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D-finite series and sequences
A formal power series f (z) :=

∑
fnzn is D-finite (or differentially

finite) if it satisfies a linear differential equation with polynomial
coefficients (not all zero), e.g.

(1− z)2f ′′ + (4z − 5)f ′ + 2f = 0.

Another name is holonomic.

If the series
∑

fnzn converges for sufficiently small |z |, then it
represents an analytic function f : C→ C, but we allow the case
where the radius of convergence is zero, e.g. fn = n!.

A sequence (an)n>0 is D-finite (or P-recursive) if, for some N,
(an)n>N satisfies a linear recurrence with a fixed number of
polynomial coefficients (not all zero), e.g.

nan − (2n − 1)an−1 + (n − 2)an−2 = 0, n > 2.

The two concepts are equivalent: the formal power series
∑

fnzn is

D-finite iff the sequence (fn) is D-finite.
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Closure properties of D-finiteness

The set of D-finite power series is closed under addition and
(ordinary) multiplication. (Recall that multiplication of power
series corresponds to convolution of the corresponding sequences.)

It is also closed under the Hadamard product (f ◦ g)n = fn · gn,
which corresponds to pointwise multiplication of sequences.

However, it is not closed under division, e.g. the Maclaurin series
for tan z = sin z/ cos z and sec z = 1/ cos z are not D-finite.
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Asymptotics of D-finite sequences

We are interested in the asymptotic behaviour of D-finite
sequences (an) as n→∞.

For example, it is clear from the polynomial recurrence satisfied by
a D-finite sequence (an) that, for some constant c ,
an � exp(cn log n).

Thus, it is not possible for an to grow as fast as exp(n2).

On the other hand, polynomial growth and exponential growth are
certainly possible.
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An example of “stretched exponential” growth

There are D-finite sequences (an) such that

an ∼ Ang exp(Bnα) as n→∞,

for certain constants A 6= 0, B > 0, g , and α ∈ (0, 1).

For example: from a result of Wright (1949), the coefficients in the
Maclaurin series for

exp(1/
√

1− z)

have this form of asymptotic behaviour, with

A =
1

21/3
√

3π
, B =

3

22/3
, g = −5

6
, α =

1

3
.
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Another example (our starting point)

From a result of Perron (1914), the coefficients an in the
Maclaurin series for

f0(z) := exp(z/(1− z))

have the same “stretched exponential” form of asymptotic
behaviour, with

A = 1/
√

4πe, B = 2, g = −3/4, and α = 1/2,

so

an ∼
e2
√

n

2n3/4
√
πe

.

Richard Brent Stretched exponential growth



Salvy’s conjecture

Bruno Salvy recently conjectured that similar behaviour was
possible with B < 0. In particular, he conjectured that the function

f1(z) := exE1(x) = ex

∫ ∞
x

e−t

t
dt, where x =

1

1− z
,

has Maclaurin series coefficients bn such that

bn ∼ An−3/4 exp(−2n1/2).

In the notation on the previous slides,

B = −2, g = −3/4, and α = 1/2.

We have proved Salvy’s conjecture. In fact, we have found a full
asymptotic expansion for bn.
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Differential equations for f0 and f1

Recall that f0(z) = exp(z/(1− z)). Differentiating, we see that f0
satisfies the differential equation

(1− z)2f ′0(z)− f0(z) = 0.

Similarly, with

f1(z) = exE1(x) = ex

∫ ∞
x

e−t

t
dt, where x = 1/(1− z),

we find that
(1− z)2f ′1(z)− f1(z) = z − 1.

Only the right-hand sides (and initial conditions) differ.
Differentiating twice more, we get a third-order differential
equation

(1− z)2f ′′′ + (4z − 5)f ′′ + 2f ′ = 0

satisfied by both f0 and f1.
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Recurrence relation for an

Putting f0(z) =
∑

anzn in the differential equation satisfied by f0
and equating coefficients, we get the 3-term recurrence relation

nan − (2n − 1)an−1 + (n − 2)an−2 = 0 for n > 2.

Initial conditions are a0 = a1 = 1. Using the recurrence, we can
compute (an)n>0 = (1, 1, 3/2, 13/6, 73/24, 167/40, . . .).

A closed form is

an =
n∑

k=1

1

k!

(
n − 1

k − 1

)
(n > 1).

We can also write an = L
(−1)
n (−1), where the generalised Laguerre

polynomials L
(α)
n (x) are orthogonal over [0,∞) with respect to the

weight function xαe−x .
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Recurrence relation for bn

The differential equation satisfied by f1(z) =
∑

bnzn implies a
3-term recurrence

nbn − (2n − 1)bn−1 + (n − 2)bn−2 = 0 for n > 3.

This is the same recurrence that is satisfied by (an), but the initial
conditions are different.

For (bn), the initial conditions are b0 = G , b1 = G − 1,
b2 = (3G − 2)/2, where G := eE1(1) ≈ 0.596 is the
Euler-Gompertz constant.

The recurrence can be used to compute more terms, but it is
numerically unstable if used in the forward direction.
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Asymptotic expansions of an and bn

Recall that an = [zn]f0(z) and bn = [zn]f1(z).

Using the recurrence relation satisfied by (an) and (bn), we can
prove that an and bn have closely related asymptotic expansions:

an ∼
e2
√

n

2n3/4
√
πe

∑
k>0

ckn−k/2,

bn ∼ −
√
πe

n3/4e2
√

n

∑
k>0

(−1)kckn−k/2,

for certain constants ck ∈ Q, c0 = 1.

The expansion for an is known [Perron (1914), Wright (1932)],
but the expansion for bn appears to be new.
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The Hadamard product

In the Hadamard product ρn := anbn, the exponentials and
constant

√
πe cancel, giving

ρn ∼ −
1

2n3/2

(
c0 + c1h + c2h2 + · · ·

) (
c0 − c1h + c2h2 − · · ·

)
,

where h = n−1/2. Observe that(
F (h2) + hG (h2)

) (
F (h2)− hG (h2)

)
= F (h2)2 − h2G (h2)2

= F (n−1)2 − n−1G (n−1)2,

so

ρn ∼ −
1

2n3/2

(
d0 +

d1

n
+

d2

n2
+ · · ·

)
for certain constants dk ∈ Q, d0 = 1.
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The constants ck

Let (τ)m denote the ascending factorial τ(τ + 1) · · · (τ + m − 1).

The constants ck appearing in the asymptotic expansions of an and
bn can be computed from

ck = (−1)k
k∑

j=0

[hk−j ] exp(µ(h))
(k − 2j + 3/2)2j

4j j!
,

where

µ(h) =
1

h
− 1

eh − 1
− 1

2
= −

∞∑
m=1

B2m

(2m)!
h2m−1,

and the B2m are Bernoulli numbers. This follows from results of
Temme (2013).

Numerically,

(ck)k>0 =

(
1,− 5

48
,− 479

4608
,− 15313

3317760
,

710401

127401984
, . . .

)
.
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The constants dk

The constants dk appearing in the asymptotic expansion of
ρn = anbn can be computed from the ck using

dk =
2k∑
j=0

(−1)jcjc2k−j .

This gives the following numerical values:

(dk)k>0 =

(
1,− 7

32
,

43

2048
,− 915

65536
,− 521101

8388608
, . . .

)
.

We observe that the denominators appear to be powers of two!

In other words, the (dk) appear to be dyadic rationals.
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A conjecture

Let rk := 26kdk , so

(rk)k>0 = (1,−14, 86,−3660,−1042202,−247948260, . . .).

Conjecture: for all k > 0, rk ∈ Z.

We have verified the conjecture numerically for all k 6 1000.

We also showed that rk < 0 for k > 3, rk is even for k > 0, and
4|rk unless k is zero or a power of two (all for k 6 1000).

Towards the conjecture: we can prove that k!rk ∈ Z
(even this weak result is not obvious).
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An analogy

The modified Bessel functions I0(z) and K0(z) are solutions of the
same ordinary differential equation zy ′′ + y ′ − zy = 0, but I0(z)
increases with z while K0(z) decreases. K0(z) is a minimal
solution of the ODE.

The product I0(Z )K0(z) has an asymptotic expansion

I0(z)K0(z) ∼ 1

2z

∑
k>0

ek z−2k .

Here

ek =
(2k)!3

26kk!4
=

(2k)!

26k

(
2k

k

)2

,

so clearly 26kek ∈ Z (in fact 24kek ∈ Z).

Similarly if (I0,K0) 7→ (Iν ,Kν). Here Iν(z), Kν(z) are independent
solutions of the differential equation z2y ′′ + zy ′ − (z2 + ν2)y = 0,
and we assume that ν ∈ Z.
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A recurrence for dk

The rational numbers dk , and hence the [conjectured] integers
rk = 26kdk , may be computed as follows, avoiding any mention of
the sequence (ck).

d0 = 1 and, for all k > 1, dk =
1

8k

k−1∑
j=0

αj ,k dj .

Here the coefficients αj ,k are defined by

αj ,k = (−1 + 3 · 2m−1 − 2 · 3m)(τ)m−1/(m − 1)!

+ (7− 17 · 2m + 17 · 3m)(τ)m/m!

+ (−13 + 38 · 2m − 33 · 3m)(τ)m+1/(m + 1)!

+ 6(1− 4 · 2m + 3 · 3m)(τ)m+2/(m + 2)!,

where m := k − j and τ := j + 1/2.
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A recurrence for ρn

To prove the result on the previous slide, we use a recurrence
satisfied by ρn = anbn. Since (an) and (bn) are D-finite, so also is
(ρn), so such a recurrence must exist.

Using σn := nρn, the recurrence may be written as

n(n−1)(2n − 3)σn = (2n − 1)(3n2 − 5n + 1)σn−1

− (2n − 3)(3n2 − 5n + 1)σn−2 + (n − 2)(n − 3)(2n − 1)σn−3

(for n > 3), with σ0 = 0, σ1 = G − 1, σ2 = 9G/2− 3.

The mysterious constants in the definition of αj ,k on the previous
slide arise in a natural way from the polynomials in the recurrence
for σn.

Richard Brent Recurrence for ρn



Confluent hypergeometric functions

Kummer’s differential equation may be written as

zw ′′ + (b − z)w ′ − aw = 0,

with a regular singular point at z = 0 and an irregular singular
point at z =∞. It has two (usually) linearly independent solutions
M(a, b, z) and U(a, b, z). Kummer (1837) considered

M(a, b, z) := 1F1(a; b; z) =
∑
k>0

(a)k zk

(b)k k!
, (1)

which is undefined if b is zero or a negative integer. In the case
a 6= b = 0, we can use the solution

zM(a + 1, 2, z) = lim
b→0

b

a
M(a, b, z).

Richard Brent Confluent hypergeometric functions



A second solution

For a second solution to Kummer’s differential equation, Tricomi
(1954) introduced

U(a, b, z) :=
Γ(1− b)

Γ(a + 1− b)
M(a, b, z)

+
Γ(b − 1)

Γ(a)
z1−bM(a + 1− b, 2− b, z),

where the right side is undefined if b ∈ Z, but the definition may
be extended by continuity. To avoid this problem, we can use the
integral representation (for <(a) > 0,<(z) > 0)

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−zt ta−1 (1 + t)b−a−1 dt.

We are interested in the case (a, b, z) = (n, 0, 1).
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The connection between an, bn and Kummer functions

Recall that an = [zn]f0(z) and bn = [zn]f1(z).
We can prove

Theorem
For n > 1,

an = e−1M(n + 1, 2, 1) and bn = −Γ(n)U(n, 0, 1).

Sketch of proof. For an, we show that an and e−1M(n + 1, 2, 1)
satisfy the same recurrence (a so-called “connection formula”, due
to Gauss) and the same initial conditions, so must be equal.

For bn, we use an integral representation of U to obtain a
generating function.
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Application to computing the ck

Slater (1960) and Temme (2013) give asymptotic expansions of
the Kummer functions M(n, b, z) and U(n, b, z) for large n. We
can use their results to obtain asymptotic expansions of an and bn.
However, it is possible to derive the asymptotic expansions of an

and bn independently, using the recurrence that both sequences
satisfy.

The latter approach has the advantage of showing that the same
constants ck occur in both asymptotic expansions (apart from a
change of sign).

Using these two different methods, we obtain two different
formulas for the ck .
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Two formulas for the ck

The direct method gives a recursive formula: c0 = 1 and,
for all k > 1,

kck = [hk+3]
k−1∑
j=0

cjh
j
∑

s∈{±1}

(1+sh2)
1−2j

4 exp

(
2

h

(
(1 + sh2)

1
2 − 1

))
.

The results of Slater and Temme lead to the formula that we
mentioned earlier. It does not involve recursion, but does involve
Bernoulli numbers:

cm = (−1)m
m∑

j=0

[hm−j ] exp(µ(h))
(m − 2j + 3/2)2j

4j j!
,

where µ(h) = h−1 − (eh − 1)−1 − 1
2 = −

∑∞
k=1

B2k
(2k)!h

2k−1.
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Conclusion

I hope that I have given you an interesting conjecture to occupy
idle hours – but not, of course, during subsequent talks!
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