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Abstract

Sums over non-trivial zeros of the Riemann zeta-function often
arise in analytic number theory. We consider a special case
that is analogous to the harmonic series. Although the sum
diverges, we can estimate its “finite part” H by a process of
normalisation, analogous to how we can estimate Euler’s
constant C ≈ 0.5772 using the harmonic series.
We describe three algorithms for the numerical approximation
of H. The first is straightforward, with error� (log T )/T if we
use the zeros ρ satisfying 0 < =ρ 6 T .
The second algorithm is more accurate, with error
� (log T )/T 2. It obtains about twice as many correct digits in
the same time as the first algorithm.
The first two algorithms and their error bounds are
unconditional. The third algorithm, due to Juan Arias de Reyna,
is faster for the same accuracy, but assumes the Riemann
Hypothesis.



Motivation

I In analytic number theory we often encounter sums of the
form

∑
φ(ρ) or

∑
φ(γ), where φ is some specified function,

and the sum is taken over the non-trivial zeros ρ = β + iγ
of ζ(s), perhaps restricted to some finite interval
γ ∈ [T1,T2], or the semi-infinite case γ ∈ [T1,∞).

I For example, consider
∑

0<γ6T 1/γ2. In some applications
it is sufficient to know that the sum converges as T →∞.
In other applications, especially when obtaining “explicit”
bounds, we may need numerical upper and lower bounds
on the sum (for specific values of T , or as T →∞).

I Similarly for
∑

0<γ6T 1/γ, except that here the sum
diverges as T →∞, and we may want bounds valid for
large T .



Identities and a comment on RH

Occasionally a sum over zeros can be obtained analytically.
For example, with C denoting Euler’s constant,

1
2

∑
ρ

(
1

1− ρ
+

1
ρ

)
=
∑
ρ

<1
ρ

=
C
2

+ 1− 1
2

log 4π ≈ 0.0230957

This identity follows from the functional equation and Hadamard
product for ξ(s), see [MV,1 (10.24)–(10.30)].
Note that a generic non-trivial zero is ρ = β + iγ, which gives
γ = (ρ− β)/i , so if β is constant (i.e. if RH is true) there is no
essential difference between sums over ρ and sums over γ.

1MV = Montgomery and Vaughan, Multiplicative Number Theory, I.



A special case

To illustrate the main ideas we’ll consider a special case

G(T ) :=
∑

0<γ6T

1
γ
.

More general results are covered in the references (last slide).
For simplicity, in this talk we’ll assume that T is not the ordinate
of a non-trivial zero.
Multiple zeros (if any) are weighted by their multiplicities.



Analogy – the harmonic series

G(T ) is analogous to the harmonic sum

H(N) :=
∑
n6N

1
n

= log N + C + O(1/N).

Here log N =
∫ N

1 t−1 dt is an integral approximation to H(N),
and may be regarded as a “normalisation” to convert a
divergent series into an expression with a finite limit.
We’ll show that something similar works for

G(T ) =
∑

0<γ6T

1
γ
.

In this case a suitable integral approximation is∫ T

2π

log(t/2π)

2π
dt
t

=
log2(T/2π)

4π
.



A further analogy between C and H

The Dirichlet series ζ(s) =
∑
n>1

n−s formally gives the harmonic

series
∑
n>1

n−1 at s = 1. Of course, this series diverges,

because ζ(s) has a pole at s = 1.
In fact ζ(s) has a Laurent expansion that may be written as

ζ(1 + z) =
1
z

+ C0 + C1z + · · · ,

where C0 = C is Euler’s constant.
We’ll see later that, assuming RH, the Laurent expansion of a
meromorphic function known as the secondary zeta function
can be used to find H.



Some notation

ρ = β + iγ is a non-trivial zero of ζ(s), with β, γ ∈ R.
N(T ) is the number of zeros with 0 < γ 6 T .
S(T ) = π−1 arg ζ(1

2 + iT ) defined in the usual way.
(Remember, we are assuming that T 6= γ.)

We can write
N(T ) = L(T ) + Q(T ),

where L(T ) is a smooth approximation to N(T ), and

Q(T ) = S(T ) + O(1/T )

is an error term which has jumps at the ordinates of non-trivial
zeros.



Approximation of N(T )

In Titchmarsh, Ch. 9, we find N(T ) = L(T ) + Q(T ), where

L(T ) =
T
2π

(
log

(
T
2π

)
− 1
)

+
7
8

and the “remainder term” Q(T ) = S(T ) + O(1/T ).
More precisely [BPT 2021b], for all T > 2π,

Q(T ) = S(T ) +
ϑ

150T
, where |ϑ| 6 1.

It is known that S(T )� log T , so Q(T )� log T .

Also, if S1(T ) :=
∫ T

0 S(t) dt , then

S1(T )� log T .

Explicit bounds on Q(T ), S(T ) and S1(T ) are known,
e.g. |Q(T )| 6 0.28 log T for all T > 2π [BPT 2020].



Existence of the limit, and an integral expression

Theorem (BPT 2021a, Thm. 2.1)
If

G(T ) :=
∑

0<γ6T

1
γ
,

then the limit

H := lim
T→∞

(
G(T )− log2(T/2π)

4π

)

exists, and

H =

∫ ∞
2π

Q(t)
t2 dt − 1

16π
.



Sketch of proof.

G(T ) =

∫ T

2π

dN(t)
t

=

∫ T

2π

dL(t)
t

+

∫ T

2π

dQ(t)
t

.

Using integration by parts and the fact that Q(2π) = 1/8, we
find that

G(T )− log2(T/2π)

4π
=

∫ T

2π

Q(t)
t2 dt − 1

16π
+

Q(T )

T
. (∗)

Now let T →∞ and use Q(T )� log T = o(T ).



Algorithm 1

In the most obvious algorithm, we use

H = G(T )− log2(T/2π)

4π
+ E(T ).

Here G(T ) =
∑

0<γ6T 1/γ can easily be evaluated after
computing the non-trivial zeros up to height T .
The error term E(T ) can be bounded using a lemma due to
Lehman (see the next two slides). The result is

|E(T )| 6 0.28
(

1 + 2 log T
T

)
� log T

T
.

Remark
Since limT→∞ E(T ) = 0, this gives another proof of the
existence of the limit defining H, but it does not give the
integral expression for H.



Motivation for Lehman’s Lemma

Suppose that we want to estimate a sum of the form∑′

T16γ6T2

φ(γ) .

We can think of this as a sum approximating∫ T2

T1

φ(t)w(t) dt ,

where w(t) is a weight function that takes into account the
non-uniform spacing of the γs. The natural weight function is

w(t) := L′(t) =
1

2π
log(t/2π) .

Lehman’s lemma bounds the difference between the sum and
integral with this choice of w(t).



Lehman’s Lemma

Lemma (Lehman, 1966)
If 2πe 6 T1 6 T2 and φ : [T1,T2] 7→ [0,∞) is monotone
decreasing on [T1,T2], then

∑′

T16γ6T2

φ(γ) =
1

2π

∫ T2

T1

φ(t) log(t/2π) dt + E(T1,T2),

where

|E(T1,T2)| 6 A

(
2φ(T1) log T1 +

∫ T2

T1

φ(t)
t

dt

)
,

and A is an absolute constant.
Lehman gave A = 2, but this can be reduced to A = 0.28.
[BPT 2020, Corollary 1].



A closer look at the error term in Algorithm 1

From the identity (*) four slides back, we can write

E(T ) = −Q(T )

T
+

∫ ∞
T

Q(t)
t2 dt � log T

T
.

Now Q(t) = S(t) + O(1/t), so∫ ∞
T

Q(t)
t2 dt =

∫ ∞
T

S(t)
t2 dt + O(1/T 2).

Recall that S1(T ) =
∫ T

0 S(t) dt � log T , so we expect
cancellation in

∫∞
T (S(t)/t2) dt . Integration by parts gives∫ ∞

T

S(t)
t2 dt = −S1(T )

T 2 + 2
∫ ∞

T

S1(t)
t3 dt � log T

T 2 .

By evaluating Q(T )/T , the error bound can be reduced by a
factor of orderT .



Algorithm 2A

Use

H = G(T )− log2(T/2π)

4π
− Q(T )

T
+ E2(T ),

where
E2(T ) =

∫ ∞
T

Q(t)
t2 dt � log T

T 2 .

G(T ) can be computed as in Algorithm 1, using the ordinates of
nontrivial zeros up to height T . While doing this, we can
compute N(T ), so Q(T ) = N(T )− L(T ) is easily obtained.
Thus, the “correction term” −Q(T )/T is cheap to compute, and
the overall work is about the same as for Algorithm 1. The error
bound improves from

0.28 + 0.56 log T
T

to
4.27 + 0.12 log T

T 2 ,

where the numerical constants are as in [BPT 2021a, §4].



Algorithm 2B

By absorbing the computation of the correction term into the
computation of the sum, we obtain Algorithm 2B, which uses
the following theorem.

Theorem (BPT 2021a, Theorem 4.1)
For all T > 2π,

H =
∑

0<γ6T

(
1
γ
− 1

T

)
− log2(T/2πe) + 1

4π
+

7
8T

+ E2(T ),

where E2(T ) is as above.

This shows that the error term E2(T ) is a continuous function
of T , unlike E(T ), which has jumps. The continuity of E2(T )
also follows from its expression as an integral.



Algorithm 2C

Recall that H =

∫ ∞
2π

Q(t)
t2 dt − 1

16π
, Q(t) = N(t)− L(t).

Suppose we use the first n ordinates γj (j = 1, . . . ,n)
of non-trivial zeros of ζ(s) in the upper half-plane, and
define γ0 := 2π, T := γn. Then

H =
n−1∑
j=0

∫ γj+1

γj

j − L(t)
t2 dt − 1

16π
+

∫ ∞
T

Q(t)
t2 dt .

The n integrals in the sum can each be evaluated in closed
form, and the infinite integral is just E2(T ). Thus, this gives an
algorithm that is equivalent to Algorithms 2A and 2B, modulo
the effect of rounding errors.



Numerical approximation of H

Corollary (BPT 2021a, Corollary 4.2)

H = −0.0171594043070981495 + ϑ(10−18),

where |ϑ| 6 1.

Proof.
This follows from Algorithm 2B, via an interval-arithmetic
computation using the first n = 1010 zeros, with
T = γn ≈ 3293531632.4 .
Remarks
Ignoring rounding errors, the error bound is 6.4× 10−19.
Algorithms 2A and 2C should give the same result.
With Algorithm 1, the error bound is 3.9× 10−9.
Previous algorithms gave about 5D, and no error bound.



Generalisation

Nearly everything can be generalised to cover sums of the form∑
T6γ<U

φ(γ),

where φ : [T ,U) ⊆ [1,∞) 7→ [0,∞) is in C2 and satisfies:

φ′(t) 6 0, φ′′(t) > 0 for all t ∈ [T ,U),

and (if U =∞) ∫ U

T

φ(t)
t

dt <∞.

For example, φ(t) = t−c satisfies these conditions
for any c > 0 and 1 = T 6 U 6∞.
For details of the generalisation, see [BPT 2021b].



The secondary zeta function

The secondary zeta function Z (s) is defined by

Z (s) :=
∞∑

n=1

α−s
n , <s > 1,

where ρn = 1
2 + iαn runs through the zeros ρ of ζ(s) with

=ρ > 0. The αn are zeros of the Riemann-Landau Ξ function.
Note that αn is real (and αn = γn) for all n > 1 iff RH is true.
Without assuming RH, we have <αn = γn and |=αn| < 1

2 .
Z (s) extends to a meromorphic function on C, with a double
pole at s = 1, and simple poles at s = −1,−3,−5, . . ..
Its properties have been studied by many authors, starting with
Mellin (1917) and Cramér (1919). See [AdR 2020] for details.



The Laurent expansion of Z (s) at s = 1

Z (s) is a meromorphic function with a double pole at s = 1,
and we have the Laurent expansion

Z (1 + z) =
1

2πz2 −
log(2π)

2πz
+ A0 + A1z + A2z2 + · · ·

Arias de Reyna (2021) has shown that

A0 = H ′ +
log2(2π)

4π

where

H ′ = lim
T→∞

 ∑
<αn<T

1
αn
− log2(T/2π)

4π

 .

We have H ′ 6 H, and H ′ = H iff RH is true. In this respect,
H − H ′ is analogous to the de Bruijn-Newman constant Λ.



Computing A0

If C1/4 is the circle with centre 1 and radius r = 1
4 , then

A0 =
1

2πi

∫
C1/4

Z (s)

s − 1
ds =

1
2π

∫ 2π

0
Z (1 + reiθ) dθ.

Thus A0 can be computed by numerical integration if we have a
way of evaluating Z (s) on C1/4. This can be done using the
method that Delsarte (1966) used to establish the analytic
continuation of Z (s) into the region <s 6 1, and implemented
by Arias de Reyna in mpmath.
Once A0 has been computed, we easily get

H ′ = A0 −
log2(2π)

4π
.



Algorithm 3

This leads to a conditional algorithm for computing H: evaluate
A0 (and hence H ′) to the desired accuracy using numerical
integration around the circle C1/4, as on the previous slide.
Assuming RH, we have H = H ′.
Using this algorithm, Arias de Reyna computed H ′ to
100 decimal places. His result

H ′ = 0.017159404307098149454 . . .

confirms our unconditional 18-decimal place result (for H).
The advantage of Algorithm 3 over the other algorithms that we
have mentioned is its speed.
The disadvantage is that it assumes RH. Also, it is difficult to
give a completely rigorous error bound, due to the numerical
integration and the difficulty of evaluating Z (s), which involves
much cancellation if <s < 1.



An obvious question and answer

Question:
Should we attempt to disprove RH by showing that H 6= H ′ ?

Answer: NO.
In order to find H sufficiently accurately, we would have to
compute so many zeros of ζ(s) that an exception to RH (if it
exists) would already have shown up.
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