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Abstract

We first compare several integer factorization
algorithms, including ECM, MPQS and NFS,
for the application of factoring “typical” or
“random” large integers. We then illustrate
some of the conclusions by giving a brief
historical summary of attempts to factor
Fermat numbers.
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Notation
n and N always denote positive integers.

P denotes a prime number with n decimal
digits, e.g. p3 = 163. Similarly, ¢,, denotes a
composite number with n decimal digits,
e.g. cg = 1729.

Almost Always and Almost Never

If P(n) is a predicate, we say that P(n) holds
almost always if

L S NP

=1
N—o0 N

and we say that P(n) holds almost never if

i N2 P@)Y

N—o0 N =0.

Example (Erdés—Kac): For any € > 0, n almost
always has between (1 — €)loglogn and
(1 4 ¢)loglog n prime factors.



A Brief Description of ECM

The elliptic curve method (ECM) was
discovered by H. W. Lenstra, Jr. in 1985.
Various practical refinements were suggested by
Montgomery, Suyama, and others. References
can be found in my report [4].

Lenstra’s key idea was to apply Pollard’s

“p —1” method but to work over a different
group G. If the method fails, another group can
be tried. This is not possible for the p — 1
method, because it uses a fixed group.

ECM uses groups defined by pseudo-random
elliptic curves over Fj,, where p > 3 is the prime
factor we hope to find. (Fortunately, we don’t
need to know p in advance.) By a theorem of
Hasse (1934), the group order g for an elliptic
curve over Fy, satisfies

lg—p—1<2yp.

By a result of Deuring, all g satisfying this
inequality are possible.

Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Modulo an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W(p) = exp (\/(2 +0o(1))logplog logp)

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oo.

ECM can routinely find factors p of size about
30 decimal digits, and it has successfully found
factors as large as 49 decimal digits. Details can
be found in [3].

Choice of Parameters

ECM has several parameters. The most
important is the first-phase limit By. The
optimal choice of the parameters depends on
the size of the factor p. Since p is unknown, we
have to guess or use some sort of adaptive
strategy. Some suggestions are given in my
report [4]. Fortunately, the expected
performance of ECM is not very sensitive to the
choice of parameters.

Expected Performance of ECM

In Table 1 we give a small table of log;q W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation, see [4].

Table 1: Expected work for ECM

digits D | log;a W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80
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ECM, MPQS and NFS

We assume that the multiple polynomial
quadratic sieve (MPQS), and the (general)
number field sieve (NFS) are familiar.

If N is a (large) integer with prime factors
p1 > p2 > ..., we assume that the expected
time to factor N by these three methods is
Teem(N), Tarps(N), Tnrs(N) respectively,
where

log o = /(2 + o(1)) log pa log log pa

log Trmpgs = \/(1 + o(1)) log N loglog N

logTnrs = i/(cﬁ— 0(1)) log N (loglog N)?

Here c is some positive constant, and the o(1)
terms are as pa — 0o or N — 0.

ECM and MPQS

Theorem
Tarrgs(N) > eV18NTgoy(N) almost always.

Idea of Proof

<log TMpQS>2 S log N
logTeem / — (2+0(1))logpa

but from the known distribution of log p2/ log N
this is at least 1 4+ £ with probability at least

1 — O(£?). Thus, the Theorem holds if eV18 ¥
is replaced by f(N), where

log f(N) =0 (\/logNloglogN) .
Corollary

For all € > 0, Tecm < €Tmpgs holds almost
always.
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ECM and NFS

Theorem
For all € > 0, Tyrs < €Tecam holds almost
always.

However, this is not the full story, because ECM
can find small factors quickly, and after dividing
them out NFS can finish the factorization more
quickly than if ECM had not been used.

Let Tg‘c)‘M(N) be the expected time for ECM to
find at least Ak prime factors of N, where k is
the total number of prime factors of N. (It does
not matter how we count multiple factors.)
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Theorem
Let K be any positive constant, 0 < A < 1.

If A < 2/3 then ngM < KTnFgs almost always,

and if A > 2/3 then Té)\C)vM > KTnrg almost
always.

Thus, it is better to use a combination of ECM
and NFS than either alone, and with a sensible
strategy we expect to find about two thirds of
the prime factors by ECM and the remaining
one third by NFS.
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Some history of Fermat numbers

For a nonnegative integer n, the n-th Fermat
number is F, = 22" + 1. Tt is known that F,, is
prime for 0 < n < 4, and composite for

5 < n < 23. Also, for n > 2, the factors of F,,
are of the form

k2nt2 41,

In 1732 Euler found that 641 =5-27 +1is a
factor of F5, thus disproving Fermat’s belief
that all F,, are prime. Euler apparently used
trial division by primes of the form 64k + 1 (not
just 128k + 1).

The complete factorization of the Fermat
numbers Fg, F7,. .. has been a challenge since
Euler’s time. Because the F,, grow rapidly in
size, a method which factors F;, may be
inadequate for Fj,41.

No Fermat primes larger than Fj are known,
and a probabilistic argument makes it plausible
that only a finite number of F,, (perhaps only
Fy, ..., Fy) are prime. It is known that F,, is
composite for 5 < n < 23.
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Fg

In 1880, Landry factored Fg = 274177 - p14 .
Landry’s method was never published in full,
but Williams has attempted to reconstruct it.

Hand Computations

In the period 1877-1970, several small factors of
F, for various n > 9 were found by taking
advantage of the special form of these factors.
For example, in 1903 Western found the factor
pr = 2424833 = 37 - 216 + 1 of Fy.

Significant further progress was only possible
with the development of the digital computer
and more efficient algorithms.
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Fr
In 1970, Morrison and Brillhart factored

Fy = 59649589127497217 - pao

by the continued fraction method. This method
has now been superseded by MPQS which,
perhaps surprisingly, has never been the first to
factor a Fermat number.
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Fy
In 1980, Brent and Pollard factored

Fy = 1238926361552897 - pea

by a modification of Pollard’s “rho” method.
The “rho” method is now largely superseded by
ECM.

The larger factor pge of Fg was first proved
prime by Williams using the method of
Williams and Judd. Later, I provided a simpler
proof by factoring pea — 1.

Nowadays, F; and Fg are “easy” to factor by
ECM or MPQS.
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Fy

Logically, the next step after the factorization of
Fy was the factorization of Fy. It was known
that

Fg = 2424833 - C148

The 148-digit composite number resisted attack
by methods such as Pollard rho, Pollard p £ 1,
and the elliptic curve method (ECM), which
would have found “small” factors. It was too
large to factor by the continued fraction method
or even by MPQS.

The difficulty was finally overcome by the
invention of the (special) number field sieve
(SNFS), based on a new idea of Pollard.

In 1990, Lenstra, Lenstra, Manasse and Pollard,
with the assistance of many collaborators and
approximately 700 workstations scattered
around the world completely factored Fy by
SNFS.

Fio

After the factorization of Fy in 1990, Fjq was
the “most wanted” number in various lists of
composite numbers.

F1p was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge [18] in 1953
(also on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM we found a 40-digit factor of Fig on
October 20, 1995. The 252-digit cofactor
c291/Ppag passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorization of Fig is

p{:g - 3323233825327523%68337395736200454918783366342657 Fig = 45592577 - 6487031809 - pag - p2s2
pgo = 4659775785220018543264560743076778192897
Later, SNFS was generalised to GNFS (what
we called simply NFS above).
17 18
Fy Summary

F11 was completely factored in 1988, before the
factorization of Fy and Fig. In fact,

Fy; = 319489 -974849 -
167988556341760475137 -
3560841906445833920513 - psea

The two 6-digit factors were found by
Cunningham in 1899, and I found the remaining
factors in May 1988, using ECM on a Fujitsu
VP100. The 564-digit factor passed a
probabilistic primality test, and a rigorous proof
of primality was provided by Morain.

The reason why Fj; could be completely
factored before Fg and Fig is that the difficulty
of completely factoring numbers by ECM is
determined mainly by the size of the
second-largest prime factor of the number.

The second-largest prime factor of Fj; has 22
digits and is much easier to find by ECM than
the 40-digit factor of Fig or the 49-digit factor
of Fg.
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A brief summary of the history of factorization
of Fs,..., Fi1 is given in the Table.

Table 2: Complete factorization of Fy,, n=15,...,11

n Factorization Date Comments
5 P3 - p7 1732 | Buler
6 At 1880 | Landry
7 P17 - P22 1970 Morrison and Brillhart
8 P16 * P62 1980 Brent and Pollard (p16, p62)
1980 Williams (primality of pg2)
9 D7 - P49 - P99 1903 Western (p7)
1990 Lenstra et al (pag, pog)
10 P8 - P10 * P40 - P252 1953 | Selfridge (pg)
1962 Brillhart (p10)
1995 | Brent (p4o,P252)
11 | pe-pg-p21-p22-pse4 | 1899 | Cunningham (pe,pg)
1988 | Brent (p21,P22,P564)
1988 Morain (primality of p5ga4)
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F12

The smallest Fermat number which is not yet
completely factored is Fio. It is known that

Fio = 114689 - 26017793 -
63766529 - 190274191361 -
1256132134125569 - c1187 ,

where the 16-digit factor was found by Baillie in
1986, using the Pollard p — 1 method (and
rediscovered in 1988 using ECM).

F19 has at least seven prime factors, spoiling a
“conjecture” based on the observation that F,
has exactly n — 6 prime factors for 8 <n < 11.
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Fis
It is known that

Fi3 = 2710954639361 -
2663848877152141313 -
3603109844542291969 -
319546020820551643220672513 - ca391 ,

where the 13-digit factor was found by
Hallyburton and Brillhart (1975), and the two
19-digit factors were found by Crandall (1991).

I found the 27-digit factor in June 1995, using
ECM on an IBM PC equipped with a Dubner
Cruncher board.

F14

F14 = cq933 is composite, but no nontrivial
factors are known. The smallest prime factor
probably has at least 30 decimal digits.
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A new factor of Fig

Fie = 825753601-188981757975021318420037633-c19694

where the 9-digit factor was found by Selfridge
(1953), and the 27-digit factor was found in
December 1996 by Brent, Crandall, Dilcher and
Van Halewyn (BCDH) using ECM. For details,
see our report [5].

A new factor of Fi5

Fi5 = 1214251009 - 2327042503868417 - cogao,

where the 13- and 16-digit prime factors were
found by Kraitchik (1925) and Gostin (1987).
On July 3, 1997 BCDH found a 33-digit factor

p33 = 168768817029516972383024127016961

using ECM. The quotient is cggos-
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Factorization of Fjy: some details

ECM was implemented on a Fujitsu VP100 in
March 1988. The program was soon successful
in completing the factorization of Fji, but had
no success with other Fermat numbers, apart
from rediscovering known factors. The VP100
was upgraded to a VP2200 in 1991.

In September 1994 we started running a similar
program on one or two 60 Mhz SuperSparc
processors. In July 1995 six more 60 Mhz
SuperSparc processors became available for a
limited period. We attempted to factor Fig on
all eight SuperSparcs.

The pyo factor of Fig was found by a run which
started on Oct 14 and finished on Oct 20, 1995.
The run tried 10 curves with By = 2000000 in
about 114 hours of CPU time.

All the computations were performed at the
Australian National University, Canberra.
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Summary of Fjy runs

In Table 3, F is an estimate of the expected
number of times that the factor psy should be
found with the given B; and number of curves.
E is an estimate of the efficiency compared to
the optimal choice of By ~ 3400000.

The last row of the table gives totals (for
number of curves and F') and weighted means
(for By and E).

Table 3: ECM runs on Fig

Bj curves F E machine(s) and dates
6 x 10% 2000 0.0010 0.14 VP100, Mar 1988 — Nov 1990
2 x 10° 17360 0.0910 0.42 VP2200, Aug 1991 — Aug 1995
5 x 10° 700 0.0152 0.69 Sparc x 2, Sep 1994 — Jul 1995
106 480 0.0262 | 0.87 | Sparc x 8, Jul 1995 — Aug 1995
2 x 106 900 0.1100 | 0.98 | Sparc x 8, Aug 1995 — Oct 1995
2.9 x 10° 21440 0.2434 0.63
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The Computational Work

Each curve on a 60 Mhz SuperSparc takes
about 5.7 x 1079B; hours of CPU time. If a
60 Mhz SuperSparc is counted as a 60-Mips
machine, then our computation took about 240
Mips-years. This is comparable to the 340
Mips-years estimated for sieving to factor Fy by
SNFS. (SNFS has since been improved, so the
340 Mips-years could now be reduced by an
order of magnitude.) A 130-digit number,
RSA130, took 500 Mips-years by GNFS (May
1996).

Since the inner loops of our programs use
floating-point arithmetic, Mflops are a more
appropriate measure than Mips. The
VP2200/10 is rated at 1250 Mflop (peak
performance). If our factorization of Fip had
been performed entirely on the VP2200, it
would have taken about 6 weeks of machine
time, or 140 Mflop-years. Cryptographers
should note that this amounts to about

75 minutes on a 1 Teraflop machine.
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Multiplications

The number of multiplications (mod N) is a
machine-independent measure of the work to
factor N. Each curve takes about 22.9 B; such
multiplications.

Overall, our factorization of Fig took 1.4 x 1011
multiplications (mod N), where N = cag1.
Table 1 predicts 3.3 x 10! with the optimal
choice of parameters.

Numbers mod co91 were represented with

38 digits and base 226 (on the VP100/VP2200)
or with 41 digits and base 224 (on the Sparc), so
each multiplication (mod N) took more than
10* floating-point operations.
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The Group Order

The successful elliptic curve leading to the
factorization of Fig had order

g = pao+1—3674872259129499038
22.32.5.149-163 - 197 - 7187 -
18311 - 123677 - 226133 - 314263 - 4677853 .

The probability that a random integer near
g/12 has largest prime factor at most 4677853
and second-largest prime factor at most 314263
is about 5.8 x 1076, The phase 1 limit for the
successful run was By = 2 x 108, but our
program finds pgo with B; as small as 314263 if
the same curve and starting point are used.
(The largest factor 4677853 of g is caught by
“phase 2” of ECM.)
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The final word — Fy again

In April 1997, using ECM on a 250 Mhz DEC
alpha, we “rediscovered” the 49-digit factor of
Fg:

7455602825647884208337395736200454918783366342657

We used the equivalent of about 73,000 curves

with B; = 107; the number of curves predicted
is about 90,000. The group order for the lucky
curve is

22.32.52.7.331.1231-1289-6277-68147-1296877-9304783-9859051-44275577

Of course, the 49-digit factor was already
known, but it is interesting to see that it could
have been found by ECM. Excluding this
example, the current record for ECM is a
48-digit factor

662926550178509475639682769961460088456141816377

of 24121 + 1, which I found on 8 October 1997.
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How much computation was required ?

The factorization of Fy by ECM required about
1.7 x 10" multiplications mod Ny, where
Ny = Fy/(small factor).

Recall that the factorization of Fjg required
about 1.4 x 10™ multiplications mod Ny,
where N1g = Fio/(known factors). Allowing for
the sizes of Ng and Njg, we see that the
factorization of Fy required about thirty times
as much computation as the factorization of Fig.

However, we saved a factor of about ten by
working mod p4g9 rather than mod Njy.

“This is cheating”

Arjen Lenstra, 4 Dec 1997
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