det(MS(MS)T)
)1/6

= s
(

(r3 − n)2 + r4s2 + r2s4 + s6
)1/6

. Assume

that s ≪ n1/3. The dominant term is r4s2 and hence K ≈ s4/3n2/9.

The median coefficient
√
a0a3 ≈ Ks−3/2 ≈ s−1/6n2/9. We want s to be large to

minimize the median coefficient. It is reasonable to assume that K is smaller than the

norm of the linear polynomial sx − r. Therefore, an upper bound on s is given by

K ≪ n1/3, which shows s ≪ n1/12. We choose the maximum value s ≈ n1/12. The

median coefficient is O(n5/24), while the resultant is O(n5/4).

Koo, Jo and Kwon’s method. Koo, Jo and Kwon [54] extended Montgomery’s

analysis [63] by considering geometric progressions of length d+ k for 1 ≤ k ≤ d− 1.

Let d = 3 for example. Given n, we fix a prime p < n1/3 for which x3 ≡ n (mod p)

is solvable. We choose a root r of x3 ≡ n (mod p) to be close to n1/3. Denote r2 = r2

and r3 = (r3 − n)/p. The geometric progression is given by c =
(

p2, pr, r2, r3
)

in

which the ratio m is r/p (mod n). The terms in the geometric progression is bounded

by O(n2/3). The basis matrix is

M =

Kp2 1 0 0 0

Kpr 0 s 0 0

Kr2 0 0 s2 0

Kr3 0 0 0 s3

. (7.4)

where K is a sufficiently large integer. The reduced vectors have the form

(0, a0, a1s, a2s
2, a3s

3), from which the polynomial coefficients can be recovered. We

can also use three polynomials having root r/p mod n as the basis vectors:

M ′ =

r −p 0 0

r2 0 −p2 0

r3 0 0 −p3

.

7.4. DEGREE-(D, 1) POLYNOMIALS 93

The skewed version of the basis matrix is

M ′S =

r −ps 0 0

r2 0 −p2s2 0

r3 0 0 −p3s3

.

After lattice reduction, we apply the inverse S−1 to recover the coefficients. The resul-

tant for the two recovered polynomials is O(n5/4).

Koo, Jo and Kwon [54] also gave a method to generate geometric progressions of

length d+ 2. Let d = 3. A five-term geometric progression is given by

c =
(

p2, pr, r2, (r3 − n)/p, r(r3 − n)/p2
)

,

provided that r(r3−n)/p2 is an integer. To control the size of the geometric progression,

we want that x3 ≡ n (mod p2) is solvable with a root r ≈ p. At present, it is not known

how to find such p’s efficiently when n is large.

7.4 Degree-(d, 1) polynomials

We can also use lattice-based techniques to generate polynomial pairs of degree (d, 1).

Herrmann, May and Ritzenhofen [42] described a method to generate degree-(d, 1)

polynomial pairs.

We construct a (d + 1)-dimensional square matrix of basis vectors and reduce it

using LLL. For example, let d = 5. We choose m ≈ n1/(d+1) = n1/6. The row (basis)

vectors represent independent polynomials having root m modulo n. We consider a

94 CHAPTER 7. POLYNOMIAL SELECTION USING LATTICE REDUCTION

skewed version of the basis matrix:

MS =

n 0 0 0 0 0

m −s 0 0 0 0

m2 0 −s2 0 0 0

m3 0 0 −s3 0 0

m4 0 0 0 −s4 0

m5 0 0 0 0 −s5

.

We apply the LLL reduction on MS and then recover a vector by multiplying S−1.

The linear polynomial is given by x − m. Herrmann, May and Ritzenhofen [42] also

suggested to modify the norm used in LLL to capture the L2-norm for polynomials.

We can further modify the matrix to find non-monic linear polynomials. Let the

skewness s = 1. The linear polynomial lx − m gives root r = m/l (mod n). It is

reasonable to consider the following matrix.

M ′′ =

n 0 0 0 0 0

r (mod n) −1 0 0 0 0

r2 (mod n) 0 −1 0 0 0

r3 (mod n) 0 0 −1 0 0

r4 (mod n) 0 0 0 −1 0

r5 (mod n) 0 0 0 0 −1

.

As before, we can apply the skewness matrix and then do the LLL reduction. The

determinant of the lattice is the same. However, the resultant might increase due to

the linear polynomial. In the end, we can use various optimization techniques from

Chapters 5, 6 to optimize the polynomial pair.

Chapter 8

Conclusions and further work

In this chapter, we summarise the main findings of this thesis and suggest some topics

for further work.

8.1 Conclusions

The thesis discussed polynomial selection for the number field sieve. We mainly focused

on polynomial selection with two polynomials, one of which is a linear non-monic poly-

nomial. Polynomial selection with such polynomials can be divided into three stages:

polynomial generation, size optimization and root optimization.

Polynomial selection often starts with generating many polynomials with small lead-

ing coefficients. We reviewed two algorithms for generating such polynomials due to

Kleinjung [48] [49]. In practice, Kleinjung’s second algorithm [49] and its variants

perform better.

Size optimization aims to further reduce the size of the raw polynomials by changing

skewness, translating and rotating. Traditional local optimization techniques fail for

many sextic polynomials when the integers to be factored are large. We described some

methods to optimize the size by better determining the translation.

Root optimization aims to produce polynomials that have many roots modulo small

primes and prime powers. The traditional root sieve is time-consuming on sextic poly-

nomials for factoring large integers. We discussed some faster algorithms for root opti-

95

96 CHAPTER 8. CONCLUSIONS AND FURTHER WORK

mization. The algorithms are based on Hensel’s lemma and a root sieve on congruences

classes modulo small prime powers.

The size and root optimization have been tested empirically in CADO-NFS [6] and

found to work for sextic polynomials.

8.2 Further work

We suggest the following areas for further research.

The size and root optimization techniques described in this thesis focus on sextic

polynomials. Larger integers such as RSA-1024 may use septic polynomials. It is not

known whether the methods for sextic polynomials can be modified to cater for septic

polynomials.

Polynomial selection with two non-linear polynomials can be beneficial, if we can

find such polynomials with small coefficients. At the moment, two cubic polynomials

and two non-linear polynomials of degree (4, 3) are the most interesting cases. It is

not yet clear how to generate such polynomials efficiently to compete with degree (d, 1)

polynomial pairs (d = 5 or 6 respectively).

Furthermore, it is not known whether it is necessary or how to optimize the root

and size properties for the two non-linear polynomials of similar degree.

Appendix A

Some polynomials

This appendix lists some polynomial pairs discussed in the thesis.

Polynomial A768:

f(x) = 90901008x6

+ 2258124423259704x5

+ 281874977451514689609641x4

− 1803952179278655099130237177824x3

− 35583065959892224664209208391851390580x2

+ 41994172518178515646523609392516698968894816x

+ 10060650076075345201531962247148703049772016107520

g(x) = 9051269666431942968619x

− 15437147462287145670372578820920041741

97

98 APPENDIX A. SOME POLYNOMIALS

Polynomial B768:

f(x) = 3586380x6

+ 19064700x5

+ 282376234705558545084843x4

+ 718693701130240225274612814188142x3

+ 4340200162893339761259991222380911282x2

− 12541568233611627968693736065307030120x

+ 9008374174467563445936947139641332877

g(x) = 53362054832582019225383x

− 26457722251514149087911384249044520830

Polynomial C768:

f(x) = 3586380x6

− 4117247962908300x5

+ 2251833225235534190109843x4

+ 136220930040469670784138610516x3

− 17501466895317212327777571690641007037x2

− 261107030382558999477876428688304027476731x

+ 7615515160280039774928055019776311036048363657612

g(x) = 53362054832582019225383x

− 26457732461661641051994527730477303005

Bibliography

[1] L. M. Adleman. Factoring numbers using singular integers. In Proceedings of

STOC ’91, pages 64–71. ACM, 1991.

[2] L. M. Adleman and M.-D. A. Huang. Function field sieve method for discrete

logarithms over finite fields. Information and Computation, 151(1-2):5–16, 1999.

[3] K. Aoki and H. Ueda. Sieving using bucket sort. In Proceedings of ASIACRYPT

’04, volume 3329 of Lecture Notes in Computer Science, pages 92–102. Springer,

2004.

[4] D. Atkins, M. Graff, A. K. Lenstra, and P. C. Leyland. The magic words are

Squeamish Ossifrage. In Proceedings of ASIACRYPT ’94, volume 917 of Lecture

Notes in Computer Science, pages 263–277. Springer, 1994.

[5] E. Bach and R. Peralta. Asymptotic semismoothness probabilities. Mathematics

of Computation, 65:1701–1715, 1996.

[6] S. Bai, P. Gaudry, A. Kruppa, F. Morain, L. Muller, E. Thomé, and P. Zim-

mermann. CADO-NFS, an implementation of the number field sieve. http://

cado-nfs.gforge.inria.fr, 2011.

[7] D. J. Bernstein, P. Birkner, T. Lange, and C. Peters. ECM using Edwards curves.

http://cr.yp.to/papers.html#eecm, 2010.

[8] H. Boender. Factoring large integers with the quadratic sieve. PhD thesis, Leiden

University, 1997.

99

http://cado-nfs.gforge.inria.fr
http://cado-nfs.gforge.inria.fr
http://cr.yp.to/papers.html#eecm

100 BIBLIOGRAPHY

[9] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery. On

the security of 1024-bit RSA and 160-bit elliptic curve cryptography. Cryptology

ePrint Archive, Report 2009/389, http://eprint.iacr.org/2009/389, 2009.

[10] J. W. Bos, T. Kleinjung, A. K. Lenstra, and P. Montgomery. A 73-digit prime

factor by ECM. http://www.loria.fr/~zimmerma/records/p73, 2010.

[11] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical

Mathematics, 20(2):176–184, 1980.

[12] R. P. Brent. Some integer factorization algorithms using elliptic curves. In Aus-

tralian Computer Science Communications 8, 149–163, 1986.

[13] R. P. Brent. Factorization of the tenth and eleventh Fermat numbers. Technical

report, TR-CS-96-02, CSL, ANU, 1996.

[14] R. P. Brent. Factorization of the tenth Fermat number. Mathematics of Compu-

tation, 68(225):429–451, 1999.

[15] R. P. Brent. Some parallel algorithms for integer factorisation. In Proceedings of

the Euro-Par ’99, volume 1685 of Lecture Notes in Computer Science, pages 1–22.

Springer, 1999.

[16] R. P. Brent. Recent progress and prospects for integer factorisation algorithms. In

Proceedings of COCOON ’00, volume 1858 of Lecture Notes in Computer Science,

pages 3–22. Springer, 2000.

[17] R. P. Brent and J. M. Pollard. Factorization of the eighth Fermat number. Math-

ematics of Computation, 36:627–630, 1981.

[18] R. Bărbulescu and P. Gaudry. Improvements on the discrete logarithm problem

in GF(p). Technical report, CARAMEL, INRIA Nancy, 2011.

[19] J. Buhler, H. Lenstra, and C. Pomerance. Factoring integers with the number field

sieve. In Lenstra and Lenstra [57], pages 50–94.

http://eprint.iacr.org/2009/389
http://www.loria.fr/~zimmerma/records/p73

BIBLIOGRAPHY 101

[20] S. Cavallar. On the number field sieve integer factorisation algorithm. PhD thesis,

Leiden University, 2002.

[21] H. Cohen. A Course in computational algebraic number theory, volume 138 of

Graduate Texts in Mathematics. Springer, 1993.

[22] A. Commeine and I. Semaev. An algorithm to solve the discrete logarithm problem

with the number field sieve. In Proceedings of PKC ’06, volume 3958 of Lecture

Notes in Computer Science, pages 174–190. Springer, 2006.

[23] D. Coppersmith. Modifications to the number field sieve. Journal of Cryptology,

6:169–180, 1993.

[24] D. Coppersmith. Solving linear equations over GF(2): block Lanczos algorithm.

Linear Algebra and its Applications, 192:33 – 60, 1993.

[25] R. Cosset. Factorization with genus 2 curves. Mathematics of Computation,

79(270):1191–1208, 2010.

[26] J.-M. Couveignes. Computing a square root for the number field sieve. In Lenstra

and Lenstra [57], pages 95–102.

[27] H. Cramér. Mathematical Methods of Statistics. Princeton University Press, 1999.

[28] R. Crandall and C. Pomerance. Prime numbers: a computational perspective.

Springer, second edition, 2005.

[29] T. Denny, B. Dodson, A. Lenstra, and M. Manasse. On the factorization of RSA-

120. In Proceedings of CRYPTO ’93, volume 773 of Lecture Notes in Computer

Science, pages 166–174. Springer, 1994.

[30] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976.

[31] B. Dixon and A. Lenstra. Factoring integers using SIMD sieves. In Proceedings

of EUROCRYPT ’93, volume 765 of Lecture Notes in Computer Science, pages

28–39. Springer, 1994.

102 BIBLIOGRAPHY

[32] W. Ekkelkamp. Predicting the sieving effort for the number field sieve. In Pro-

ceedings of ANTS-VIII, volume 5011 of Lecture Notes in Computer Science, pages

167–179. Springer, 2008.

[33] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[34] M. Elkenbracht-Huizing. An implementation of the number field sieve. Experi-

mental Mathematics, 5:231–253, 1996.

[35] P. Flajolet and A. Odlyzko. Random mapping statistics. In Proceedings of EU-

ROCRYPT ’89, volume 434 of Lecture Notes in Computer Science, pages 329–354.

Springer, 1990.

[36] W. Gautschi. Chapter 7. Error function and Fresnel integrals. In M. Abramowitz

and I. A. Stegun, editors, Handbook of Mathematical Functions: with Formulas,

Graphs, and Mathematical Tables, page 1046. Dover Publications, 1972.

[37] D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM

Journal on Discrete Mathematics, 6(1):124–138, 1993.

[38] J. E. Gower. Rotations and translations of number field sieve polynomials. In Pro-

ceedings of ASIACRYPT ’03, volume 2894 of Lecture Notes in Computer Science,

pages 302–310. Springer, 2003.

[39] A. Granville. Smooth numbers: computational number theory and beyond. In

Proc. MSRI Conf. Algorithmic Number Theory: Lattices, Number Fields, Curves

and Cryptography. MSRI Publications, Volume 44, 2008.

[40] B. Harris. Probability distribution related to random mappings. The Annals of

Mathematical Statistics, 31:1045–1062, 1960.

[41] M. Hellman. An overview of public key cryptography. IEEE Communications

Magazine, 40(5):42 –49, 2002.

BIBLIOGRAPHY 103

[42] M. Herrmann, A. May, and M. Ritzenhofen. Polynomial selection using lattices.

In Workshop on Factoring Large Integers, Ruhr-University Bochum, 2009.

[43] A. Hildebrand and G. Tenenbaum. Integers without large prime factors. Journal

de Théorie des Nombres de Bordeaux, 5(2):411–484, 1993.

[44] A. Joux and R. Lercier. The function field sieve is quite special. In Proceedings

of ANTS-V, volume 2369 of Lecture Notes in Computer Science, pages 431–445.

Springer, 2002.

[45] A. Joux and R. Lercier. Improvements to the general number field sieve for dis-

crete logarithms in prime fields. A comparison with the Gaussian integer method.

Mathematics of Computation, 72(242):953–967, 2003.

[46] A. Joux and R. Lercier. The function field sieve in the medium prime case. In Pro-

ceedings of EUROCRYPT ’06, volume 4004 of Lecture Notes in Computer Science,

pages 254–270. Springer, 2006.

[47] A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren. The number field sieve in

the medium prime case. In Proceedings of CRYPTO ’06, volume 4117 of Lecture

Notes in Computer Science, pages 326–344. Springer, 2006.

[48] T. Kleinjung. On polynomial selection for the general number field sieve. Mathe-

matics of Computation, 75(256):2037–2047, 2006.

[49] T. Kleinjung. Polynomial selection. In CADO workshop on integer factorization,

INRIA Nancy, 2008. http://cado.gforge.inria.fr/workshop/slides/kleinjung.

pdf.

[50] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry,

A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele, A. Timofeev, and

P. Zimmermann. Factorization of a 768-bit RSA modulus. In Proceedings of

CRYPTO ’10, volume 6223 of Lecture Notes in Computer Science, pages 333–350.

Springer, 2010.

http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf
http://cado.gforge.inria.fr/workshop/slides/kleinjung.pdf

104 BIBLIOGRAPHY

[51] T. Kleinjung and J. Franke. Continued fractions and lattice sieving. In Proceed-

ings of SHARCS 2005, 2005. http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/

talks/FrankeKleinjung.pdf.

[52] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,

Reading, Mass., 3rd edition, 1997.

[53] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203–

209, 1987.

[54] N. Koo, G. H. Jo, and S. Kwon. On nonlinear polynomial selection and geometric

progression (mod N) for number field sieve. Cryptology ePrint Archive, Report

2011/292, http://eprint.iacr.org/2011/292, 2011.

[55] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite

fields. In Proceedings of CRYPTO ’90, volume 537 of Lecture Notes in Computer

Science, pages 109–133. Springer, 1990.

[56] A. K. Lenstra. Integer factoring. Designs, Codes and Cryptography, 19, 2000.

[57] A. K. Lenstra and H. W. Lenstra, Jr., editors. The Development of the Number

Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer, 1993.

[58] A. K. Lenstra, H. W. Lenstra Jr., M. S. Manasse, and J. M. Pollard. The factoriza-

tion of the ninth Fermat number. Mathematics of Computation, 61(203):319–349,

1993.

[59] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Mathematics,

126:649–673, 1987.

[60] D. V. Matyukhin. On the asymptotic complexity of computing discrete logarithms

in the field GF(p). Diskretnaya Matematika, 15(1):28–49, 2003.

[61] R. C. Merkle. Secure communications over insecure channels. Communications of

the ACM, 21:294–299, 1978.

http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/FrankeKleinjung.pdf
http://eprint.iacr.org/2011/292

BIBLIOGRAPHY 105

[62] V. S. Miller. Use of elliptic curves in cryptography. In Proceedings of CRYPTO

’85, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer,

1986.

[63] P. L. Montgomery. Small geometric progressions modulo N . Unpublished note,

December 1993, revised 1995 and 2005.

[64] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.

Mathematics of Computation, 48(177):243–264, 1987.

[65] P. L. Montgomery. An FFT extension of the elliptic curve method of factorization.

PhD thesis, University of California at Los Angeles, 1992.

[66] P. L. Montgomery. Square roots of products of algebraic numbers. In Proceedings

of Symposia in Applied Mathematics, Mathematics of Computation, 1943-1993: a

Half-Century of Computational Mathematics, volume 48, pages 567–571, 1994.

[67] P. L. Montgomery. A survey of modern integer factorization algorithms. CWI

Quarterly, 7:337–366, 1994.

[68] P. L. Montgomery. A block Lanczos algorithm for finding dependencies over GF(2).

In Proceedings of EUROCRYPT ’95, volume 921 of Lecture Notes in Computer

Science, pages 106–120. Springer, 1995.

[69] P. L. Montgomery and A. Kruppa. Improved stage 2 to p±1 factoring algorithms.

In Proceedings of ANTS-VIII, volume 5011 of Lecture Notes in Computer Science,

pages 180–195. Springer, 2008.

[70] P. L. Montgomery and R. D. Silverman. An FFT extension to the p−1 algorithm.

Mathematics of Computation, 54(190):839–854, Apr. 1990.

[71] M. A. Morrison and J. Brillhart. A method of factoring and the factorization of

F7. Mathematics of Computation, 29:183–205, 1975.

[72] B. A. Murphy. Modelling the Yield of Number Field Sieve Polynomials. In Algo-

rithmic Number Theory - ANTS III, LNCS 1443, pages 137–147, 1998.

106 BIBLIOGRAPHY

[73] B. A. Murphy. Polynomial selection for the number field sieve integer factorisation

algorithm. PhD thesis, The Australian National University, 1999.

[74] B. A. Murphy and R. P. Brent. On quadratic polynomials for the number field

sieve. In Proceedings of the CATS ’98, volume 20 of Australian Computer Science

Communications, pages 199–213. Springer, 1998.

[75] J. Neukirch. Algebraic number theory, volume 322 of Fundamental Principles of

Mathematical Sciences. Springer, 1999.

[76] P. Q. Nguyen. A Montgomery-like square root for the number field sieve. In

Proceedings of ANTS-III, volume 1423 of Lecture Notes in Computer Science, pages

151–168. Springer, 1998.

[77] J. Papadopoulos. Call for volunteers: RSA768 polynomial selection, 2011. http://

www.mersenneforum.org/showthread.php?t=15540.

[78] J. Papadopoulos. Msieve, 2011. http://sourceforge.net/projects/msieve/.

[79] M. Petzold. A note on the first moment of extreme order statistics from the normal

distribution. Working paper, Department of Statistics, Göteborg University, 2000.

[80] J. M. Pollard. Theorems on factorization and primality testing. Proceedings Cam-

bridge Philosophical Society, 76:521–528, 1974.

[81] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathe-

matics, 15:331–334, 1975.

[82] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics

of Computation, 32:918–924, 1978.

[83] J. M. Pollard. Factoring with cubic integers. In Lenstra and Lenstra [57], pages

4–10.

[84] J. M. Pollard. The lattice sieve. In Lenstra and Lenstra [57], pages 43–49.

http://www.mersenneforum.org/showthread.php?t=15540
http://www.mersenneforum.org/showthread.php?t=15540
http://sourceforge.net/projects/msieve/

BIBLIOGRAPHY 107

[85] C. Pomerance. Analysis and comparison of some integer factoring algorithms. In

Computational Methods in Number Theory, pages 89–139. Math. Centrum Tract

154, Amsterdam, 1982.

[86] C. Pomerance. A tale of two sieves. Notices of the American Mathematical Society,

43:1473–1485, 1996.

[87] T. Prest and P. Zimmermann. Non-linear polynomial selection for the number

field sieve. Technical report, CARAMEL, INRIA Nancy, 2010.

[88] R. L. Rivest. Cryptography. In Handbook of Theoretical Computer Science (Volume

A: Algorithms and Complexity), chapter 13, pages 717–755. Elsevier and MIT

Press, 1990.

[89] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978.

[90] J. P. Royston. Algorithm AS 177: Expected normal order statistics (exact and ap-

proximate). Journal of the Royal Statistical Society. Series C (Applied Statistics),

31(2):pp. 161–165, 1982.

[91] O. Schirokauer. Discrete logarithms and local units. Philosophical Transactions:

Physical Sciences and Engineering, 345(1676):pp. 409–423, 1993.

[92] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts

in Mathematics. Springer, 1986.

[93] R. D. Silverman. The multiple polynomial quadratic sieve. Mathematics of Com-

putation, 48:329–339, 1987.

[94] R. D. Silverman and S. S. Wagstaff. A practical analysis of the elliptic curve

factoring algorithm. Mathematics of Computation, 61(203):445–462, 1993.

108 BIBLIOGRAPHY

[95] C. Stahlke and T. Kleinjung. Ideas for finding better polynomials to use in GNFS.

In Workshop on Factoring Large Numbers, Discrete Logarithmes and Cryptana-

lytical Hardware, Institut für Experimentelle Mathematik, Universität Duisburg-

Essen, 2008.

[96] E. Teske. On random walks for Pollard’s rho method. Mathematics of Computa-

tion, 70(234):809–825, 2001.

[97] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic

applications. Journal of Cryptology, 12(1):1–28, 1999.

[98] R. S. Williams. Cubic polynomials in the number field sieve. Master’s thesis, Texas

Tech University, 2010.

[99] P. Zimmermann and B. Dodson. 20 years of ECM. In Proceedings of ANTS-VII,

volume 4076 of Lecture Notes in Computer Science, pages 525–542. Springer, 2006.

	Acknowledgements
	Abstract
	Notation
	Introduction
	Public-key cryptography
	RSA and Integer factorization
	Some algorithms for integer factorization
	Pollard's rho method
	Pollard's p-1 method
	The elliptic curve method
	Congruence of squares
	The number field sieve

	Discrete logarithm
	Outline and contribution

	The number field sieve
	The idea of the number field sieve
	The principle of the number field sieve
	Complexity and parameters
	Stages of the number field sieve
	Polynomial selection
	Sieving
	Filtering
	Linear algebra and square root

	Polynomial selection: general
	Base-m expansion
	Quantifying the quality of polynomials
	Sieving test
	Size property
	Root property
	Murphy's E function

	Optimizing the quality of polynomials
	Steps in polynomial selection

	Polynomial generation
	Kleinjung's first algorithm
	Kleinjung's second algorithm
	Some variants

	Size optimization
	Objective function
	Local descent optimization
	Some better methods
	Use of translation
	Better use of translation

	Root optimization
	Root sieve
	A faster root sieve
	A two-stage method
	Stage 1
	Stage 2
	Further remarks and improvements

	Polynomial selection using lattice reduction
	Use of two non-linear polynomials
	Two quadratic polynomials
	Two cubic polynomials
	Degree-(d,1) polynomials

	Conclusions and further work
	Conclusions
	Further work

	Appendix Some polynomials
	Bibliography

