Inverse Problems,
Cryptography and Security

Richard P. Brent
MSI and RSCS
ANU

13 April 2012

Richard Brent Inverse Problems, Cryptography and Security



Cryptanalysis as an Inverse Problem

According to Wikipedia, cryptanalysis is the art of defeating
cryptographic security systems, and gaining access to the
contents of encrypted messages, without being given the
cryptographic key.

We can think of encryption as a mapping f : X — Y, where X is
the space of plain-texts, and Y is the space of cipher-texts. For
example, X and Y might both be the set of strings over some
alphabet, or (after a simple encoding) the set of non-negative
integers.

f should be an injection, so a unique inverse function
g: Y — X exists. The recipient of an encrypted message f(x)
applies g to obtain the original message x = g(f(x)).

Richard Brent Inverse Problems, Cryptography and Security



The cast

When discussing cryptography, the usual cast of characters
includes:

» Alice, who is sending a message to Bob
(or receiving a message from Bob).
» Bob, who is receiving a message from Alice
(or sending a message to Alice).
» Eve, who is eavesdropping on the communications
between Alice and Bob.
We'll assume that Eve can read the ciphertext that Alice sends
to Bob, but can not change it. She is a “passive” eavesdropper.

More dangerous would be an “active” eavesdropper who could
perhaps impersonate Bob to Alice and Alice to Bob (a “man in
the middle” attack).

Richard Brent Inverse Problems, Cryptography and Security



The key

Assume that Eve knows the encryption function f and the
ciphertext y, and wants the plaintext x. One method is to try all
x" € X until we find x’ such that y = f(x’); then x = x’ is the
plaintext. However, the search space X is usually so large that
this method is impractical.

The cryptographic key is some information K which makes it
easy to compute the inverse function g. For someone who
does not know K (say Eve), computing g should be difficult. In
other words, f is a “one-way” function — it is easy to compute f,
but difficult to compute its inverse.

For someone who does know K (say Bob), computing g should
be relatively easy.

Richard Brent Inverse Problems, Cryptography and Security



Secret key cryptography

In symmetric or secret key cryptography, Alice and Bob share a
secret key K. For example, if K is long enough, the encryption
function might be just f(x) = x @ K (bit-wise exclusive or). Then
the decryption function g = f, since

xeK)eK=x.

This is fine, except that Alice and Bob have to know K in
advance, and K needs to be as long as the message x.
K is called a one-time pad. It is dangerous to reuse a one-time
pad, since

(X1 @K)@(XQ@K) = X1 D Xo,
and there is enough redundancy in English text that knowing
X1 @ Xo is usually sufficient to give most of x; and x».

Richard Brent Inverse Problems, Cryptography and Security



Public key cryptography

In asymmetric or public key cryptography, Bob “publishes” his
public key K (so both Alice and Eve know K). Bob also has a
secret key S, which he should keep secret (so neither Alice nor
Eve should know S).

When Alice sends a message to Bob, she encrypts it using
Bob’s public key, i.e. the encrypted message is

y = fx(x).
Bob can decrypt Alice’s message using his secret key:

x = gs(y).

Thus ggs is the inverse function of fx.

Eve knows fx and y, but it is difficult for her to compute x
without knowing the secret key S.

Richard Brent Inverse Problems, Cryptography and Security



Finding suitable functions fx and gs

It is not so easy to find functions fx and gs that meet our
requirements. In fact, it has never been proved that such
functions exist!

Nevertheless, a few pairs of functions are believed to satisfy our
requirements. The simplest is used in the RSA cryptosystem,
named after its inventors' Rivest, Shamir and Adleman

(not Robert Scott Anderssen).

Another relatively simple algorithm is used in the El Gamal
cryptosystem?. It is closely related to the Diffie-Hellman key
exchange protocol, and can be generalised to give the basis of
elliptic curve cryptography.

| will briefly outline the RSA and El Gamal cryptosystems.

'R, S & A were not have been the first to discover the algorithm, but they
were the first to make it public — shades of Newton and Leibniz!
2Named after its inventor Taher El Gamal.

Richard Brent Inverse Problems, Cryptography and Security



Euler’s totient function

If nis a positive integer, then Euler’s totient or phi function ¢(n)
is defined by

o(n) = |{k:1<k<n, (k,n)=1}

where (k, n) is the greatest common divisor of k and n.
¢(n) is a multiplicative function, and

oo =p (1)

for prime p, so it is easy to compute
1
¢(”):”H<1 _p>
pln

if we know the prime factors of n. (The product is taken over all
primes p dividing n.)

Richard Brent Inverse Problems, Cryptography and Security



A theorem of Euler

If (a,n) =1, then
a*™ =1 mod n.

This follows from the fact that ¢(n) is the order of the
multiplicative group of integers modulo n.

In the case that nis a prime, it is just Fermat’s little theorem
a™'=1mod n.

In the application to RSA cryptography, n = pq is the product of
two distinct primes, and ¢(n) = (p —1)(g — 1).

Richard Brent Inverse Problems, Cryptography and Security



The RSA cryptosystem — Bob’s setup

Bob chooses two distinct, large primes p and q, computes a
“modulus” n = pq, and chooses an “encryption exponent” e > 1
such that (e, ¢(n)) = 1. He publishes his public key (n, e).

Bob uses the extended Euclidean algorithm to compute his
“decryption exponent” d, an integer such that de = 1 mod ¢(n).
He keeps (n, d) as his private key.

At this point Bob can forget p and g (although he might keep
them for reasons of efficiency). In any case, d, p, g and ¢(n)
must be kept secret.

Richard Brent Inverse Problems, Cryptography and Security



RSA encryption

In order to send a message to Bob, Alice first encodes it as an
integer x in the range 0 < x < n (splitting the message into
blocks if necessary, and padding to ensure that x3 > n).

Using Bob’s encryption exponent e (which is public knowledge),
Alice computes the ciphertext

y = x° mod n.

Note that modular exponentiation can be done quickly using the
binary representation of the exponent e.

Richard Brent Inverse Problems, Cryptography and Security



RSA decryption

Bob receives the ciphertext y from Alice. Using his secret
key d, he computes
x = y¥ mod n.

He can then decode the integer x to obtain the original
message.

Why does this work? Because
y? = x% mod n,
but de = 1 mod ¢(n), so by Euler’s theorem

de

X = x mod n.

Richard Brent Inverse Problems, Cryptography and Security



Security of RSA — How hard is the inverse problem?

If Eve can factor nto find p and g, then she can compute ¢(n)
and the decryption exponent d in the same way that Bob did.

Hence, p and g should be chosen large enough that their
product n = pq is “impossible” to factor using existing
algorithms and computer hardware. Nowadays, one should
probably choose p and g to be primes of at least 512 bits, so

n has at least 1024 bits. (A number of 768 bits, or 232 decimal
digits, was factored by Kleinjung et al in 2010; the prime factors
each have 116 decimal digits.)

There is no proof that factoring is hard — if P = NP, then
factoring can be done in polynomial time. The best known
algorithms are not polynomial (in A = log n), but they are not
“fully” exponential. The number field sieve algorithm has
running time

exp(A\1/3F9).

Richard Brent Inverse Problems, Cryptography and Security



Pitfalls

There are many pitfalls related to the practical use of RSA.
Here are three of them:

» If the message x is too small, say x < n'/¢, then the
ciphertext is just y = x€, so Eve can find x by taking an
e-th root.

» If Bob does not keep ¢(n) secret, then Eve knows both
p+qg=n+1—¢(n)and pqg = n, so she can find p and g
by solving a quadratic equation.

» The ciphertext is a single-valued function of the plain-text.
Thus, if Alice is sending simple yes/no messages like “buy’
or “sell”, Eve will soon figure out which is which. A solution
is to include some random padding in each message.

Richard Brent Inverse Problems, Cryptography and Security



What if?

What if someone found a fast algorithm for integer
factorization? (And did not keep it secret!)

Would that be the end of public key cryptography?

Not necessarily, because there are public key cryptosystems
that are not based on the assumed difficulty of integer
factorization.

One such is the El Gamal cryptosystem, which is based on the
assumed difficult of the discrete logarithm problem (which | will
define soon).

Maybe integer factorization is easy, but finding discrete
logarithms is hard (or vice versa — we don’t know).

Richard Brent Inverse Problems, Cryptography and Security



The discrete logarithm problem

Suppose that p is a fixed prime, and g a primitive root mod p,
i.e. a generator of the multiplicative group of integers mod p.
Consider x, y such that y = g¥ mod p. Since g°~' = 1 mod p,
we assumethat0 < x<p—1and0 <y <p.

If x is given, it is easy to compute y (this is just modular
exponentiation, as used in the RSA algorithm, although for a
prime modulus).

On the other hand, if y is given, it is not obvious how to
compute x efficiently.

This is the discrete logarithm problem — the name comes from
the analogy with the real case (x = log, y).

Richard Brent Inverse Problems, Cryptography and Security



Diffie-Hellman key exchange

Before describing the El Gamal cryptosystem | will briefly
mention the related Diffie-Hellman key exchange protocol.

Alice and Bob choose a prime modulus p and a primitive root g.
They are not secret, so we can assume that Eve knows them.

Alice generates a random integer x, computes a = g*¥ mod p,
and sends it to Bob.

Bob generates a random integer y, computes b = g¥ mod p,
and sends it to Alice.

Alice computes K = b* mod p and Bob computes
K = & mod p. These two integers are equal because

b* = g = g¥ = 2@ mod p.

Alice and Bob could now communicate using symmetric
cryptography with K as a shared key.

Richard Brent Inverse Problems, Cryptography and Security



What about Eve?

Eve knows g, p,g* mod p, and g mod p. She needs to know
K = g®¥ mod p. One way to do this is to solve a discrete
logarithm problem to find x (or y).

There may be a way to find K without first finding x or y (this is
called the Diffie-Hellman problem). However, it is plausible that
finding K is no easier than solving a discrete logarithm
problem.

The situation is analogous with RSA — it might be possible for
Eve to crack RSA without factoring the modulus, but it is not
obvious how she can do so.

Richard Brent Inverse Problems, Cryptography and Security



The EI Gamal cryptosystem

El Gamal is similar to Diffie-Hellman. Bob chooses a prime p
and a primitive root g. He also chooses a random integer y,
and computes b = g¥ mod p. His public key is (g, p, b) and his
secret key is (g, p, ¥).

For Alice to send a message to Bob, she chooses a random
integer x, computes a = g* mod p and ¢ = mb* mod p

(we assume that she encoded the message as an integer

m € (0, p), using some straightforward scheme).

The ciphertext is (a, ¢).

Bob receives (a, ¢), computes & mod p, and uses the fact that
a’ = b* = g mod p (as in Diffie-Hellman). Thus, he can
compute m = (&)~'c mod p.

Eve is stuck, unless she can solve the Diffie-Hellman problem
or guess the random numbers used by Alice or Bob.

Richard Brent Inverse Problems, Cryptography and Security



Elliptic curve cryptography

Elliptic curve cryptography (ECC) is based on the fact that the
discrete logarithm problem can be defined in any group.

El Gamal uses the multiplicative group of a finite field Z/pZ.
However, we could also use the group defined in the usual way
on an elliptic curve over a finite field.

Why do this? The main motivation is that there is an index
calculus algorithm for solving the discrete logarithm problem
over a finite field in sub-exponential time (though not polynomial
time) — analogous to the number field sieve algorithm for
integer factorization. The index calculus algorithm does not
seem to generalise to the elliptic curve case.

Thus, if the parameters are chosen to give the same level of
security, we can get by with shorter keys (and faster algorithms)
using ECC. Of course, there are pitfalls - - -

Richard Brent Inverse Problems, Cryptography and Security



References

1. W. Diffie and M. E. Hellman, New directions in cryptography,
IEEE Trans. Inf. Theory IT-22 (1976), 644—654.

2. T. El Gamal, A public-key cryptsystem and a signature
scheme based on discrete logarithms, IEEE Trans. Inf. Theory
31 (1985), 469-472.

3. N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48
(1987), 203—-209.

4. A. J. Menezes, P. C. van Oorschot and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1997.

5. V. Miller, Uses of elliptic curves in cryptography, Proc.
Crypto 85, 417—-426.

6. R. Rivest, A. Shamir and L. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Comm. ACM
21 (1978), 120-126.

Richard Brent Inverse Problems, Cryptography and Security



