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Abstract

Consider sums of the form > ¢(~) where ¢ is a given function
and ~ ranges over the ordinates of nontrivial zeros of the
Riemann zeta-function in a given interval. We show how the
numerical estimation of such sums can be accelerated,
improving in many cases on a well-known lemma of Lehman
(1966), and give an example involving an analogue of the
harmonic series.

This is joint work with and .
For a preprint, see https://arxiv.org/abs/2009.13791.
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Motivation

» In analytic number theory we often encounter sums of the
form > ¢(~) where the sum is taken over the nontrivial
zeros p = [ + iy of ((s), perhaps restricted to some
interval [Ty, Tz or [T1, o).

> For example, consider > . .7 1/~2. In some applications
it is sufficient to know that the sum converges as T — oc.
In other applications, especially when obtaining “explicit”
bounds, we may need numerical upper and lower bounds
on the sum (for specific values of T,oras T — ).

> Similarly for }-o_. . 1/v, except that here the sum
diverges as T — oo, and we may want bounds on its rate
of growth.
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Some notation

F is the set of positive ~, where p = § + i~ is a non-trivial
zero of {(9).

IfO < T ¢&F,then N(T)is #zeroswith0 <~ < T and
S(T) = n'arg((} + iT) defined in the usual way.

If T e F then N(T) = lim,_,o NTHENT=e),

and similarly for S(T).

> 1,<<1, #(7) indicates that if v = Ty or v = T, then the
term ¢(v) is given weight .
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Some useful results

In Titchmarsh, Ch. 9, we find N(T) = L(T) + Q(T), where

T T 7
and the “remainder term” Q(T) = S(T) + O(1/T).

More precisely, we can prove that, for all t > 2,

1

- < ——
Q) - S(1)| < 55
It is known that S( ) < logT,s0 Q(T) < log T.
Also, if S1(T fo t) dt, then Sy(T) < log T.

Explicit bounds on S( ) and S¢(T) are known.
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Lehman’s Lemma — motivation

We want to estimate sums of the form

S 60).

Ti<y< T2

We can think of this as a Riemann sum approximating
T2
p(t)w(t) dt,

Ty

where w(t) is a weight function that takes into account the
non-uniform spacing of the ys. The natural weight function is

w(t) :=L'(t) = 217 log(t/2m) .

Lehman’s lemma bounds the error (the difference between the
sum and integral) if we use this weight function.
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Lehman’s Lemma

Lemma (Lehman, 1966)

If2re< Ty < T, and ¢ : [Ty, To] — [0, ) is monotone
decreasing on [Ty, T»], and

ETT)= 3 o) / o(t) log(/2r) dt
T1<’y<T2

then

T2
|E(T1, T2)| <A <2¢(T1)|Og T; —|—/ ¢(tt)dt> ,

T

where A is an absolute constant.
Remark 1: We may take A =0.28.
Remark 2: If [7° ¢(t)/tdt < oo, we can allow T, — co.

Richard Brent Lehman’s Lemma



An assumption

Assumption: From now on we assume that ¢(t) is in C?[Ty, o)

and satisfies ¢'(t) < 0 and ¢"(t) > 0 on [Ty, o).

These conditions are stronger than those assumed in Lehman’s
Lemma.

In most applications ¢(t) is in C*°[Ty, 00). Thus, essentially the

only new condition is that ¢”(t) > 0.
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Our lemma

Lemma (BPT, 2020)
/f27r TO T1 NS T2 and

T2
E(Ti.To)i= > ol —7 _ 9(D)log(t/2m) dt
Ti<y<T 1

(as in Lehman’s lemma), then

E(Ty, T2) = ¢(T2)Q(T2) — ¢(T1)Q(Tq) + Ex(Ty, T), where

.
Ex(Tq, T2) = — . i #'()Q(t) dt, and
1

|E2(Ty, T2)| < 2(Ao + At log Tq) [¢'(T1)| + (A1 + A2)o(T1)/ Ty

Remark 3: We may take Ag = 2.067, Ay = 0.059, A, = 0.007.



Idea of the proof

Write the sum as a Stieltjes integral involving

dN(t) = dL(t) + dQ(t), then use integration by parts to obtain
the first expression for E, as an integral involving ¢'(t) Q(t)
(so far this is as in the proof of Lehman’s Lemma).

Replace Q(t) by S(t) in the integral, and bound the error
introduced, using Q(t) — S(t) <« 1/t.

Use integration by parts again to obtain an integral involving
¢"(t)S;(t), and bound this integral using an explicit bound on
S (t). This gives a bound involving integrals of ¢”(t) and

¢ (t) log t.

Finally, use integration by parts once again, to avoid
expressions involving ¢”(t), and simplify.

It is interesting to note that some terms involving T, cancel.
This also occurs in the proof of Lehman’s lemma.
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Corollary — convergent sums

Theorem (BPT, 2020)
Suppose that2m < To < T and [7° ¢(t) log(t/2r) dt < cc. Let

Z¢ / o(t) log(t/2m) d

T<’y

Then E(T) = —¢(T)Q(T) + Ex(T), where

- /T T sma dt
and

[E2(T)| < 2(Ao + A1 log T) [¢(T)| + (A1 + A2)¢(T)/ T.

Proof.
Let To — oo in our lemma, and replace T by T. O]
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Example

Consider the convergent sum ¢y :=>__ 1/~2.
A first approximation is the sumover 0 <y < T
(a finite sum involving < T log T terms).

The erroris > 7 1/7% ~ log(T)/2x T,

We can do better by using Lehman’s lemma with
(Ty, To) — (T,00). This gives

’ 1 [*logt/2m
S 1= g [ a ),

t2
=T

where |E(T)| < 0.28(0.5 + 2log T)/ T2.

1+ log(T/2
Using integration by parts, the integral here is +02g(7_/7r).
T
Thus, using Lehman’s lemma decreases the error bound by a

factor of order T, from O(log(T)/T) to O(log(T)/T?).
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Example continued
If we use our theorem instead of Lehman’s lemma, the error
term becomes E,(T), where

8.334 +0.236log T
|E2(T)| < 3 .

Thus, we get another factor of order T, from O(log(T)/T?) to
O(log(T)/T°).

For example, taking T = 1000 (corresponding to the first 649
nontrivial zeros), we have the following error bounds.

» Naive truncation of series: 9.7 x 10~
» Using Lehman’s lemma: 4.009 x 1075,
» Using our theorem: .
The improvement over Lehman’s lemma is a factor of 400.
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Example continued

Corollary (BPT, 2020)
¢y = 0.0231049931154189707889338104 + (5 x 10728),
where |9| < 1.

Proof.
This follows from our theorem by an interval-arithmetic

computation using the first n = 100 zeros, with
T = 3293531632.542 - - - € (p, Ypsr)- 0

Richard Brent Convergent sums



Divergent sums — existence of a limit F(Tp)
We can handle certain divergent sums in much the same way
as convergent sums.

Theorem (BPT, 2020)
Suppose that Ty > 2w, and

/°°¢>()dt<

, I
Then there exists
.
F(To) = lim_ Z o(y /¢(t)|og(t/27r)dt ,
o<y<T 2r J1,

and

F(To) = —o(To)Q(To) — [ #(tyat)dt

To
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Example — a "harmonic" series

Corollary (BPT, 2020)

!/ .
Let G(T) = ) _ o7 1/7- Then there exists
0 log?(T /2r)

Hi= Jim (G( ==
and > Q(t) 1
Proof.
Take ¢(t) =1/t and To = 27 in our Theorem, and observe that
Q(2r) =1/8. O
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Example continued
Remark 1. The definition of H is analogous to the usual
definition of Euler’s constant C:

N
_ 1
e g (- wen).

and the expression for H is analogous to the result

C:1—/OOX_LXde.
1

X2

Remark 2. Hassani (2016) asked about the existence of the
limit H. Hassani and several other authors gave bounds on
G(T), but did not prove the existence of H.

Remark 3. An independent proof of the existence of H uses
only integration by parts (as in the proof of Lehman’s lemma)
and the fact that Q(t) < log . For details, see Theorem 1 of
https://arxiv.org/abs/2009.05251.
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Divergent sums — approximation of F( 7o)

Theorem (BPT, 2020)

Suppose that 2 < To < Ty and that ¢(t) and F(Ty) are as in
the previous theorem. Then

) g / o(1) log(t/2r) dit

To<y<Tq

- ¢(T1)Q(T1) + E2(Th),

where

|E2(T1)| < 2(Ao + A log T1) [¢(T1)[ + (A1 + A2)¢(T4)/ Tr.

Remark. The bound on |E;| is the same as in the convergent
case. This is not surprising, since both results depend on our
Lemma.
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Example — approximation of H

Suppose we wish to approximate the constant H by summing
over v € (0, T]). Lehman’s lemma gives

(T/2m)

log?
H=G(T) - =2

+A19<2IogT+1>’

T

where || < 1, and we can take A = 0.28.

However, we can do better by a factor of order T. Using the
theorem above, we obtain

(T/2m) Q(T)
4 T

H=G(T)— ¢ +Ex(T),

where

42+4+0.12log T
()] < S5
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Numerical approximation of H

Corollary
Let H be defined as above. Then

H = —0.0171594043070981495 + 9(10~18),

where |9] < 1.

Proof.

This follows from the method on the previous slide, using an
interval-arithmetic computation using the first n = 10'° zeros,
with T = v, ~ 3293531632.4 . O
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