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Abstract

We give the asymptotic behaviour as z→ 1− of a Mahler
function F(z) that was introduced by Dilcher and Stolarsky and
is related to the Stern sequence. F(z) satisfies the recurrence

F(z) = (1 + z + z2)F(z4)− z4F(z16).

We also consider the associated function µ(z) = F(z)/F(z4)
which may be written as a continued fraction. The analysis
depends on locating singularities of the Mellin transforms of
ln F(e−t) and lnµ(e−t).
There are applications to questions of transcendence and
algebraic independence.

Richard Brent Abstract



Motivation – Mahler’s method

One of the first significant contributions of Mahler
is an approach, now called “Mahler’s method”, yielding
transcendence and algebraic independence results for
the values at algebraic points of a large family of
power series satisfying functional equations of a
certain type. In the seminal paper [9] 1 Mahler
established that the Fredholm series f (z) =

∑
k≥0 z2k

,
which satisfies f (z2) = f (z)− z, takes transcendental
values at any nonzero algebraic point in the open unit
disc.

J. Borwein, Y. Bugeaud and M. Coons
The legacy of Kurt Mahler
AustMS Gazette, March 2014, pg. 16.

1K. Mahler, Math. Ann. 101 (1929), 342–366.
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The function F(z)

Dilcher and Stolarsky [Acta Arithmetica, 2009] introduced a
Mahler function F(z) = 1 + z + · · · satisfying the recurrence

F(z) = (1 + z + z2)F(z4)− z4F(z16).

F(z) is related to the Stern sequence.
We consider the asymptotic behaviour of F(z) as z→ 1−.
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The Stern sequence

Stern’s diatomic sequence (or Stern-Brocot sequence)
is defined by

a0 = 0,

a1 = 1,

a2n = an for n > 0,

a2n+1 = an + an+1 for n > 0.

This sequence has many interesting properties (see the OEIS
entry A002487). For example, an/an+1 runs through all the
reduced nonnegative rationals exactly once.
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Some properties of F(z)

Dilcher and Stolarsky (2009) defined F(z) using a polynomial
analogue of the Stern sequence, and deduced the recurrence

F(z) = (1 + z + z2)F(z4)− z4F(z16). (1)

However, for our purposes it is simpler to define F(z) by the
recurrence (1) and the auxiliary condition F(z) = 1 + O(z) as
z→ 0.
Using Mahler’s method, Adamczewski (2010) proved that F(q)
is transcendental for every algebraic q, 0 < |q| < 1.
Independently, Michael Coons (2010) proved that F(z) is a
transcendental function, along with results on transcendence
at algebraic arguments.
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The auxiliary function µ(z)

We are interested in the behaviour of F(z) for z ∈ [0, 1), and in
particular the asymptotic behaviour of F(z) as z→ 1−.
It is useful to define an auxiliary function µ : [0, 1) 7→ R by

µ(z) =
F(z)
F(z4)

. (2)

From the recurrence for F(z) and (2), µ(z) satisfies the
recurrence

µ(z) = 1 + z + z2 − z4

µ(z4)
. (3)

Our strategy is to analyse the asymptotic behaviour of µ(z) and
then deduce the corresponding behaviour of F(z).
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µ(z) as a continued fraction

Observe that µ(z) may be written as a continued fraction

µ(z) = (1 + z + z2)− z4/µ(z4)

= (1 + z + z2)− z4

(1 + z4 + z2·4)− z42/µ(z42)
= · · ·

Since µ(z) = F(z)/F(z4), we have an explicit expression for
F(z) as an infinite product:

F(z) =
∞∏

k=0

µ
(

z4k
)
. (4)

In this sense we have an explicit solution for F(z) as an infinite
product of continued fractions.
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Some properties of F(z) as an analytic function

Lemma
The Maclaurin series

F(z) =
∞∑

n=0

fnzn

has coefficients fn ∈ {0, 1}. Also, F(z) is strictly monotonic
increasing and unbounded for z ∈ [0, 1), and can not be
analytically continued past the unit circle.

From the functional equation for F(z) it follows that F(z) has a
singularity at z = exp(2πi/2k) for all non-negative integers k.
Thus, there is a dense set of singularities on the unit circle,
which is a natural boundary.
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Properties of µ(z)

Lemma
If µ1 := limx→1− µ(x) and µ′1 := limx→1− µ

′(x), then

µ1 =
3 +
√

5
2

= ρ2 ≈ 2.618 (5)

and

µ′1 =
21 + 8

√
5

11
≈ 3.535. (6)

Sketch of proof.
Let Q(x) be the larger root of Q(x) = 1 + x + x2 − x4/Q(x).
Show that µ(x) < Q(x) for all x ∈ (0, 1). Hint – use induction on
x = x4−n

0 , where x0 is sufficiently small.
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µ(x) and µ′(x) for x ∈ [0, 1)
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What can we say about µ′′(x)?

It appears from the graph of µ′(x) that µ′′(x) is unbounded as
x→ 1−, and this is indeed true. We have the following result,
where the constant 2 lg(ρ) is best possible.2

Lemma
Let α ≤ 2 lg(ρ) ≈ 1.388. Then, for t ∈ (0, 1) we have

µ′′(e−t) = O(tα−2) (7)

and
µ(e−t) = µ1 − tµ′1 + O(tα). (8)

2We write lg(x) for log2(x).
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Why the exponent α ≈ 1.388?

Differentiating the recurrence for µ(z) twice, we obtain

µ′′(e−t) = A(t) + B(t)µ′′(e−4t),

where A(t) is bounded, and

B(t) = 16e−10t/µ(e−4t)2 = 16/µ2
1 + O(t).

The exponent α is chosen so that 16/µ2
1 ≤ 42−α, since this

inequality is necessary (and sufficient) for the inductive proof to
go through.
Since µ1 = ρ2, we have to choose α ≤ 2 lg(ρ) ≈ 1.388.
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Mellin transforms

Our strategy is to deduce the asymptotic behaviour of µ(z) and
F(z) as z→ 1− from certain Mellin transforms.
Specifically, define

F(s) :=
∫ ∞

0
ln(F(e−t)) ts−1 dt

and
M(s) :=

∫ ∞
0

ln(µ(e−t)) ts−1 dt.

The integrals converge in the half-plane <(s) > 0. For <(s) ≤ 0
we define F(s) andM(s) by analytic continuation (if possible).
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Properties of the Mellin transforms

Since
lnµ(e−t) = ln F(e−t)− ln F(e−4t),

we see that
M(s) = (1− 4−s)F(s).

We can deduce the behaviour of ln F(e−t) for small positive t
from knowledge of the singularities of F(s).
Since F(s) = (1− 4−s)−1M(s), it is sufficient to determine the
singularities ofM(s) and (easy) those of (1− 4−s)−1.
First we use the Lemmas above to extend the domain of
definition ofM(s) into the left half-plane.
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Analytic continuation ofM(s)

Define
µ̃(t) := ln(µ(e−t))− ln(µ1)e−λt,

where

λ :=
µ′1

µ1 lnµ1
≈ 1.403 .

Since λ ≥ 1, µ̃(t) = O(e−t) as t→ +∞.
Also, from the Lemmas above, as t→ 0+ we have

µ̃(t) = (λ lnµ1 − µ′1/µ1)t + O(tα).

Our choice of λ makes the coefficient of t vanish, so
µ̃(t) = O(tα).
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Analytic continuation ofM(s)

Let
M̃(s) :=

∫ ∞
0

µ̃(t)ts−1 dt.

Since µ̃(t) = O(tα), the integral converges for <(s) > −α. Now

M(s) = M̃(s) + ln(µ1)λ−sΓ(s)

gives the analytic continuation ofM(s) into the half-plane

H := {s ∈ C : <(s) > −2 lg(ρ)}.

In H, the only singularities ofM(s) occur at the singularities of
Γ(s), i.e. at s ∈ {0,−1}.
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Singularities of F(s) in H

The Mellin transform F(s) = (1− 4−s)−1M(s) has three types
of singularities in H.
(a) A double pole at s = 0, since Γ(s) has a pole there, and the

denominator 1− 4−s vanishes at s = 0.
(b) Poles at s = ikπ/ ln(2) for k ∈ Z\{0}, since the denominator

1− 4−s vanishes at these points.
(c) A pole at s = −1, since Γ(s) has a pole there.
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Asymptotics of ln F(e−t)

Theorem
For arbitrary ε > 0 and small positive t,

ln F(e−t) = − lg(ρ) ln(t) + c0 +
∞∑

k=1

ak(t) + c1t + O(t2 lg(ρ)−ε),

where c0 ≈ 0.1216 and c1 ≈ 0.4501 are constants, and

ak(t) =
1

ln 2
<
(
M
(

ikπ
ln 2

)
exp(−ikπ lg(t))

)
.

Note. It is easy to see that ak(4t) = ak(t), so the ak(t) are
periodic in log(t).
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The oscillatory terms ak(t)

We can write

ak(t) = Ak cos(kπ lg(t)) + Bk sin(kπ lg(t)).

Define

Ck :=
√

A2
k + B2

k = max
t>0
|ak(t)| = |M(ikπ/ ln 2)|

ln 2
.

Numerically, we find
C1 ≈ 2.1× 10−3, C2 ≈ 2.2× 10−6, C3 ≈ 2.8× 10−9,
C4 ≈ 3.3× 10−12, . . .
The constants Ck appear to decrease exponentially fast as
k→∞.
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Sketch proof of the theorem

Consider the singularity of type (a).
Define L(s) :=M(s)/Γ(s). Then

L(0) = 2 ln ρ, L′(0) = M̃(0)− 2 ln(λ) ln(ρ) ≈ 0.06.

Near the double pole at s = 0,

F(s) =
L(0)
2 ln 2

s−2 + c0 s−1 + O(1),

where

c0 =
(ln 2− γ)L(0) + L′(0)

2 ln 2
.

Standard arguments applied to the inverse Mellin transform
now give the first two terms (− lg(ρ) ln(t) + c0).
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Sketch proof continued

Now consider the singularities of type (b).
These are simple poles at s = ikπ/ ln 2 for k ∈ Z\{0}.
From the pole at ikπ/ ln 2 we get a term

Tk(t) :=
1

ln 4
M
(

ikπ
ln 2

)
exp(−ikπ lg(t)).

Combining the terms Tk(t) and T−k(t) for k ≥ 1, the imaginary
parts cancel and we are left with the oscillatory term ak(t).
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Sketch proof continued

Now consider the singularity of type (c).
At s = −1, F(s) has a pole with residue

c1 =
λ lnµ1

3
=

µ′1
3µ1

=
23 + 3

√
5

66
.

This accounts for the term c1t.
Finally, the error term O(t2 lg(ρ)−ε) allows for the fact that we
have only considered the singularities of F(s) in H.
There could be (in fact are) other singularities in the half-plane

{s ∈ C : <(s) ≤ −2 lg(ρ)}.
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A corollary

All that we actually need for the applications is the following.
Corollary
For z ∈ [0, 1),

F(z) =
C(z)

(1− z)lg ρ
,

where C(z) is a positive oscillatory term, bounded away from
zero and infinity.
Remark
We find numerically that C(z) ∈ [1.11, 1.14] for all z ∈ [1/2, 1).
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A conjecture
We conjecture thatM(s) and F(s) = (1− 4−s)−1M(s) have
poles at s = −2 lg(ρ) + ikπ/ ln(2) for k ∈ Z.
This would account for numerical evidence that the error e1(t)
in the linear approximation to µ(e−t) is of order t2 lg(ρ) but does
not tend to a limit as t→ 0+, instead it has small oscillations
that are periodic in k = − lg t.

k t = 2−k µ(e−t) e1(t) e1(t)/t2 lg ρ

20 9.5367e-7 2.6180306 1.1708e-8 2.6790
21 4.7684e-7 2.6180323 4.4999e-9 2.6958
22 2.3842e-7 2.6180331 1.7079e-9 2.6787
23 1.1921e-7 2.6180336 6.5648e-10 2.6956
24 5.9605e-8 2.6180338 2.4917e-10 2.6786

Approximation of µ(e−t) for t = 2−k, 20 ≤ k ≤ 24,
e1(t) = µ(e−t)− (µ1 − tµ′1).
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M. A. Stern, Über eine zahlentheoretische Funktion, J. Reine
Angew. Math., 55 (1858), 193–220. (Also OEIS A002487.)
D. Zagier, The Mellin transform and other useful analytic
techniques, in E. Zeidler, Quantum Field Theory I . . . ,
Springer-Verlag, 2006, 305–323.

Richard Brent References


